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Abstract—High power to guarantee strict performance re-
quirement and low power to avoid energy depletion results
in an inevitable conflict for a renewable energy harvesting
communication system (REHCS) with finite energy storage.
This paper proposes a generic approach to study the per-
flow performance in such a multichannel system multiplexed
by multiple flows. The queueing delay constraint and energy
storage constraint are constructed to express the probabilistic
bound of queuing delay and that of energy depletion respectively.
We study these constraints with the statistical information of the
processes including traffic arrivals and service, energy harvesting
and consumption. The lower bound of the long term maximum
per-flow throughput is then derived to meet the constraints under
a specific system. The accuracy of the proposed approach is
validated by simulation experiments. The analysis reveals how
the sustained throughput is affected by various factors, such as
the queueing delay and energy storage constraints, the packet
size, the energy block size, the traffic scheduling schemes, the
bandwidth allocation schemes as well as the interdependence
among the channel service processes. Particularly, the analysis
also provides valuable insight into traffic admission control from
the viewpoint of small queueing delay and finite energy storage.

Index Terms—Energy harvesting multichannel system, queue-
ing delay constraint, energy storage constraint, per-flow through-
put, stochastic network calculus.

I. INTRODUCTION

GREEN communications has recently drawn significant
attention due to the growing concern about the cost in

using fossil fuel to power traditional communication infras-
tructures [1, 2]. Renewable energy has been considered as
an option to power various sorts of wireless communication
systems, such as wireless sensors [3], mobile phones [4] and
base stations [5]. In some of these systems, information is
forwarded in parallel by multiple channels. One noteworthy
example is the orthogonal frequency division multiplexing
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(OFDM) system where the available spectrum is divided
into multiple orthogonal subcarriers [5, 6]. Unlike fossil fuel
energy, renewable energy is usually harvested randomly and
finitely. For instance, the amount of harvested solar energy is
time-varying and jointly depends on the time of one day, the
weather and the season [7]. Since the energy being harvested
may either be sufficient or insufficient to the current energy
demand, it is necessary to deploy energy storage equipments
in order to store the surplus energy or compensate the energy
depicts. Besides, energy storage capacity is always finite
for a practical system. Thus, it should be taken seriously
to allocate transmission power properly in order to avoid
energy depletion. On the other hand, real-time services such
as multimedia video and live broadcast are often bursty in
nature and require strict delay guarantees, which needs high
service rate and implicitly high transmission power. As a
result, high power to ensure strict delay guarantee and low
power to avoid energy depletion come into conflict. Therefore,
it is worth studying the delay and energy storage constraints in
a REHCS [8]. Furthermore, a more valuable question arises as
how much throughput (i.e., the data rate) can be sustained for
a flow by such a multichannel system under these performance
constraints, especially when there are already other flows being
served in the system.

Some efforts have been devoted to studying the energy
efficiency in energy harvesting multichannel systems [5, 6]. In
[5], Derrick et al. studied a practical close-to-optimal online
resource allocation algorithm with causal system knowledge to
maximize the energy efficiency for an energy harvesting base
station. In [6], Xu et al. studied the optimal offline solution
to an AWGN multichannel scenario subject to a total energy
harvesting power constraint. Since these works are based on
the traditional information theory, delay constraint as well as
traffic characteristics are not taken into account. In [9], the
problem was studied in a single-flow-two-way-channel system
and the short term throughput was obtained. However, to the
best of our knowledge, the problem about the long term per-
flow throughput under the queueing delay and energy storage
constraints is still open.

