Please use this identifier to cite or link to this item: http://repository.futminna.edu.ng:8080/jspui/handle/123456789/18365
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNduka, David. O.-
dc.contributor.authorOlawuyi, Babatunde. J.-
dc.contributor.authorFagbenle, Olabosipo. I.-
dc.contributor.authorFonteboa, Belen.G.-
dc.date.accessioned2023-04-21T23:06:13Z-
dc.date.available2023-04-21T23:06:13Z-
dc.date.issued2022-01-06-
dc.identifier.citationNduka, D.O.; Olawuyi, B.J.; Fagbenle, O.I.; Fonteboa, B.G. Assessment of the Durability Dynamics of High-Performance Concrete Blended with a Fibrous Rice Husk Ash. Crystals 2022, 12, 75. https://doi.org/10.3390/ cryst12010075en_US
dc.identifier.urihttp://repository.futminna.edu.ng:8080/jspui/handle/123456789/18365-
dc.description.abstractThe present study examines the durability properties of Class 1 (50–75 MPa) high-performance concrete (HPC) blended with rice husk ash (RHA) as a partial replacement of CEM II B-L, 42.5 N. Six HPC mixes were prepared with RHA and used as 5%, 10%, 15%, 20%, 25%, and 30% of CEM II and properties are compared with control mix having only CEM II. The binders (CEM II and RHA) were investigated for particle size distribution (PSD), specific surface area (SSA), oxide compositions, mineralogical phases, morphology, and functional groups using advanced techniques of laser PSD, Brunauer–Emmett–Teller (BET), X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared/attenuated total reflection (FTIR/ATR), respectively, to understand their import on HPC. Durability properties, including water absorption, sorptivity, and chemical attack of the HPC samples, were investigated to realise the effect of RHA on the HPC matrix. The findings revealed that the durability properties of RHA-based HPCs exhibited an acceptable range of values consistent with relevant standards. The findings established that self-produced RHA would be beneficial as a cement replacement in HPC. As the RHA is a cost-effective agro-waste, a scalable product of RHA would be a resource for sustainable technology.en_US
dc.language.isoenen_US
dc.publisherMDPI_Crystalsen_US
dc.relation.ispartofseriesCrystals;12-
dc.subjectdurability properties; high-performance concrete; rice husk ash; superabsorbent polymers; sustainabilityen_US
dc.titleAssessment of the Durability Dynamics of High-Performance Concrete Blended with a Fibrous Rice Husk Ashen_US
dc.typeArticleen_US
Appears in Collections:Building



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.