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a b s t r a c t

Email is a convenient means of communication throughout the entire world today. The increased
popularity of email spam in both text and images requires a real-time protection mechanism for the
media flow. The previous approach has been limited by the adaptive nature of unsolicited email spam.
This research introduces an email detection system that is designed based on an improvement in the
negative selection algorithm. Furthermore, particle swarm optimization (PSO) was implemented to
improve the random detector generation in the negative selection algorithm (NSA). The algorithm
generates detectors in the random detector generation phase of the negative selection algorithm. The
combined NSA–PSO uses a local outlier factor (LOF) as the fitness function for the detector generation.
The detector generation process is terminated when the expected spam coverage is reached. A distance
measure and a threshold value are employed to enhance the distinctiveness between the non-spam and
spam detectors after the detector generation. The implementation and evaluation of the models are analyzed.
The results show that the accuracy of the proposed NSA–PSO model is better than the accuracy of the
standard NSA model. The proposed model with the best accuracy is further used to differentiate between
spam and non-spam in a network that is developed based on a client–server network for spam detection.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Different techniques have been adopted to stop the threat of
spam or to drastically reduce the amount of spam that attacks
internet users across the world. An anti-spam law was enacted by
legislating a penalty for spammers who distribute email spam
(Bambauer, 2005). Additionally, two general approaches have
been used in email spam detection: a knowledge engineering
approach and a machine learning approach (Wamli et al., 2009).
The knowledge engineering approach uses network information
and internet protocol address techniques to determine whether
a message is spam or non-spam; this approach is known as
the origin-based filter. Sets of rules must be specified in the

knowledge engineering approach to determine which email is to
be categorized as spam or non-spam. Such rules could be created
by the use of filters or by some other authority (Bambauer, 2005).
An example of this process is a software company that provides
specific rule-based spam filtering tools. However, the rules must
be maintained continuously and must be updated, which is a
waste of time and is inconvenient for most users (Thonnard et al.,
2012). The machine learning approach is more efficient than the
knowledge engineering approach (Guzella and Caminhas, 2009)
and does not require specifying rules; instead, a set of pre-
classified email messages is utilized. Specific algorithms are used
to learn the classification rules from the email messages. Filtering
techniques are the most commonly used methods; the system
identifies whether a message is spam or non-spam based solely on
the message content and some other characteristics of the mes-
sage (Man and Mousoli, 2010). Despite the different approaches
and techniques that have been adopted to fight the threat of email
spam, the internet today still manifests an enormous amount of
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spam (Zhang et al., 2004; Massey, 2003; Delany et al., 2012), and
more attention is required with regard to how the threat can be
drastically reduced if not totally eliminated. The battle against
email spam is a very difficult battle; therefore, it makes sense to
fight an adaptive email spam generator with an adaptive system.
Most models emphasize applying and designing computational
algorithms and techniques with the use of simplified models of
different immunological processes (De Castro and Timmis, 2002;
Dasgupta, 2006; Almeida and Yamakami, 2012; Sheikhan and
Sharifi Rad, 2013). This paper proposes an improved solution to
email spam detection by replacing the random detector generation
in the negative selection algorithm (NSA) with particle swarm
optimization (PSO). PSO is implemented with a local outlier factor
as a fitness function to generate detectors in a negative selection
algorithm.

The remainder of this paper is organized as follows. Section 2
discusses the related studies on negative selection algorithms. The
proposed NSA–PSO and its constituent framework are presented
in Section 3. An empirical study and dataset analysis are presented
in Section 4. Section 5 presents the implementation, results and
discussion. Finally, the conclusions and recommendations are
presented in Section 6.

2. Related studies

The understanding of the artificial immune system (AIS)
approach, which is based on the mammalian immune system, is
vital for this study. A comprehensive artificial immune system
survey has been provided in (Dasgupta et al., 2011). This paper
discusses the history, recent developments and four major AIS
algorithms. The main goal of the immune system is to distinguish
between non-self and self elements, which is the basis of our
implementation with the negative selection algorithm (NSA). This
research will replace ‘self’ in the mammalian immune system with
‘non-spam’ in our system and ‘non-self’ in the mammalian immune
systemwith ‘spam’ in our system. Most of the work on the negative
selection algorithm (NSA) and particle swarm optimization (PSO)
solves problems in anomaly detection and intrusion detection. No
previous research implements PSO to generate detectors in a
negative selection algorithm. The implementation of particle swarm
optimization with the negative selection algorithm to maximize the
coverage of the non-self space was proposed by Wang et al. (2009)
to solve the problem of anomaly detection. In Gao et al. (2007), the
focus is on non-overlapping detectors that have fixed sizes, to
achieve maximal coverage of the non-self space; this approach is
initiated after the generation of detectors by a negative selection
algorithm. The artificial immune system (AIS) is a new mechanism
that is implemented for the control of email spam. Pattern matching
was used to represent detectors as regular expressions by (Oda and
White, 2003a) in the analysis of messages. A weight is assigned to
the detector; this weight is decremented or incremented when
observing the expression in the spam message, and the classifica-
tion of the message is based on the threshold sum of the weight of
the matching detectors. This system is intended to be corrected by
either increasing or decreasing all of the matching detector weights
with 1000 detectors generated from a spam-assassin heuristic and a
personal corpus. The results were acceptable based on the small
number of detectors that was used. A comparison of two techniques
to determine the message classification using a spam-assassin
corpus with 100 detectors was proposed by (Oda and White,
2003b). This approach is similar to previous techniques, but the
difference is the increment in the weight when there is recognition
of patterns in spam messages. A random generation of detectors
does not help in solving the problem of finding the best selected
features; however, the feature weights are updated during the

matching process. The weighting of the features complicates the
performance of the matching process. More experiments were
performed by Oda and White (2005) with the use of a spam-
assassin corpus and a Bayesian combination of the detector weights.
The messages are scored by the simple sum of the message
matched by each non-spam in the detector space and also the use
of Bayes scores. Words from the dictionary and patterns extracted
from the set of messages are considered in the detector generation
in addition to the commonly used filters, to be assured of the
message classification. It was finally observed that the best results
emerged when the heuristic was used and that it had a similar
performance to the other two techniques. The immune system
classifies correctly 90% of the messages. More specifically, it
classifies 84% of the spam and 98% of the non-spam. The approach
of scoring features or feature weighting during and after the
matching process creates ambiguity in the selection of important
features for spam detection due to its computational cost.