To address this issue, we propose a generic approach to
study the per-flow performance in an energy harvesting multi-
channel system. The system is assumed to have finite energy
storage and serve multiple flows simultaneously. We use the
complementary cumulative distribution function (CCDF) of
the packet queueing delay and that of the energy depletion to
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characterize the queueing delay constraint of a designated flow
and the energy storage constraint of the system respectively.
These constraints are subsequently derived with the statistical
information of multiple traffic arrivals, system service, energy
harvesting and energy consumption. Thereafter, we formulate
a per-flow throughput problem relevant to various impact
factors including traffic characteristics (i.e., traffic type and
packet size), energy characteristics, flow scheduling scheme,
bandwidth allocation scheme and interdependency among the
channel service processes. The solution of the throughput
problem is presented under a specific system with multiple
Rayleigh fading channels. Moreover, the accuracy of the
proposed approach is validated by simulation experiments.
Specifically, the derived energy depletion probability is a
tight upper bound of the corresponding simulation result.
Additionally, the derived per-flow throughput result is close to
the simulation result, especially while loosening performance
constraints or transmitting smaller packets.

In the literature, related studies on traffic transmission with
energy harvesting which consider both delay and energy stor-
age are summarized as follows. Ozel et al. proposed a water-
filling algorithm to maximize the traffic throughput under a
given delay deadline in an offline scenario [10]. Mao et al.
studied an optimal energy harvesting algorithm to maximize
the throughput under a buffer constraint [11]. Note that the
buffer constraint is equivalent to the queueing delay constraint.
References [10, 11] are based on an underlying assumption
that the traffic rate is constant. In other words, traffic charac-
teristics which have great impacts on system performance were
absent. In [12, 13], the authors considered the system which
harvested energy from both renewable energy source and grid
energy source. The minimum grid energy consumption to meet
the average delay requirement was studied with Bernoulli [12]
and independent identical distribution [13] processes including
traffic and energy arrivals respectively. However, works [10–
13] are based on the single-flow-single-channel scenarios.

The proposed approach to deal with the considered problem
is based on the stochastic network calculus theory [14, 15]. It is
an effective tool for performance analysis of complex queueing
problems which may otherwise only rely on the classical
queueing theory (see the discussions in [15]). Recently, the
stochastic network calculus theory has been applied to deal
with the energy consumption problems. Energy harvesting and
energy demand processes were modeled by Wu et al. [16],
Wang et al. [17] and Ghiassi-Farrokhfal et al. [7], respectively.
Researchers thereof revealed the relationship between energy
harvesting and energy consumption. However, the impact
factors of energy demand such as traffic arrival process and
system service process were not taken into account. Works
comprehensively considering traffic characteristics and energy
consumptions are conducted in [18, 19]. The minimum energy
consumption needed to sustain traffic transmission was firstly
studied by Zafer with deterministic traffic arrival [18]. In
our early work [19], we generalized Zafer’s work by taking
stochastic traffic arrival process into account. However, the
energy harvesting process and energy storage constraint were
still absent. In [20], we constructed an energy harvesting
system model with consideration of stochastic traffic arrival

process and energy harvesting process as well as finite energy
storage, and ascertained the minimum energy harvesting rate
needed to sustain the given traffic throughput under the delay
and energy storage constraints. Nevertheless, limitation still
exists due to the reason that the analysis in [18–20] were
also based on the single-flow-single-channel scenarios with
deterministic service processes.

Compared with the existing works, the contributions of this
paper are as follows:

• This paper proposes a generic approach to study the
queueing delay, energy depletion and per-flow throughput
in a REHCS. The proposed approach is tractable to be
applied since it is appropriate to any stochastic processes
of traffic arrivals, system service, energy harvesting and
energy consumption.

• This paper first studies the multi-flow-multichannel s-
cenario in a REHCS and reveals the impacts of flow
scheduling scheme and bandwidth allocation scheme on
the per-flow throughput. It is highlighted that the consid-
ered scenario can be simplified into the existing scenarios
[10–13, 18–20] through setting the number of flows and
that of channels both to 1.

• This paper takes the interdependence among the chan-
nel service processes into account. It not only provides
analysis for the case of independent channel services as
assumed in the existing works [5, 6, 9], but also derives
the worst case performance for the case that the channel
service processes are not independent.

• Unlike the existing works which mostly focus on power
allocation schemes to ascertain the fluid traffic throughput
(i.e., average channel capacity) [9–13], this paper studies
the queueing delay and energy storage constrained per-
flow throughput for a packet flow with stochastic traffic
arrivals. It is able to provide valuable insight into per-flow
admission control to a REHCS.

