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Abstract 
Accurate estimation of model parameters is difficult for reactive solvent-based 
processes due to coupled effects of mass transfer, heat transfer, and reaction kinetics. 
While commercial process simulators provide capabilities for parameter estimation, it is 
generally difficult to simultaneously regress parameters of different submodels (e.g. 
parameters of physical properties and mass transfer models). Morgan et al. (2018) and 
Chinen et al. (2018) have demonstrated the value of the simultaneous parameter 
estimation approach in developing highly predictive models. The approach used by 
Chinen et al. (2018) embedded a simulation of a CO2 capture process in an external 
derivative free optimization (DFO) framework. While this approach works well in many 
cases, it is computationally inefficient, difficult to set up, and limited by the amount of 
data that can be used. This paper presents an extension to that work where the process 
model and a generalized parameter estimation tool are developed in the Institute for 
Design of Advanced Energy Systems (IDAES) process systems engineering (PSE) 
framework. The IDAES framework allows an entire process model to be implemented 
in an equation-oriented framework with access to state-of-the-art optimization methods. 
Improved computational efficiency and ease of implementation are demonstrated. 
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1. Introduction 
Accurate estimation of model parameters is important in the development of predictive 
process models; however, this is difficult for reactive solvent-based processes due to the 
coupled effects of mass transfer, heat transfer, and reaction kinetics. Experimental data 
spanning different scales and operating regimes are required to obtain a process model 
that is predictive for different scales and widely varying operating conditions. 
Simultaneous parameter estimation for solvent based CO2 capture systems has been 
described and a methodology has been presented using chemical process simulators 
embedded in a DFO framework (Chinen et al. 2018). The focus of this paper is to 
extend that work by implementing a generic framework that will support the approach 
within the IDAES PSE framework, which provides a modular process modeling 
framework on top of the Pyomo algebraic modeling language (AML) (Hart et al., 2011; 
Hart et al., 2017). 

The novelty of the approach is that it facilitates large-scale parameter estimation for 
hundreds of parameters at multiple scales embedded in complex process models and 
submodels in a way that is not generally possible with commercial process simulators. 
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Depending on the complexity and robustness of the process models, over 100 
parameters, thousands of experimental data sets, and several hundred thousand equality 
and inequality constraints can be handled through decomposition methods. The upper 
limit of this methodology has yet to be identified.  

The IDAES framework provides basic modular flowsheeting features and a model 
library allowing optimization problems to be implemented much more quickly than in a 
general AML. The benefit of this approach enables the process model and all submodels 
to be implemented in a common framework where all variables and parameters are 
easily accessible. In addition, full derivative information is available enabling the use of 
state-of-the-art optimization solvers and decomposition methods through Pyomo. These 
features allow the problem to be implemented in a more straightforward way and solved 
with significantly reduced computation times and superior optimality conditions. The 
approach presented here can readily solve problems comprising multiple models and 
submodels while utilizing data from multiple sources and scales. 

2. Simultaneous Parameter Estimation 
Simultaneous parameter estimation is a technique of regressing parameters of a process 
model and various interrelated submodels at the same time. This approach allows data 
from multiple scales and system configurations to be used simultaneously to improve 
the predictiveness of a model. Features of each coupled sub-model are better identified 
over a wider domain by this approach. The simultaneous parameter estimation problem 
formulation used in this work is given by Eq. 1. 

 
(1) 

  

Where:  = Data sets (e.g., packed column data and wetted wall column data) 
 = Set of output measurements for data set i 
 = Set of experiments in data set i 

 = Predicted output for measurement j for experiment k in set i 
 = Measured output for measurement j, for experiment k in set i 

 = Model equations for experiment k in set i 
 = Measured inputs for experiment k in set i 
 = Other model variables for experiment k in set i 

= Model Parameters (same across all experiments) 
= Variance of measurement j in data set i (for scaling) 

Challenges with the simultaneous parameter estimation approach arise due to the size 
and complex nonlinear nature of the problem. The number of equations to be solved 
becomes large when considering large data sets, due to the optimization problem 
containing equations for a full process model for each experiment. This requires the 
models to be robust over a wide range of conditions.  

To overcome these challenges, the IDAES framework was used for this work. The PySP 
module in Pyomo provides several decomposition techniques for stochastic 
programming (Watson et al., 2012). The parameter estimation problem is equivalent to 
a 2-stage stochastic programming problem with no recourse. In the 2-stage stochastic 
programming problem, a set of scenarios are generated with different parameter values 
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based on parameter uncertainty distributions, and the weighted sum of scenario 
objectives is optimized. First-stage variables must be the same for each scenario, while 
second-stage variables can be adjusted in each scenario to provide recourse against 
uncertainty. This problem can be decomposed by solving each scenario separately using 
one of several algorithms to iteratively converge to a solution. In the case of parameter 
estimation, each experiment corresponds to a scenario, and the inputs to the experiment 
correspond to the parameter values for a scenario. The parameters being estimated 
correspond to first-stage variables, and there are no second-stage (recourse) variables.     