The work of Wamli et al. (2009) studies the possibility of using
negative selection in email spam detection without prior informa-
tion of the email spam. The negative selection algorithm is divided
into four concurrent working modules with two repositories: the
random detector generation module, the detector maturing mod-
ule, the antigen matching module and the detector aging module,
with a selves' repository and a detectors repository. The TREC07
corpus (Cormack and Lynam, 2007) was used in its implementa-
tion. After the initial 1/3 of the time during the learning period,
the spam detection rate is over 80%, and it is over 70% most of the
time. A new solution to solve the spam detection problem, which
is inspired by the adaptive immune system model, is called the
cross-regulation model and was presented in Abi-Haidar and
Rocha (2008). This research shows the relevance of the cross-
regulation model as a biologically inspired algorithm in the
detection of spam. The Enron corpus was used in its implementa-
tion with the 70% spam experiment. The accuracy and F-measure
are 83% and 79%, respectively.

The analysis of major work performed on negative selection
algorithms with a combination of two different algorithms in a
hybrid email spam model is contained in Sirisanyalak and Sornil
(2007). An AIS-based module that extracts features was designed
and further used for a logistic regression model; the set of
detectors was initially generated using terms that were extracted
from the training message and using data from matched detectors
that were used in the regression model. The experiment uses
spam-assassin. A genetic optimized AIS culled old lymphocytes
(replacing the old lymphocytes with new ones) and also checked
for new interests for users, using an approach that was similar to
that presented in Hamdan and Abu (2011), to update intervals
such as the number of received messages. An interval is updated
with respect to time, user requests and other factors; many choices
were used in selecting the update intervals, which was the aim of
using the genetic algorithm. The experiment was implemented
with a spam-assassin corpus that had 4147 non-spam messages
and 1764 spam messages. The optimized spam detector with 600
generated detectors gives a false positive rate of 1.1% and a false
negative rate of 3.7%, while spam detection with AIS and 600
generated detectors gives a false positive rate of 1.2% and a false
negative rate of 4.9%. Other optimized algorithms are presented in
Yildiz (2013), Mazhoud et al. (2013), Tenne (2012). A proposed
anti-spam filter with an evolutionary algorithm is presented in
Yevseyeva et al. (2013). The scores of the anti-spam filters are
optimized to improve their accuracy. The optimization problem is
considered in a single- and multi-objective problem formulation.
Rough set theory, which is a mathematical approach for approx-
imate reasoning, was proposed in Wenqing and Zili (2005) to
group messages into three classes while targeting a low false
positive rate. The selection of features into spam, non-spam or
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suspicious elements was first implemented on the training set,
after which a genetic algorithm was implemented. The universe of
messages was divided into three regions based on an induced set
of rules. The experiment used only 11 features of the UCI corpus
(Hopkins et al., 1999). It was concluded that the technique is very
efficient in reducing the number of non-spam messages that are
blocked. The work in Bereta and Burczyński (2007) combines the
characteristics of negative selection and clonal selection to select
the best subset of features for classification. A combination of
support vector machine (SVM) and artificial immune system (AIS)
was proposed by Guangchen and Ying (2007), with the use of
binary features that have the same feature selection as in Bezerra
et al. (2006). The support vectors that were acquired after training
the SVM were implemented in the generation of the initial
detector set for AIS; AIS was then used for classification. During
the classification with AIS, the detector with the smallest Eucli-
dean distance to the message was added to the committee set,
from which there was a majority voting of the detectors in the set
to obtain the classification. PU1 corpora and Ling-spam corpora
were used for the experiment. The application of an integral
evaluation methodology to compare eight different well-known
content-based spam filtering techniques with the use of well-
known accuracy measures was presented by Pérez-Díaz et al.
(2012). The measures are based on the filter accuracy in four
different complimentary scenarios. The scenarios are static,
dynamic, adaptive and internationalization. Basically, the idea of
an integral evaluation methodology is to cover the gap that was
present between basic research and the deployment of existing
machine learning algorithms for spam filtering.

3. Proposed NSA–PSO and its framework

A combination of negative selection algorithm-particle swarm
optimization (NSA–PSO) was investigated to compliment the
parameters of each component of the system; this approach uses
the advantages of the individual system against its disadvantages
while elevating each weak component member of both systems to
achieve stability, consistency and accurate intelligent systems that
are extendable for usage in classification. The importance of a
combined system is not negotiable because of the fact that an
individual system has its own weaknesses and a combined system
is meant to compliment the weaknesses of these individual
intelligent systems. The strength of the particle swarm optimiza-
tion is combined with that of the negative selection algorithm
to improve the weaknesses of both algorithms by means of
the strength of their combination. A local outlier factor is
also implemented as a fitness function for the particle swarm
optimization.

3.1. The NSA–PSO

Random generation of detectors by the real value negative
selection algorithm is improved with the introduction of particle
swarm optimization (PSO) and the local outlier factor (LOF) as the
fitness function. This improvement is a result of the quest for an
efficiently trained negative selection algorithm model for purely
normal detectors. The local outlier factor as a fitness function will
model the data point by the implementation of a stochastic
distribution (Sajesh and Srinivasan, 2011). This proposed techni-
que can improve the traditional random generation of detectors in
the real value negative selection algorithm and optimize the
generated detectors in spam space at the same time. The section
below explains the processes of its implementation.