The remainder of this paper is organized as follows. In
Section II, the system model is presented and the performance
constraints are constructed. In the end of this section, an
generic problem about maximizing the per-flow throughput
is formulated. In Section III, the performance constraints are
derived under a general scenario. Additionally, the stochastic
service curve for the overall system is derived. In Section IV,
we solve the formulated problem under a specific scenario.
In Section V, numerical results are presented and discussed.
Finally, we give further discussion in Section VI and conclude
the paper in Section VII.

II. MODELING AND FORMULATING

A. Notations

This paper employs a discrete time model. The following
mathematical notations are useful for the subsequent analysis.

We use Ψ to denote the set of non-negative, non-decreasing
functions, i.e., Ψ = {f(·) : ∀ 0 ≤ x1 ≤ x2, 0 ≤
f(x1) ≤ f(x2)}, and Ψ to denote the set of non-negative, non-
increasing functions, i.e., Ψ = {f(·) : ∀ 0 ≤ x1 ≤ x2, 0 ≤
f(x2) ≤ f(x1)}.
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Fig. 1. System model

For a stochastic process X(t), E[eθX(t)] is called the
moment generating function of X(t), where E(·) denotes the
expectation of its argument.

For two functions f(x) and g(x), the min-plus convolution
is defined as

f ⊗ g(x) = inf
0≤y≤x

{f(y) + g(x− y)}.

And the min-plus deconvolution is defined as

f ⊘ g(x) = sup
y≥0

{f(x+ y)− g(y)}.

The min-plus convolution and its deconvolution can be used
to transform the non-linear queueing system to the ’somewhat
looking’ linear system (see detail in [21]).

For a variable x, we let [x]1 denote min{x, 1} and [x]+
denote max{x, 0}.

We use X(s, t) to denote the bivariate extension of the
cumulative process X(t), i.e., X(s, t) := X(t)−X(s) which
means the cumulative amount of X within time interval (s,t].
In this paper, the cumulative processes, such as A, α, A∗, S,
β, E, e, P , and p, all conform this definition.

B. System Model

Fig. 1 depicts a REHCS consisting of N orthogonal chan-
nels, a power controller, a battery and a buffer. The energy
is assumed to be harvested from the ambient energy source
and be used to transmit traffic only. In addition, the system
is causal, i.e., traffic cannot be served before arriving at
the system and energy cannot be consumed before being
harvested.

We define the energy harvested at some point as an energy
block. Note that the energy block size is random since the
amount of harvested energy is time-varying. If the energy
being harvested is sufficient to satisfy the current energy
consumption, the leftover energy will be stored in a battery
with finite storage capacity until it is fully charged. In con-
trast, whenever there have deficiencies in the current energy
harvesting, the battery will be discharged to compensate these
energy deficits until the stored energy is depleted. At that time,
there will be system outage and all the packets in the buffer
will be discarded.

There are M + 1 (M ≥ 0) packet flows multiplexing the
transmission channels through a unified scheduling scheme.
The scheduling scheme can be first-in-first-out (FIFO) or strict
priority (SP), or etc. At any time, a channel can only serve one

packet and a packet can be served by only one channel. When
all the channels are busy, the packets are temporarily stored in
a buffer with infinite capacity. In contrast, whenever there have
available channels and meanwhile any packet needing to be
served, the system will randomly choose an available channel
to serve the head-of-line packet in the buffer. Besides, a power
controller is configured to allocate appropriate power for the
traffic transmission under some requirements.

