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Abstract

The paper investigates analytically two dimensional flow of a viscous incompressible
electrically conducting fluid past an infinite vertical porous plate in a porous medium in the
presence of uniform transverse magnetic field and constant heat source. Physical properties are
assumed as constant and Fluid particles are assumed as electrically conducting. The equations
describing the heat and mass transfer were transformed using self-similar solution and solved
analytically using Frobenius method. The effects of various flow parameters on the velocity
and temperature, for the case of Grashof number, Gr < 0 (that is heating of the plate) are shown
with the aid of graphs and discussed. The results obtained revealed that velocity decreases
along distance but increases as permeability number and Grashof number increase while
maximum temperature increases as permeability number, Prandtl number and Eckert number

increase.
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1. Introduction

Convective flows are important in the context of process involving high temperatures. In many
engineering areas such as nuclear power plants, gas, turbines and various propulsion devices
for aircraft, missiles and space vehicles. The effect of free convection on accelerated flow of a
viscous incompressible fluid past an infinite vertical plate with suction has many important
technological applications in the astrophysical, geophysical and engineering problems .The
study of the flow of an electrically conducting fluid over porous media has been studied due to
its numerous applications such applications include MHD pumps, induction pumps, MHD
generators , oil exploration, nuclear power plants ,gas turbines, air crafts and space vehicles
among many others. Seigel (1958) first studied transient free convection flow past a semi-
infinite vertical plate by an integral method. Since then many researchers have been published
papers on free convection flow past a semi-infinite vertical plate.

A few other works of interest in this area include the works of Ogulu and Prakash (2006), Kim
(2000), Makinde (2005) and Ogulu and Makinde (2009). Anand et al. (2014) used finite
element method (FEM) to obtain the solution of heat and mass transfer in MHD flow of a
viscous fluid past a vertical plate under oscillatory suction velocity. Sharma et al. (2012)
investigated the flow of a viscous incompressible electrically conducting fluid along a porous
vertical isothermal non-conducting plate with variable suction and internal heat generation in
the presence of transverse magnetic field. Mohammed et al. (2015) presented an analytical
method to describe the heat and mass transfer in the flow of an incompressible viscous fluid
past an infinite vertical plate. With the governing equations accounting for the viscous
dissipation effect and mass transfer with chemical reaction of constant reaction rate. The couple
differential equations were transformed using similarity transformation and solved analytically
using iteration perturbation method. Hamad et al. (2011) investigated the unsteady magneto

hydrodynamic flow of a Nano fluid past an oscillatory moving vertical permeable semi-infinite



flat plate with constant heat source in a rotating frame of reference. The velocity along the plate
(slip velocity) is assumed to oscillate on time with a constant frequency. Das and Jana (2010)
investigated the effect of heat and mass transfer on the unsteady free convection flow of a
viscous, electrically conducting incompressible fluid near an infinite vertical plate embedded
in porous medium which moves with time dependent velocity under the influence of uniform
magnetic field applied normal to the plate. An exact solution of the governing partial
differential equation is obtained by using Laplace transform technique. Maina et al. (2015)
studied the effects of heat transfer on unsteady MHD free convective flow past a vertical porous
plate in a porous medium with heat source and constant injection. Crank-Nicolson method
(FDM) was used to solve the governing coupled differential equations.

In this paper, a mathematical study of heat and mass transfer of the two dimensional
flow of a viscous incompressible electrically conducting fluid past an infinite vertical porous
plate in a porous medium in the presence of uniform transverse magnetic field and constant
heat source is presented. We simulate the flow analytically, using self-similar solution and

Frobenius method.

2. Model Formulation

Consider the two dimensional flow of a viscous incompressible electrically conducting fluid
past an infinite vertical porous plate in a porous medium in presence of uniform transverse

magnetic field (B, )and constant heat source(Q). The x-axis is measured along vertical plate

and y-axis normal to it as shown figure 1. The surface of the vertical plate is at uniform

temperature T and concentration C. The temperature and concentration far away from the
plate are T, and C_ respectively. A magnetic field of strength B, acts normal to the plate

that is, along the y-axis. The analysis of this study is based on following assumptions:

*Physical properties are assumed as constant.



*Fluid particles are assumed as electrically conducting.