3.1.1. Spam and non-spam space
In the case of the real value negative selection algorithm, there

is a need to define the non-spam and spam space. The non-spam
space is the normal state of a system, while the spam space is the
abnormal state of a system.

Let us assume the non-spam space to be S, where S is defined
as follows:

S¼ s1⋯snð Þ ¼
s11 … s1m
⋮ ⋱ ⋮
sn1 … snm

2
64

3
75;

where SijAKm, i ¼ 1;⋯; n and j ¼ 1;⋯; m
The space S is normalized as follows:

Si ¼
Si

jjSijj
ð1Þ

Therefore, si is the ith non-spam unit, and sij is the jth vector of
the ith non-spam unit.

3.1.2. Generate random candidate detectors
In this scenario, we generate random candidate detectors as

follows:

r¼ r1 … rnð Þ ¼
r11 ⋯ r1m
⋮ ⋱ ⋮
rk1 … rkm

2
64

3
75; ð2Þ

where rijA 0;1ð Þm, i ¼ 1;…; k and j ¼ 1;…;m. Here, ri is said to be
the ith detector, and rij is the jth feature of the ith detector.

3.2. Detector generation parameters and implementation in particle
swarm optimization

The particles are composed of 57 features {f 57}. The value of the
accelerated constant C is 0.5. The position and velocity of the
particle swarm optimization are represented, respectively, in
N-dimensional vector space as follows:

Pi ðp1i; p2i; …pni Þ ð3Þ

and

Vi ðv1i; v2i; …vni Þ ð4Þ

Here, pid denotes the binary bits i¼ 1;2;…;m (m is the total
number of particles), and d¼ 1;2;…;n (n is the dimensionality of
the data). Each particle in the generation updates its own position
and velocity based on Eqs. (3) and (4). The initialization of the real-
valued PSO is established by the population of particles (non-spam
and spam). All of the particles move in problem space to find the
optimal solution over all of the iterations.

Given n-dimensional space, the particles exhibit a potential
solution while each particle possesses a direction and position
vector for its movement and direction. To determine the best
particles, we use the local outlier factor (LOF) as a fitness function
for the system. The proposed PSO requires one best optimum
solution, and each generated candidate detector (Pbest) is used as
the optimum solution in spam space. The global best (Gbest)
solution is eliminated because our solution does not need to jump
from one optimum solution to another and each candidate
detector is a potential optimum solution in the swarm; each local
best (pbest) particle is the optimum solution that is reached after
the particles in the swarm are compared. We do not have a unique
optimal solution in our problem that will require the use of Gbest to
determine the optimal solution. The Gbest solution takes us to cover
another space instead of covering the immediate position or space.
Therefore, the movement that was attained using Gbest is too long
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compared with the movement that is required to cover the spam
space for the purpose of detector generation.

In generating a random initial velocity matrix for the random
candidate detectors, we have v ð0Þ, as follows:

v 0ð Þ ¼
v1 1 ð0Þ ⋯ v1 mð0Þ

⋮ ⋱ ⋮
vj 1 ð0Þ … vj mð0Þ

2
64

3
75 ð5Þ

Eqs. (6) and (7) calculate the new velocity and particle positions as
follows:

vid tþ1ð Þ ¼ vid tð ÞþcðPbestid tð Þ�xidðtÞÞ ð6Þ

xid tþ1ð Þ ¼ xid tð Þþ vidðtþ1Þ ð7Þ

The process of the proposed method can be explained in the
following steps:

Step 1: Define a stable behavior and the activities of a system as
non-spam space (normal pattern), as shown in Eq. (1).
Step 2: From the population of spam and non-spam data,
generate training and testing profiles with random candidate
detectors as shown in Eq. (2).
Step 3: Use Eqs. (3) and (4) to initialize both the position and
the velocity of the PSO.
Step 4:Calculate the reach-ability distance and the LOF for each
candidate detector, as shown in Eqs. (22) and (23).
Step 5: Update each candidate detector position and velocity
with Eqs. (6) and (7).
Step 6: Implement the distance measure with Eq. (42) and the
threshold value with Eq. (43) to determine the Pbest similarity in
the non-spam space S. If pbest does not match S, then it is a
valid detector.
Step 7: Continuously generate and match Pbest against S to
observe changes. Deviation of the system could occur if pbest
matches S. Pbest is not intended to match S.
Step 8: After the maximum coverage in spam space, employ
the testing set for evaluation.

Fig. 1 presents the particle swarm optimization (PSO) algorithm.

3.2.1. Implementation model
The N-dimensional points and a non-spam radius Rs represent

the training dataset.
Let Eq. (8) represents the non-spam space as follows:

S¼ fXiji¼ 1; 2;⋯;m;Rs¼ rg; ð8Þ
where Xi are some points in the normalized N-dimensional space,
i.e.