Without loss of generality, we focus on any one of the M+1
flows and denote it by A. The other flows are regarded as
cross flows and denoted by {Ai : 1 ≤ i ≤ M}. We use
A(t) to denote the cumulative amount of flow A input to the
system up to time t. The cumulative traffic amount of flow A
departing the buffer is denoted by A∗(t). Similar definitions
of flows {Ai : 1 ≤ i ≤ M} are represented by {Ai(t) : 1 ≤
i ≤ M} and {A∗

i (t) : 1 ≤ i ≤ M} respectively. In addition,
the cumulative system capacity is denoted by S(t). Likewise,
the cumulative amount of the harvested energy and that of
the consumed energy up to time t are denoted by E(t) and
P (t) respectively. Furthermore, we assume all the cumulative
processes in this paper are equal to 0 but the battery is fully
charged at time 0.

The stochastic network calculus characterizes a stochastic
process via a probabilistic envelop. Concretely, we use an up-
per bound with the corresponding violation function, which is
called as a stochastic arrival curve, to describe the cumulative
amount of traffic arrival. The cumulative amount of traffic
departure is similarly described by a lower bound with the
corresponding violation function which is called as a stochastic
service curve. The mathematical definitions of the stochastic
arrival curve and stochastic service curve are shown as follows.

Definition 1. (Stochastic Arrival Curve) [15] A flow A is said
to have a stochastic arrival curve α ∈ Ψ with the violation
function fα ∈ Ψ, denoted by A ∼< fα, α >, if for all 0 ≤
s ≤ t and all x ≥ 0, there holds

Pr{ sup
0≤s≤t

{A(s, t)− α(s, t)} > x} ≤ fα(x).

Definition 2. (Stochastic Service Curve) [15] A system S is
said to provide a stochastic service curve β ∈ Ψ with the
violation function fβ ∈ Ψ, denoted by S ∼< fβ , β >, if for
all t ≥ 0 and all x ≥ 0, there holds

Pr{A⊗ β(t)−A∗(t) > x} ≤ fβ(x),

where A ⊗ β(t) means the cumulative amount of service
guaranteed by the service curve β(t).

Note that if the amount of the traffic or that of the ser-
vice is deterministically bounded, the corresponding violation
function will be equal to 0.

Learning the idea of characterizing arrival process and
service process from the stochastic network calculus, we
construct the stochastic energy harvesting curve and stochastic
energy consumption curve to characterize the energy har-
vesting process and energy consumption process respectively.
Similar definitions can also be found in [7, 16, 17].

Definition 3. (Stochastic Energy Harvesting Curve) An en-
ergy harvesting process E is said to have a stochastic energy
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harvesting curve e ∈ Ψ with the violation function fe ∈ Ψ,
denoted by E ∼< fe, e >, if for all 0 ≤ s ≤ t and all x ≥ 0,
there holds

Pr{ sup
0≤s≤t

{e(s, t)− E(s, t) > x}} ≤ fe(x).

Definition 4. (Stochastic Energy Consumption Curve) An
energy consumption process P is said to have a stochastic
energy consumption curve p ∈ Ψ with the violation function
fp ∈ Ψ, denoted by P ∼< fp, p >, if for all 0 ≤ s ≤ t and
all x ≥ 0, there holds

Pr{ sup
0≤s≤t

{P (s, t)− p(s, t)} > x} ≤ fp(x).

For flow A, the virtual queueing delay D(t) is defined as

D(t) = inf{d : A(t) ≤ A∗(t+ d)},

where D(t) refers to the queueing delay of the last bit
arriving at time t. The virtual delay D(t) upper-bounds the
real delay Dr(t) within a maximum gap tr which represents
the maximum transmission time of a packet [22]. Since the
gap between real delay and virtual delay is small, using virtual
delay has advantage in simplifying the analysis without losing
accuracy [15, 19, 20, 23, 24].

Due to the randomness, the energy being harvested may
be insufficient to the energy being consumed, which brings
energy deficits. Let B(t) denote the cumulative amount of
energy deficits up to time t, then there holds for

B(t) = max{0, B(tl) + P (tl, t)− E(tl, t)}, (1)

where tl represents the last period before time t when energy
consumption or energy harvesting occurs.

C. Performance Constraints and Problem Formulation

The system performance and reliability are assessed in terms
of the following two constraints:

1) The queueing delay constraint, denoted by (ϵd, d), is
defined as

Pr{D(t) > d} ≤ ϵd. (2)

It means that the queueing delay D(t) exceeding thresh-
old d is controlled within probability ϵd.

