Please use this identifier to cite or link to this item: http://repository.futminna.edu.ng:8080/jspui/handle/123456789/18135
Title: Radiation shielding ability and optical features of La2O3+TiO2+Nb2O5+WO3+X2O3 (X=B, Ga, and In) glass system containing high-entropy oxides
Authors: Alzahrani, Jamila S.
Alrowaili, Z.A.
Eke, Canel
Altowyen, Abeer
Olarinoye, I.O.
Al-Buriahi, M.S.
Keywords: High entropy oxides
Radiation protection
Optical features
Shielding applications
Issue Date: 2023
Publisher: Cell Press
Citation: Alzahrani, J. S., Mutuwong, C., Eke, C., Altowyan, A. S., Olarinoye, I. O., & Al-Buriahi, M. S. (2023). Radiation shielding ability and optical features of La2O3+ TiO2+ Nb2O5+ WO3+ X2O3 (X= B, Ga, and in) glass system containing high-entropy oxides. Heliyon.
Abstract: Three high entropy materials (La2O3+TiO2+Nb2O5+WO3+X2O3 coded as LTNWM1, LTNWM2, and LTNWM3 for X = B, Ga, and In) produced by aerodynamic containerless processing were evaluated for optical attributes, and their gamma-radiation absorption abilities were investigated in this report. Optical related parameters such as the molar refractivity (Rm), optical transmission (T), molar polarizability (αm), metallization criterion (M), reflection loss (RL), static (εstatic), and optical (εoptical) dielectric constants were estimated through standard expressions, while photon attenuation parameters were estimated from data from photon transmission simulations in FLUKA code and XCOM software. The attenuation parameters were calculated for a wide energy photon spectrum (15 keV–15 MeV). LTNWM1, LTNWM2, and LTNWM3 had Rm values of 18.94 cm3 /mol, 21.45 cm3 /mol, and 26.09 cm3 /mol respectively. The αm has a value of 7.52 × 10− 24 cm3 for LTNWM1, 8.51 × 10− 24 cm3 for LTNWM2, and 10.35 × 10− 24 cm3 for LTNWM3. The photon shielding parameters evaluated by FLUKA and XCOM are compatible. The mass attenuation coefficient for the glasses was between 0.0338 and 52.8261 cm2 /g, 0.0336–58.0237 cm2 /g, and 0.0344–52.1560 cm2/g for LTNWM1, LTNWM2 and LTNWM3, respectively. The effective atomic number at 1.5 MeV was 18.718, 20.857, and 22.440 for LTNWM1, LTNWM2, and LTNWM3, respectively. The shielding parameters of the HMOs compared to raditional gamma radiation absorbers are exceptional and highlight the potential of using them as optically transparent gamma-shields.
URI: https://doi.org/10.1016/j.heliyon.2023.e13607
http://repository.futminna.edu.ng:8080/jspui/handle/123456789/18135
Appears in Collections:Physics

Files in This Item:
File Description SizeFormat 
LTNWM 2023.pdf3.01 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.