Xi ¼ fxi1; xi2; xi3 ⋯ xiNg; i¼ 1; 2; 3;⋯;m ð9Þ
Each of the particles was initialized at a random position in the

search space. The position of particle i is given by the vector

xi ¼ ðxi1; xi2;…; xiDÞ; ð10Þ
where D is the problem dimensionality with the velocity given by
the vector

vi ¼ ðvi1; vi2; …; viDÞ : ð11Þ
The movements of the particles were influenced by an imple-

mented memory. In the cognitive memory

pi ¼ pi1; pi2;…; piD
� �

: ð12Þ
The best previous position that was visited by each individual
particle i is stored:

pbest ¼ pbest1; pbest2;…; pbestD
� �

: ð13Þ
The vector in Eq. (13) contains the position of the best point in

the search space that was visited by all of the particles.
At each iteration, each pbest is used to compute the density of

the local neighborhood.

lrd ðiÞ ¼ 1
∑sϵNk ið Þreachability�distancek i;sð Þ

jNK ið Þj

� �: ð14Þ

Afterward, the local reach-ability density is compared with that of
its neighboring reach-ability distances

LOFK ið Þ ¼ ∑sANk ið ÞðlrdðsÞÞ=lrdðiÞ
jNkðiÞj

¼ ∑sANk ið Þlrd sð Þ=jNK ið Þj
lrd ið Þ : ð15Þ

Giving each particle a degree of being an outlier, each iteration
of the pbest velocity is updated according to Eq. (16)

vi tþ1ð Þ ¼w:vi tð Þþn1r1 pi�xi tð Þ
� �þn2r2 pbest�xi tð Þ

� �
; ð16Þ

where w is the local outlier factor for each particle of the velocity,
n1 and n2 are positive constants called the “cognitive” and
“social” parameters, which implement the local outlier factors of
two different swarm memories, and r1 and r2 are the random
numbers between 0 and 1. The proposed procedure does not
require the swarm to perform a more global search with a large
movement; it requires only a small movement and fine tuning at
the end of the optimization process. After calculating the velocity
vector, the position of the particles is updated based on the
following equation:

xi tþ1ð Þ ¼ xi tð Þþviðtþ1Þ ð17Þ
In the normalized samples spaceI � ½0; 1�N , the spam space is

represented as S¼ I�NS, where S is spam and NS is non-spam.

dj ¼ Cj; R
d
j

� �
: ð18Þ

We then employ a maximum number of iterations as the
termination condition for the algorithm based on this task.

Eq. (18) is a representation of one detector dj with the center
Cj ¼ fCj1; Cj2;Cj3;⋯;CjNg as the detector center with respect to the
numbers of the detectors dj, while Rj is the detector radius of each
detector dj with respect to the diameter Rd. The Euclidean
distance is used as the matching measurement. The distance
between the non-spam sample Xi and the detector dj can beFig. 1. Particle swarm optimization algorithm.
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defined as follows:

LðXi; dj Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi1�Cj1Þ2þ ⋯þðxiN�CjNÞ2

q
ð19Þ

A comparison of L Xi; dj
� �

with the non-spam space threshold
Rs results in the match value ⋉, where

⋉¼ LðXi; djÞ�Rs: ð20Þ
The detector dj does not match the non-spam sample Xi if

⋉40; therefore, if dj does not match any non-spam sample, it is
accepted in the detector set. The detector threshold Rd; j of
detector dj is defined as follows:

Rd; j¼ minð⋉Þ; if ⋉ r0 ð21Þ
If detector dj matches the non-spam sample, then it will be

discarded. This action will not stop the generation of detectors
until the required detector set is reached and the required spam
space coverage is attained. After the generation of detectors in
spam space, the generated detectors can then monitor the status
of the system. If some other new email (test) samples match at
least one of the detectors in the system, it is assumed to be spam
that is abnormal to the system, but if the new email (test) sample
does not match any of the generated detectors in the spam space,
it is assumed to be a non-spam email.

3.3. Computation of the fitness function

The local outlier factor (LOF) was employed to calculate the
fitness function in a quest for purely normal data that will
efficiently train our model. An outlier can be defined as a data
point that is not the same as the others in a population of data
with respect to a certain measure. This definition is used in a
fitness function for the generation of unique features in spam
space. This technique will model the data point with the use of a
stochastic distribution (Sajesh and Srinivasan, 2011). The point is
determined to be an outlier based on its relationship with the
model. The outlier detection algorithm proposed as a fitness
function in this study of spam detection generation is very unique
in computing the full dimensional distance from one point to
another (Ramaswamy et al., 2000; Knorr and Ng, 1998) while
computing the density of the local neighborhood.

� We assume the k distance (i) to be the distance of the
candidate detector or particle (i) to the nearest neighborhood
(non-spam).

� The set of k nearest neighbors (non-spam elements) includes
all of the particles that are at this distance.

� The set S of k nearest neighbors is denoted as NkðiÞ.

� This distance defines the reach-ability distance.
� The reach-ability-distance kði; sÞ ¼ max fk�distance sð Þ; d i; sð Þg.
� The local reach-ability distance is then defined as follows:

lrdðiÞ ¼ 1=
∑sϵNk ið Þreachability�distancek ði; sÞ

jNK ðiÞj

� �
ð22Þ

Eq. (22) is the quotient of the average reach-ability distance of
the candidate detector i from the non-spam element. This value is
not the average reach-ability of the neighbor from i but instead is
the distance from which it can be reached from its neighbor. We
then compare the local reach-ability density with those of its
neighbor using the equation below:

LOFK ið Þ ¼ ∑sANk ið ÞðlrdðsÞÞ=ðlrdðiÞÞ
jNkðiÞj

¼ ∑sANk ið Þlrd sð Þ
jNK ið Þj

� �
=lrdðiÞ ð23Þ

Eq. (23) shows the average local reach-ability density of the
neighbor divided by the local reach-ability density of the particle.
In this scenario, a value of approximately 1 indicates that the
particle is comparable with its neighbor (not an outlier). A value of
below 1 indicates a dense region (which will be an inlier), while a
value larger than 1 indicates an outlier. The major idea of this
technique is to assign to each particle a degree of being an outlier.
The degree is the LOF of the particle. The methodology for the
computation of the LOF for all of the particles is explained in the
following steps:

Step 1: For each particle i, compute the k distance element in
non-spam space (the distance of k nearest neighbors in non-
spam space s), as shown in Eq. (24)
Step 2: Using Eq. (25) computes the reach-ability distance for
particle i in non-spam space as the reach-ability-distance
ið Þ ¼ max fkdistance sð Þ; d i; sð Þg, where d i; sð Þ is the distance from
particle i to non-spam space s.
Step 3: Compute the local reach-ability density of particle i as
the inverse of the average reach-ability distance based on
Minpts (minimum number of non-spam space) nearest neigh-
bors of particle i in Eq. (26)
Step 4: Using Eq. (27), compute the LOF of particle i as the
average of the ratios of the local reach-ability density of the
neighbors in non-spam space divided by the number of objects
that have the same local reach-ability density.