2) The energy storage constraint, denoted by (ϵb, b), is
defined as

Pr{B(t) > b} ≤ ϵb. (3)

It means the probability that the cumulative energy
deficits B(t) exceeds the battery storage capacity b (i.e.,
the stored energy is depleted) is controlled within ϵb.

Since the multiple traffic arrival processes and energy har-
vesting process are all stochastic, it is significant to investigate
what affects and how to guarantee the stochastic performance
constraints. Furthermore, if these constraints are regarded as
the QoS requirements to the system, the maximum throughput
(i.e. traffic arrival rate) of flow A sustained by the system is

worth studying. Specifically, we formulate a generic per-flow
throughput problem as follows

max ra((ϵd, d), (ϵb, b), E, P, {Ai : 1 ≤ i ≤ M}, A, S)
subject to Pr{D(t) > d} ≤ ϵd

Pr{B(t) > b} ≤ ϵb

,

(4)
where ra denotes the average throughput of flow A. Different
from the existing works which just consider average channel
capacity as throughput without any performance constraints
[10, 11] or assume static channel transmission [19, 20], the
per-flow throughput here is jointly dominated by processes A,
{Ai : 1 ≤ i ≤ M}, P , E, S, the traffic scheduling scheme,
and the queueing delay and energy storage constraints. There-
fore, the per-flow throughput formulated in this paper explains
the traffic admission of a REHCS more comprehensively.

III. PERFORMANCE ANALYSIS FOR GENERAL CASE

A. Assumptions

The following reasonable assumptions can make the prob-
lem specific.

The system is work-conserving, which means no channels
can be idle as long as the system has packets to transmit. In
this case, the busy periods of the channels are all coincident.

The battery is assumed to be ideal, i.e., the discharging rate
and charging rate are infinite, the storage efficient and depth
of discharge are 1, and the self-discharging rate is 0 [25].

In addition to traditional system stability condition that
average traffic arrival rate cannot be greater than average
service rate and energy consumption rate cannot be greater
than energy harvesting rate, two stronger stability conditions
are employed as follows:

lim
t→∞

1

t
[α(t)− β(t)] ≤ 0, (5)

lim
t→∞

1

t
[p(t)− e(t)] ≤ 0. (6)

Note that these two stability conditions are both sufficient con-
ditions for system stability. The former one has been proved
to be reasonable and widely applied in the stochastic network
calculus framework (see e.g. [15, 16, 19, 23]). Although α(t)
is not the actual arrival rate and β(t) is also not the actual
service rate, the analysis can be accurate through properly
choosing their values to yield tight performance bounds. The
latter condition is justified because the stochastic process on
the traffic plane and that on the energy plane are similarly
modeled.

B. Performance Analysis

In this subsection, the queueing delay and energy storage
constraints are investigated with the statistical information of
{Ai : 1 ≤ i ≤ M}, A, S, P and E. Firstly, the energy storage
constraint is summarized as the following theorem.

Theorem 1. For a stable system with battery storage capacity
b, if the energy harvesting process E and the energy con-
sumption process P are characterized by E ∼< fe, e > and
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P ∼< fp, p > respectively, the energy depletion probability
is bounded by

Pr{B(t) > b} ≤ [fp ⊗ fe(b− p⊘ e(0))]1.

Proof. The proof of Theorem 1 is presented in Appendix B.

Theorem 1 implies the energy storage constraint is dominat-
ed by the energy harvesting process E and energy consumption
process P , and it can be easily analyzed with the help of
the stochastic energy harvesting curve and stochastic energy
consumption curve. Moreover, Section IV will present how to
the obtain these curves.

The following theorem summaries the queueing delay con-
straint.