The physical sketch and geometry of the problem is shown in figure 1:
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Figure 1: The flow configuration

Using these assumptions together with usual boundary layer approximations and following

Maina et al. (2015) and Mohammed et al. (2015) we get the two dimensional equations

describing the phenomenon as:

Continuity equation
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Where U, V are the dimensionless velocity components along the X —and y — directions

respectively, U is the kinematic viscosity, kK thermal conductivity, ois the electrical

conductivity, B, the constant applied magnetic field, o the fluid density, g gravity

acceleration, B’ the concentration expansion coefficient, C and C, are the concentration of
solute at the plate and far away from the plate respectively. T is the temperature of the fluid in

the boundary layer T, the temperature of fluid far away from the plate, C, is the specific heat

capacity at constant pressure, Q additional heat source, and D_ is the molecular diffusivity.
The problem is two-dimensional. Since the plate is an infinite, the velocity vector
q=(u,0), u=ulxyt) , v=v(xy,t)

By symmetry and from continuity equation (1)

u=u(y,t) T=T(y,t)and C=C(yt)

Then, equations (1) — (4) reduce to
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With initial and boundary conditions

u(y,0)=U,_ u(,t)=u, U(oo,t) =0
T(y,0)=T, TO,t)=T, T(0,t)=T, (8)
C(y,0)=C, C(,t)=C,, C(oo,t) =C,

3. Method of Solution

3.1 Non-dimensionalisation

We introduce dimensionless variables for space and time,
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Using (9) and (10), and after dropping the prime, the equations (5) - (8) become
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u(y,0)=1 u(0t)=a, u(o,t
0(y,0)=0, 6(0,t)=1, 6(o,t
#(y.0)=0, 4(0,t)=1  4(,)=0
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q= %L heat source parameter

3.2 Solution via Frobenius Method
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Here, we seek self-similar solutions (Olayiwola 2015) as
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grashof number
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and this self-similar solutions exist when « = 0 so that equations (11) - (14) reduce to
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Together with the boundary conditions:
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Using the transformation
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we change equations (16) — (19) from infinite plane (0 <7 < o) to finite plane (1< m<1)

and we get
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Then we solve equations (21) — (24) using Frobenius method and we obtain
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The computations were done using computer symbolic algebraic package MAPLE.

4. Results and Discussion

In order to study the behavior of velocity f(X) and temperature g(x) fields, a

comprehensive numerical computation is carried out for various values of the parameters that
describe the flow characteristics, and the results are reported in terms of graphs as shown in
Figures 2 to 6. To be more realistic, the value of the Prandtl number is chosen to be Pr = 0.71,

which corresponds to air.
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Figure 2: Variation of Velocity f(x) with Permeability Parameter K,
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Figures 2 and 3 shows an exponential decrease in the fluid velocity from the plate surface to
the free stream value away from the plate. From figure 2, it is observed that the velocity

increases as Permeability parameter increases while the velocity increases as Grashof number

decreases in figure 3.
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Figure 4: Variation of Temperature g(x) with Permeability Parameter K .

15



304

" I- 1

Temperature
2(x)

10+

">"""-.
-

Figure 5: Variation of Temperature g(x) with Prandtl number Pr .

40

304
Temg{e;;me 20 -
10

0

i 4 5 46

Distamice
(x)

Figure 6: Variation of Temperature g(x) with Eckert number Ec .

Distemcs
(x)

— Pr=10.37
Pr=0464
m— = Py =083

Ec=1001
Ec=1002
== = Ec=10103

16



From figures. 4, 5 and 6 the fluid temperature rises rapidly from unity at the plate, attains a
maximum near the plate and decreases to free stream value away from plate. It is observed that
the maximum fluid temperature increases respectively as Permeability parameter, Prandtl

number and Eckert number increases.

However, it is interesting to note that as the permeability parameter (Kp) increases, both

velocity and thermal boundary layer thickness decrease when the plate is heated by free

convection current(Gr < 0).
5. Conclusion

We can therefore conclude that for heating of the plate by free convection current (Gr < 0)
(i). Increase in Kp results in a decrease in the velocity boundary layer thickness.

(ii). Increase in Kp, Pr and EC lead to a decrease in the thermal boundary layer thickness.
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