Let us assume G to be the population of particles, S to be the
non-spam space and i to be the ith particle in G.

For each particle i;we have iAG:maxðk�dist: sð ÞÞ ð24Þ

=Reach�dist:G=n maxðdistðs; iÞÞ ð25Þ

Fig. 2. Algorithm for the fitness function.
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jGjnðMinpt ðs; iÞÞ ð26Þ

jGjnðsimilarity ði;GÞ ð27Þ
Fig. 2 presents the local outlier factor (LOF) algorithm.

3.3.1. Fitness model
The proposed computation uses directðxÞ to denote the mean

value of directminðxÞ and directmax ðxÞ. Additionally, indirect ðxÞ is
used to denote the mean value of indirectminðxÞ and indirectmaxðxÞ.

For any particle, let directminðxÞ denote the minimum reach-
ability distance that is between x and a MinPts-nearest
neighbor of x.

directmin xð Þ ¼ Min reach�distance x; yð Þ
y

ANMinPts xð Þ
	 


: ð28Þ

In addition, let directmaxðxÞ denote the corresponding mini-
mum;

directmax xð Þ ¼ Max freach�distanceðx; yÞ=yANMinPtsðxÞg ð29Þ
To further generalize the definitions of the MinPts�nearest

neighbor y of x, let indirectminðxÞ denote the minimum reach-
ability distance between y and a MinPts�nearest neighbor of y.

indirectmin xð Þ ¼ Min freach�distðy; zÞ\yANMinPtsðxÞ:
and zANMinPtsðyÞg ð30Þ
Let indirectmaxðxÞ denote the corresponding maximum; there-

fore, x's MinPts�nearest neighbor is referred to as the x's indirect
neighbor, wherever y is a MinPts�nearest neighbor of x.

Theorem 1. Let us assume x to be an object from the database D, and
1rMinPtsr Dj j; then,
directminðxÞ

indirectmaxðxÞ
rLOFðxÞr directmaxðxÞ

indirectminðxÞ
ð31Þ

Proof. First, we have

directminðxÞ
indirectmaxðxÞ

rLOFðxÞ ð32Þ

Then, 8zANMinPts xð Þ, we have reach�dist ðx; zÞZdirectminðxÞ.
By the directminðxÞ

1=
zAN∑MinPtsðxÞreach�distðx; zÞ

jNMinPtsðxÞj
r 1

directminðxÞ
ð33Þ

and

lrd ðxÞr 1
directminðxÞ

ð34Þ

For every yANMinPts zð Þ, we have

reach�dist z; yð Þr indirectmax xð Þ
By indirectmaxðxÞ

1=
yAN∑MinPtsðzÞreach�distðz; yÞ

jNMinPtsðzÞj
Z

1
indirectmaxðxÞ

: ð35Þ

and

lrdðzÞZ 1
indirectmaxðxÞ

ð36Þ

We then have

LOF xð Þ ¼ zAN∑MinPtsðxÞðlrdðzÞÞ=ðlrdðxÞÞ
jNMinPtsðxÞj

Z
zAN∑MinPtsðxÞðð1=ðindirectmax xð ÞÞÞ=ð1=ðdirectmin xð ÞÞÞÞ

jNMinPtsðxÞj

¼ directminðxÞ
indirectmaxðxÞ

ð37Þ

LOFðxÞr directminðxÞ
indirectmaxðxÞ

ð38Þ

3.4. Computing the generated detector in the spam space

The proposed dataset for the research is in real values. The real
value negative selection algorithm was enhanced by the genera-
tion of detectors with PSO. The process of detector generation
takes place at the random detector generation phase of the real
valued negative selection algorithm for classifying non-spam and
spam. In the case of real values, the non-spam and the spam space
are as defined in Eq. (1). The candidate detector is generated with
PSO and then compared with the non-spam samples. Detectors
that do not match any sample of the non-spam set are accepted as
viable detectors. Detectors that match the sample of the non-spam
set are discarded as unwanted detectors. The generation of
detectors continues until the detector set reaches the required
coverage in the spam space. The generated detectors can then
monitor the status of the system. If a new (test) sample matches at
least one of the detectors in the system, it is assumed to be spam
(which is abnormal to the system). However, if the new (test)
sample does not match any of the generated detectors in the spam
space, it is assumed to be non-spam.

The non-spam samples in a real valued negative selection
algorithm are represented as N-dimensional points, and a non-
spam radius Rs is a training dataset. In clearer terms, let Eq. (39)
represent the non-spam space:

S¼ fXiji¼ 1; 2;⋯;m;Rs¼ rg : ð39Þ
Here, Xi denotes some points in the normalized N-dimensional
space:

Xi ¼ fxi1; xi2; xi3; ⋯; xiNg; ¼ 1; 2; 3;⋯;m ð40Þ
The entire set of normalized samples are spaceI � ½0; 1�N . The

spam space can then be represented as S¼ I�NS; where S is spam
and NS is non-spam.

dj ¼ ðCj;R
d; jÞ ð41Þ

Eq. (41) denotes a detector that is generated with particle
swarm optimization, where Cj ¼ fCj1; Cj2;Cj3;⋯;CjNg in the detec-
tor is the center, and Rj is the detector radius. The Euclidean
distance is used as the matching measurement. The distance
between the non-spam sample Xi and the detector dj can be
defined as follows:

LðXi;dj Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi1�Cj1Þ2þ⋯þðxiN�CjNÞ2

q
ð42Þ

LðXi; dj Þ is compared with the non-spam space threshold Rs,
which generates the match value of ⋉:

⋉¼ LðXi; dj �RsÞ ð43Þ
The detector dj fails to match the non-spam sample Xi if ⋉40.