Theorem 2. Consider a stable energy harvesting multichannel
system S as depicted in Fig. 1. Suppose the designated flow A
is characterized as A ∼< fα, α > and the cross flows {Ai :
1 ≤ i ≤ M} are characterized as {Ai ∼< fαi , αi >: 1 ≤ i ≤
M}. The system S provides service with an overall stochastic
service curve as S ∼< fβove , βove >. Additionally, the energy
storage constraint is given as (ϵb, b), i.e., Pr{B(t) > b} ≤ ϵb.
Then for queueing delay threshold d ≥ 0, the delay violation
probability is bounded by

Pr{D(t) > d}
≤[fα ⊗ fα1 ⊗ · · · ⊗ fαM ⊗ fβove( inf

0≤s≤t
{[βove(s, t+ d)

−
M∑
i=1

αi(s, t+ d− τ)]+I{t+d−s>τ} − α(s, t)}) + ϵb]1

where I{k} is the indicator function where I{k} = 1 if event
k is true, and I{k} = 0 otherwise. The nonnegative free
parameter τ which is independent of s and t dominates the
traffic scheduling scheme.

Proof. The proof of Theorem 2 is presented in Appendix C.

Note that the queueing delay constraint not only depends on
the traffic arrival and system service processes, but also on the
energy storage constraint. Besides, in Theorem 1 and Theorem
2, the energy storage constraint and queueing delay constraint
have been derived for the general case where processes A,
{Ai : 1 ≤ i ≤ M}, S, E, P do not require to be independent
of each other. In fact, the traffic arrival process and the
service process are usually correlated in packet-switching
networks, especially in multi-hop networks [26]. The energy
consumption process depends on the energy harvesting process
due to the energy storage constraint.

On the other hand, from Theorem 2, the overall stochastic
service curve of a multichannel system is critical for achieving
the queueing delay constraint. However, this service curve
has not yet been achieved before, even though the stochastic
service curve for a single server has been adequately studied
[27]. The following theorem demonstrates how to obtain the
overall stochastic service curve with the service process of
each channel.

Theorem 3. Consider a multichannel system with N orthog-
onal channels. For any channel i, the corresponding service
process is denoted by Si and is suppose to has stationary
increments.

If {Si : 1 ≤ i ≤ N} are all independent of each other,
the whole system guarantees a stochastic service curve S ∼<
fβove , βove > with

βove(t) =

N∑
i=1

βi(t) ≤
N∑
i=1

(− 1

θa
logE[e−θaSi(t)])

fβove(x) = e−θax

. (7)

Here, βi(t) ≤ − 1
θa

logE[e−θaSi(t)], denotes the stochastic
service curve of Si, and θa is a nonnegative optimization
parameter.

However, if processes {Si(t) : 1 ≤ i ≤ N} are not
independent, a looser violation function still holds as

fβove(x) = [Ne−
θax
N ]1. (8)

Proof. The proof of Theorem 3 is given in Appendix D.

Note that the channel service processes are usually indepen-
dent when the channels are orthogonal. However, they may
not be independent sometimes due to special system setting.
In Theorem 3, we derive both two cases for the overall system
service process to make the analysis complete.

Also note that if − 1
θa

logE[e−θaSi(t)] can be exactly calcu-
lated, it can then be directly employed as the stochastic service
curve of Si. Such processes include Poisson process, Gaussian
process, Bernoulli process, and etc [15, 28]. On the other hand,
for some service processes such as exponential on-off process,
Markov modulated process, and etc., − 1

θa
logE[e−θaSi(t)]

cannot be easily calculated but still has a tight lower bound.
We can employ this lower bound as the stochastic service
curve of Si [15, 28].

IV. PERFORMANCE ANALYSIS FOR SPECIFIC CASE

In the following, we show how to apply the proposed
theorems to ascertain the queueing delay and energy storage
constraints under a specific scenario. Thereafter, the solution
of problem (4) is also presented.