3. Case study: Amine solvent-based CO2 absorption 
CO2 capture using aqueous amines is a well-established technology, and a significant 
amount of bench- and pilot-scale data is available for monoethanolamine (MEA), 
making it an ideal test case for a parameter estimation framework. This work is 
applicable to other solvent system as well as other types of process models. Data from 
two systems are used in this study (Figure 1): (a) a pilot-scale packed column with 
intercooling (data from the National Carbon Capture Center) and (b) a bench-scale 
isothermal wetted wall column (WWC) system (Dugas, 2009). 

 

Figure 1: Packed Column and Wetted Wall Column 

A 1D rate-based packed absorber column model is implemented. This model is similar 
to the model of Morgan et al. (2018) with three main differences: (1) an enhancement 
factor approach is used to characterize the mass transfer resistances through the liquid 
and gas films as opposed to a rigorous two-film model, (2) the NRTL model is used for 
calculating the activity coefficients instead of the electrolyte-NRTL (eNRTL) model, 
and (3) a simplified heat of absorption model is used. A simpler model is used in this 
work compared to Morgan et al. (2018), and work is ongoing to implement the fully 
detailed model. The WWC model is developed by considering a column equivalent to 
the annular space, with appropriate models for the interfacial area and liquid holdup. 

Parameters are estimated for the reaction rate constants (A and E in Eq. 2), the vapor 
phase mass transfer coefficient (Cv, a, and b in Eq. 3), the liquid mass transfer 
coefficient (Cl in Eq. 4), and the interfacial area (β1, β2, and β3 in Eq. 5) models. The 
effective interfacial area correlation is applied to the packed-bed model only.  
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     (2) 

  (3) 

  (4) 

  (5) 

 
The objective function is given by Eq. 1. The WWC data set is comprised of 35 
experiments where CO2 flux between the vapor and liquid phase is measured. The 
packed column data set has 17 points where CO2 capture fraction is measured. The  
problem is solved using the IPOPT NLP solver (Biegler and Zavala, 2009). 

4. Results 
The optimization results are presented in Table 1. The initial parameter values were 
taken from Aboudheir et al. (2003) (Eq. 2) and Morgan et al. (2015) (Eqns. 3-5). The 
WWC model R2 was 81.3 % for the initial and 98.3 % for the optimal parameter values.  
The packed column R2 was 75.2 % for the initial and 83.3 % for the optimal parameter 
values. The root mean squared error is 6.4×10-5 mol/s/m2 for the WWC and 1.7 
percentage points of CO2 capture for the packed column models. Some parameters were 
found to be on their bounds; however, widening the bounds did not yield significant 
improvement to the fit. Capabilities for parametric uncertainty analysis is currently 
being developed and will be utilized in future work. 

Table 1: Fitted parameters 

Model Kinetics Mass Transfer Interfacial Area 

Parameter  AH2O EH2O AMEA EMEA Cv av bv Cl β1 β2 β3 
Init. value 4.55 3,287 4,610 4,412 0.357 0.750 0.333 0.500 157.0 8.612 1.333 

Opt. value* 4.00 4,100 4,800 4,000 0.500 0.495 0.250 0.504 15.0 7.235 -0.50 

Figure 2 shows parity plots for the flux in the WWC case and CO2 capture fraction in 
the packed column case. The residuals for the packed bed case appear to show a trend 
suggesting that there are some phenomena not accounted for in the model.  

 

 

Figure 2: Parity Plots (a) Packed Column, (b) WWC 
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The packed column temperature profiles in Figure 3 give some insight into this 
discrepancy among the model used in this work, the Morgan et al. (2018) model, and 
the plant data. The error bars represent the measurement accuracy based on the type of 
thermocouples used in the pilot plant. While at low-loading, the temperature profiles 
agree well, there is a higher discrepancy at high loading. These deviations are within the 
tolerances given the approximations in the vapor-liquid equilibrium (VLE), mass 
transfer, and enthalpy models. The e-NRTL model is expected to improve precision by 
improving the VLE predictions for CO2 high loading conditions compared with the 
NRTL model used in this work (Luo et al., 2015; Morgan et al., 2017). 

Figure 3: Packed Colum Temperature Profiles, this work, National Carbon Capture Center Data, 
and Morgan et al. (2018) 

The parameter estimation problem in this work consisted of 71,768 constraints, many of 
which are highly non-linear. The computation time required to solve the optimization 
problem was 206 seconds on an Intel Xeon E3-1505M CPU, which is a substantial 
improvement compared with the previous parameter estimation framework (Chinen et 
al. 2018), which took about 36 hours to run on a similar machine.  

5. Conclusions 
A new framework for simultaneous parameter estimation has been demonstrated using a 
system of industrial significance. The novelty of this system is that it facilitates 
simultaneous parameter estimation for parameters in multiple submodels embedded in 
complex process models, which is not generally possible with commercial process 
simulators. The IDAES framework provides basic modular flowsheeting features and a 
model library allowing optimization problems to be implemented much more quickly 
than in a general AML. The result showed a significant improvement in computational 
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efficiency compared with previous methods presented by Chinen et al. (2018), which 
used a process simulator embedded in a derivative free optimization framework. It is 
expected that this will lead to the ability to solve larger, multiscale parameter estimation 
problems with large amounts of data. Future work will provide enhancements to the 
parameter estimation framework to enable uncertainty both in parameter estimates and 
measurements to be considered. 
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