Therefore, if dj does not match any non-spam sample, it will be
retained in the detector set. The detector threshold Rd; j of
detector dj can be defined as

Rd; j¼ minð⋉Þ; if⋉r0 ð44Þ
If detector dj matches the non-spam sample, it will be

discarded. This process will not stop until a detector set that
attains the desired spam space coverage is reached. The generated
detector set can then be used to monitor the entire system.

4. Empirical study and dataset analysis

The corpus benchmark is obtained from the spam base data set,
which is an acquisition from email spam messages (Hopkins et al.,
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1999). From acquiring these email spam messages, the set is
composed of 4601 messages; 1813 (39%) of the messages are
marked to be spam messages and 2788 (61%) are identified as
non-spam. Acquisition of this corpus is already pre-processed,
unlike most corpuses, which arrive in their raw form. The
instances or features are represented as 58-dimensional vectors.
In the corpus of 58 features, 48 of the features of the corpus are
represented by words that are generated from the original
messages with the absence of a stop-list or stemming, and they
are considered and enlisted as the most unbalanced words for the
class spam. The remaining 6 features are the percentage of
manifestation of the special characters “;”, “(”, “[”, “!”, “$” and
“#”. Some other 3 features are a representation of various
measures of the manifestation of capital letters that exist in the
text of the messages. Last is the class label in the corpus; this label
gives the condition of an instance to be spam or non-spam by a
1 and 0 representation. The spam base dataset is among one of the
best test beds that performs well (Koprinska, 2007) during learn-
ing and with evaluation techniques. The entire dataset was divided
using a stratified sampling approach into a training set and testing
set. Of the entire dataset, 70% was used for training, and the
remaining 30% was used for testing the model. The analysis of the
features is presented in Table 1 below.

4.1. Criteria for performance evaluation

Different measures can be used to evaluate the accuracy and
performance of the NSA and NSA–PSO models. To evaluate and
compare the performance and accuracy of these models, statistical
quality measures used in machine learning and data mining
journals were employed. These measures are the sensitivity (SN),
specificity (SP), positive prediction value (PPV), accuracy (ACC),
negative prediction value (NPV), correlation coefficient (MC) and f-
measure (F1). See Biggio et al. (2011) for more detailed mathema-
tical formulae. These measures are discussed briefly, as shown
below.

(i) Sensitivity ðSNÞ: The SN measures the proportion of positive
pattern instances that are correctly recognized as positive.

SN ¼ TP
TPþ FN

ð45Þ

(ii) Specificity ðSPÞ: The SP measures the proportion of negative
pattern instances that are correctly recognized as negative.

SP¼ TN
TNþFP

: ð46Þ

(iii) Positive prediction value ðPPVÞ: The PPV of a test gives a
measurement of the percentage of true positives out of the
overall number of patterns that are recognized to be positive.
The PPV measures the probability that a positively predicted

pattern instance is labeled as positive.

PPV¼ TP
TPþFP

ð47Þ

(iv) Negative prediction value ðNPVÞ: The NPV of a test also gives
the measurement of the percentage of true negative
instances out of the overall number of pattern instances
that are recognized to be negative. The NPV measures the
probability that a negatively predicted pattern instance is
labeled as negative.

NPV¼ TN
FNþTN

ð48Þ

(v) Accuracy (Acc): The Acc measures the percentage of samples
that are correctly classified.

Acc¼ TPþTN
TPþTNþFNþFP

ð49Þ

(vi) Correlation coefficient ðCCÞ is used as a measure of the
quality of binary (two class) classification in machine
learning.

CC¼ ½ TPð Þ TNð Þ� FPð Þ FNð Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFNð Þ TPþFPð Þ TNþFPð ÞðTNþFNÞ

p ð50Þ

(vii) F-measure (F1) is a measure that combines both the positive
predictive value and the sensitivity. The positive predictive
value and the sensitivity are evenly weighted.

F1¼ 2U
Positive prdictive value� Sensitivity
Positive prdictive valueþSensitivity

ð51Þ

(viii) Statistical T-test: Looks at the t-statistics, t-distribution and
degrees of freedom to determine the p-value (probability)
that can be used to determine whether the means of the
populations differ. This test is a hypothesis test.

T ¼
XI � X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðS12=n1
þ S22=n2

Þ
q ð52Þ

In the evaluation equation above, TP is the number of true
positives, TN is the number of true negatives, FN is the number of
false negatives and FP is the number of false positives.

5. Implementation, results and discussion

The amount of email spam that spreads across the network is a
critical problem in today's world. Different means have been
devised for the propagation of email spam and network security
(Wang et al., 2013). Despite the improvement in technology, the

Table 1
Feature relevance analysis for the spambase dataset.