A. Specific Scenario Description

The packet size is assumed to be constant as La (in
unit of bits), while the energy block size is assumed to be
exponentially distributed with average value Le (in unit of
J). The traffic arrival process of flow A and energy harvesting
process of the system are both Poisson distributed with average
rate ra (in unit of bits/s) and re (in unit of W) respectively.
Besides, we assume a periodical flow A1 with arrival rate ra1

multiplexes the system resources with flow A .
The stochastic arrival curve of a traffic flow defined as

Definition 1 can be expressed as the effective bandwidth of
the flow [28]. Specifically, the stochastic arrival curve of flow
A holds as

α(t) =
1

θa
logE[eθaA(t)] =

rat

θaLa
(eθaLa − 1)

fa(x) = e−θax
, (9)
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where θa is a nonnegative optimization parameter. The s-
tochastic arrival curve of flow A1 holds as

α1(t) =
1

θa
logE[eθaA1(t)] = ra1t

fa1(x) = 0
, (10)

The stochastic energy harvesting curve is proved to hold as
follows (see Appendix E).

e(t) = − 1

θe
logE[e−θeE(t)] =

ret

1 + θeLe

fe(x) = e−θex
, (11)

where θe is a nonnegative optimization parameter.
We allocate a fixed total power for the traffic transmission,

such that the energy storage constraint is easily ensured even
though energy is harvested randomly. Alike the stochastic
arrival curve, 1

θe
logE[eθePtt] can represent the stochastic

energy consumption curve due to their similar definition. The
stochastic energy consumption curve of P holds as

p(t) =
1

θe
logE[eθePtt] = Ptt

fp(x) = 0
. (12)

Here, fp(x) = 0 since the transmission power is constant.
The total bandwidth of the system is fixed as Wt and the

bandwidth allocated to channel i is denoted by Wi(1 ≤ i ≤
N), i.e., Wt =

∑N
i=1 Wi. The transmission power allocated to

channel i is denoted by Pi, i.e., Pt =
∑N

i=1 Pi. Additionally,
Pi is in direct proportion to Wi, i.e., for all 1 ≤ i ≤ N , there
holds Pi

Wi
= Pt

Wt
.

The service process is modeled in terms of the approach
in [29]. All the channels are assumed to be additive white
Gaussian noise (AWGN) flat-fading Rayleigh channels. Each
one of them can be modeled as Fig. 2, there holds

y(t) = x(t)K(l)h(t) + w(t).

Here, x(t) and y(t) are the input signal and output signal of
a channel respectively. K(l) is the path loss function with
distance parameter l, h(t) represents a complex channel gain
of small scale fading. In particular, the envelope process |h(t)|
and the phase process are independent, with |h(t)| being
Rayleigh distributed and the phase being uniform distributed
over [0, 2π). Additionally, the additive Gaussian noise term
w(t) has the power spectral density of N0/2.

Without loss of generality, we choose channel i (1 ≤ i ≤ N )
as an example to characterize the channel model. According
to the Shannon theorem, the instantaneous capacity of channel
Si holds as

Ci(t) = Wi log2(1 +
PiK(l)|hi(t)|2

N0Wi
). (13)

Apparently, the packets are reliably transmitted when Ri ≤
Ci(t), otherwise they cannot be transmitted correctly and have
to be retransmitted at once. Suppose the instantaneous channel
state information is unavailable to the transmitter and the
service rate Ri on channel i is fixed. Since Ci(t) depends
on |hi(t)|, there exits a threshold ηi for |hi(t)| above which
Ri ≤ Ci(t) holds. Solving the inequality Ri ≤ Wi log2(1 +
PiK(l)|hi(t)|2

N0Wi
), we have

|hi(t)| ≥

√
N0Wi

PiK(l)
(2

Ri
Wi − 1) = ηi. (14)

Therefore, the channel model is transformed into a Gilbert-
Elliott channel model with two Markov states ON and OFF.
In ON state, packets are transmitted at a rate R, while in
OFF state, no packets can be transmitted. For channel i,
we denote by µON

i the state transition rate from OFF to
ON, and by µOFF

i the one from ON to OFF. It is easily
verified that the stability probability for the ON state is
µON
i /(µON

i + µOFF
i ), while the one for the OFF state is

µOFF
i /(µON

i + µOFF
i ). In terms of the channel model, we

establish the relationship between the state transition rates and
the transmission threshold ηi, as shown in the following