Attribute number Attribute type Attribute description

A1–A48 word_freq_WORD Percentage of words in the email that match WORD
A49–A54 char_freq_CHAR percentage of characters in the e-mail that match CHAR
A55 capital_run_length_average Average length of uninterrupted sequences of capital letters
A56 capital_run_length_longest Length of longest uninterrupted sequence of capital letters
A57 capital_run_length_total Total number of capital letters in the e-mail
A58 Class attribute Denotes whether the email was considered spam (1) or not (0)
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spammers adapt to new techniques. The proposed algorithm
compares the NSA model and the NSA–PSO model. These models
were evaluated with statistical tools to determine the best model
to be used for email spam detection. From our analysis, the NSA–
PSO model performs better than the NSA model. Therefore, the
proposed spam detection architecture will be constructed based
on the NSA–PSO model. This algorithm can be considered to be a
powerful approach in the detection of email spam due to its
adaptive nature. The spam and non-spam email can be separated
based on the adaptation of the email spam detector; the prob-
ability of spam future occurrences is based on the spam best
occurrence. If there is a frequent occurrence of any part of the
email in the spam email and not in the non-spam email, then that
email is prone to be identified as spam. There is a certification of
the content of the email by the NSA–PSO model against the
information exchange in the database. With respect to the infor-
mation, the bounded knowledge of spam is deleted. Messages
used in an email could be spam in a database and non-spam in
another database. The proposed algorithm makes verification with
reference to the number of times it occurred in a database and
detects spam based on a probability ratio. The importance
of the proposed model is that it computes the detection of spam
based on existing patterns (Haiyan et al., 2009; Abaei and Selamat,
2014). The block messages are identified against their spamicity
rather than their respective messages for a better and more
efficient detection of the spam content in an email (Gong and
Bhargava, 2013).

The tool represents a client and server connection in an
organization. As shown in Fig. 3 above, clients 1 and 2 can
communicate inside and outside a network. The sent and received
messages between the client and other machines are routed
through server 1. Server 1 sent the email and detects spams that
are sent by the client. The server receives the email and delivers it
to the corresponding destination nodes if the email is spam free.
The spam is detected by the server software based on the NSA–
PSO spam detector model (Amayri and Bouguila, 2012), which
differentiates between the spam email and the non-spam email.

The proposed architecture with the NSA–PSO implementation
model is important in securing the system based on its adaptive
nature. The existing problem in the email spam detection that
spammers could manipulate the spam messages that are sent to

the system through the obfuscation of messages is eliminated due
to the adaptive nature of the proposed model. Messages that pass
through the proposed model are recognized by this model through
adaptation as spam or non-spam. A frequent occurrence in the
spam email on the database of the model that is not in the non-
spam email allows for the system to be identified as a spam email.
The memory of the spam and non-spam detectors in the database
of the proposed model can learn and keep records of the previous
spam or non-spam email messages.

5.1. Spam detection process

The spam detector process is presented in Fig. 4. The design
and developed architecture flow of execution is also presented.
The NSA–PSO spam content detector takes input messages and
verifies them with the files that are present in the database. The
verification is performed message after message to determine the
content of spam by the calculation of the different probabilities of
spam occurrences. The architectural flow is divided into three
different modules: the master server, the client module, and the
spam report module.

5.1.1. The master server
The master server is a component that is used to keep track of

client and spam details by the network administrator while logged
into an application. Its functionality comprises adding clients,
generating spam reports, sending data and receiving data. Any
number of servers and clients can be added by the master server
once the server is selected. The option of adding a client address is
based on the internet protocol (IP) address. The IP address is
validated as soon as it is specified. All clients have a user id and
password assigned. As soon as a client is added, its client name, IP
address and corresponding server are listed in the client list.
The procedure can add a large number of servers, and many
clients can also be added based on the number of servers added.
The additional servers are based on the system IP address, which
makes record of the number of clients on each server. The number
of clients in a server can also result in network traffic, which can
be resolved by additional servers. The spam report is based on the
email content exchange between the client's records spam, which

NSA-PSO 
Installation on 

Server and Client Database

Communication to 
Client 2 Stopped. 

IP Traced 

Spam

Server 1

Client1
Client 2

Client 3

NETWORK
Verifies

Encrypted Format
(Non-spam)

Fig. 3. System architecture
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thereby generates spam reports. This approach detects the com-
promised machine and the non-compromised machine due to the
spam that it sent. The master server fields used in the spam report
are the IP address, client name, server name and time stamps. A
clear picture of the clients that are connected and the correspond-
ing server is given by this field.

5.1.2. The client module
The function of the client is explained in Section 5.1.1. Any

number of clients can be handled by a server. The data exchange
and communication by the clients is based on sent data and
received data. In sent data, there exists a mailbox for each client,
whereby data can be sent. The message exchange is in the form of
email. The sent data has the option of composing the email, in
which the information goes through one client to the other client.
This application involves the NSA–PSO spam detector model, and
the email has the choice of sending both text and image messages.
An email can be sent by a client based on the client's unique ID.
Information such as the IP address, client name, date and time
stamps are stored in the database once an email is sent. The
received data accepts an email message transfer by a client; in this
way, it gets into the inbox of another client machine. The client
mailbox is similar to a general setup of email that can compose an
inbox and send mail. If the content of the email to be delivered is
spam, then the detector blocks the message from being delivered
to the client machine. If the email message is non-spam, then
there is an exchange of email messages between the clients.

5.1.3. Spam report module
The module runs under the server software. The record of

spam and non-spam messages is recorded and maintained by
the module. The system therefore identifies the compromised
and non-compromised machines in the network. Tracks of the
machine are recorded based on the server name, dates and client
name. The system also has different records of spam machines and
non-spam machines and other records that contain the client's
name, spam details, date, IP address and time stamps; based on
the NSA–PSO model, the spam is detected. The system reports the

spam detail as noted while the non-spam reports and the
messages are encrypted for the network administrator. This
approach helps to take care of privacy among the clients in the
network.

5.2. Results

In the evaluation of the NSA model and its improved models,
they were implemented with a threshold value of between 0.1 and
1, while the number of generated detectors was between 100 and
8000. The different threshold values and numbers of detectors
generated have a tremendous impact on the final output measure.
The comparison between the standard model and the proposed
improved models using the validation of unseen data is summar-
ized in Figs. 5–7 below. The performance of the improved
NSA–PSO model outperforms the NSA model. The proposed
model shows an improved accuracy when compared with the
standard model, which performs poorly on all of the measurement
standards.

Fig. 5 shows the accuracy of the negative selection algorithm
(NSA) and negative selection algorithm-particle swarm optimiza-
tion (NSA–PSO). The proposed improved model performs better
than the NSA model, with the average accuracy of the proposed
NSA–PSO model at 70.48% and the average accuracy of the NSA
model at 65.15%. The accuracy with 5000 generated detectors and
with a threshold value of 0.4 for the NSA–PSO model is 83.201%
and for the NSA model is 68.863%.

Fig. 6 shows the F-measure for the negative selection algorithm
(NSA) and negative selection algorithm-particle swarm optimiza-
tion (NSA–PSO). The proposed improved model performs better
than the NSA model, with the average f-measure of the proposed
NSA–PSO model at 43.546% and the average f-measure of the NSA
model at 22.09%.

For the F-measure with 5000 generated detectors and with a
threshold value of 0.4, the NSA–PSO model obtains 76.85% and the
NSA model obtains 36.01%. From the results obtained, it can be
noted that the improved NSA–PSO model performed better in all
aspects. This result proves the consistency of the quality of the
measurements that were used, in every respect.

Fig. 4. Spam detection process.
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Fig. 7 shows the negative prediction value of the negative
selection algorithm (NSA) and negative selection algorithm-
particle swarm optimization (NSA–PSO). The proposed improved
models perform better than the NSA model, with an average
negative predictive value for the proposed improved NSA–PSO
model at 69.03% and for the NSA model at 63.87%. For the
negative prediction value at 5000 generated detectors with a
threshold value of 0.4, the NSA–PSO model obtained 82.77%
and the NSA model obtained 66.24%. The NSA model performs
very low when compared with the improved models. The
improvement is on a very large scale and shows the relevance of
particle swarm optimization in improving the detector generation
phase of the negative selection algorithm. This approach in
practice solves the problem of detector generation and reduces
the false rate because more reliable features are generated,
which shows that the standard model is a robust and more
effective model.

5.3. Statistical t-test

The p-value (probability) was used to determine if the popula-
tion means differ or not. The t-test examines the t-statistic,
t-distribution and degrees of freedom to establish this fact. The
analysis presented in Table 2 below indicates that there is a high
correlation between the means of NSA and NSA–PSO at the 0.05
alpha level. This finding shows that there is a mutual unity
between NSA and NSA–PSO among the variables. The correlation
between NSA and NSA–PSO is the relationship that exists between
the two algorithms. This relationship is corroborated by means of
both the NSA and NSA–PSO ranging between 65.1477 and 70.4763
in accuracy; additionally, the standard deviation indicated that
there is a deviation between 0.98 and 1.89. Other evaluation
measure analysis is represented in Table 3.

There is a significant correlation between the mean of the
negative selection algorithm and the negative selection algorithm-
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particle swarm optimization. There is also a high level of accuracy
in both of them.

5.4. Result comparison of NSA, NSA–PSO and other schemes

The result obtained from the proposed NSA–PSO model is
compared with the NSA model and other standard machine
learning algorithms in this research. The enhanced models will
be compared against the support vector machine (SVM) proposed
in (Fagbola et al., 2012), the distinguishing feature selection and
support vector machine (DFS–SVM) proposed in (Uysal and Gunal,
2012) and the naïve Bayes (NB) proposed in (Zhang et al., 2008).
These standard machine learning tools are used for comparison
with our proposed model. The proposed model shows a high
accuracy in detecting email spam. Table 4 shows in summary the
results analysis of all of the models. The discussion of the results
on the individual models will be presented shortly.

However, the differences in the performances between the
proposed NSA–PSO model and the NSA model are very significant.
The best accuracy of the proposed model is 83.20%, while for the
NSA model, it is 68.86%. In general, the proposed model outper-
forms the standard NSA model. The comparison of the proposed
model with state-of-the-art machine learning models shows that
our model performs better than all of the models that were listed
in Table 4 above. The proposed model outperforms the standard
naïve Bayes models that were proposed in Zhang et al. (2008) and
Abu-Nimeh et al. (2008), with the accuracy of the two models
being 78.8% and 79.3%, respectively. The model also performs
better than the support vector machine (SVM) proposed in Fagbola
et al. (2012), which has an accuracy of 90%, and the distinguishing
feature selection and support vector machine (DFS–SVM) pro-
posed in Uysal and Gunal (2012), which has an accuracy of 71%.
This finding shows that the accuracy of the proposed model is

better than the existing models that were proposed by other
authors using state-of-the-art machine learning tools.

6. Conclusions and recommendations

A new and improved model that combines the negative
selection algorithm with particle swarm optimization (PSO) was
proposed and implemented. The uniqueness of this model is that
PSO was implemented at the random detector generation phase of
NSA. The detector generation phase of NSA determines how robust
and effective the algorithm will perform. PSO implementation
with the local outlier factor (LOF) as a fitness function no doubt
improved the detector generation phase of the NSA. The proposed
improved model serves as a better replacement to the NSA model.
This performance investigation has shown that the proposed
improved model can detect email spam better than the NSA
model. In total, the empirical report shows the superiority of the
proposed NSA–PSO over the NSA model. The improved NSA–PSO
model was then used to design and develop an architectural
system of a client-and-server network. Additionally, the media
flow of the NSA–PSO spam detector model, which receives input
from email messages, was also presented. The model provides
sensitivity to the client and can adapt very well to changes in spam
techniques in the future by noting the spam content in a network
despite modifications to the spam messages. It is suggested that
this research be considered a viable tool for any newly proposed
system in the email spam detection problem that is based on
detector generation and network implementation. Future work
will implement a parallel hybridization of two evolutionary algo-
rithms to perform the single task of detecting email spam in a
network.
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