µON
i

µON
i + µOFF

i

= Pr{|hi(t)| ≥ ηi} =

∫ ∞

ηi

xe−
x2

2 dx = e−
η2
i
2

µOFF
i

µON
i + µOFF

i

= Pr{|hi(t)| < ηi} = 1− e−
η2
i
2

where fhi(x) = xe−
x2

2 with x > 0 is the marginal distribution
of the envelop process |hi(t)|. Additionally, µON

i + µOFF
i ,

denoted by κi, can be considered as the mean decaying rate
of the channel memory. Thus, the state transition rates are
linked to the physical layer parameters,

µON
i = κie

− η2
i
2

µOFF
i = κi − κie

− η2
i
2

. (15)

In order to maximize the average system capacity, what
we can control are the transmission power and transmission
rate. On the one hand, higher transmission power implies
larger transmission capacity, therefore we should choose the
maximum transmission power under the energy storage con-
straint. On the other hand, a higher transmission rate Ri allows
more traffic to be transmitted when channel i is in ON state,
however, it also implies that the event of ON state is less often
due to higher threshold ηi. Therefore, the optimal Ri, denoted
by Ropt

i , exits to maximize the average capacity of channel i,
i.e.,

Ropt
i e−

η2
i
2 =

Ropt
i µON

i

µON
i + µOFF

i

≥ Riµ
ON
i

µON
i + µOFF

i

. (16)

As a result, the optimal average capacity of the overall system
is obtained as follows,

Rave
ove =

N∑
i=1

Ropt
i µON

i

µON
i + µOFF

i

. (17)
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For the expression − 1
θa

logE[e−θaSi(t)] discussed after The-
orem 3, a celebrated lower bound for two state Markov process
has been ascertained in [30], there holds

t

2θa
(Ropt

i θa + µON
i + µOFF

i

−
√
(Ropt

i θa − µON
i + µOFF

i )2 + 4µON
i µOFF

i )

.

For the overall system, according to the interdependence
information of the channel service processes, we carry forward
the analysis for both two cases where: 1) the channel service
processes of are all independent (ind. for short), 2) the service
processes are not independent (cor. for short). According to
Theorem 3, we finally achieve the optimal overall stochastic
service curve of the multichannel system as follows

βove(t) =
N∑
i=1

t

2θa
(Ropt

i θa + µON
i + µOFF

i

−
√
(Ropt

i θa − µON
i + µOFF

i )2 + 4µON
i µOFF

i )

=
N∑
i=1

t

2θa
(Ropt

i θa + κi

−
√
(Ropt

i θa + κi)2 − 4Ropt
i θaκie−

η2
i
2 )

fβove(x) =

{
e−θax ind.
[Ne−

θax
N ]1 cor.

(18)

B. Performance Constraints

We first calculate the energy storage constraint. According
to the stability condition (6), we have

Pt ≤
re

1 + θeLe
.

Solving the inequality, there holds θe ≤ re−Pt

PtLe
. If battery

storage capacity is given as b, the tightest probabilistic bound
of energy depletion can be obtained directly by using Theorem
1. There holds

Pr{B(t) > b} ≤ e−
(re−Pt)b

PtLe . (19)

In order to achieve the queueing delay constraint, we need
to calculate the maximum value of θa which is denoted by
θopta through solving the following inequality according to the
stability condition (5).

ra
θaLa

(eθaLa − 1) + ra1 ≤
N∑
i=1

1

2θa
(Ropt

i θa + κi

−
√

(Ropt
i θa + κi)2 − 4Ropt

i θaκie−
η2
i
2 )

. (20)

Thereafter, the delay constraint is achieved by using Theorem
2. There holds

Pr{D(t) > d}
≤ [fα ⊗ fα1 ⊗ fβove( inf

0≤s≤t
{[βove(s, t+ d)

− α1(s, t+ d− τ)]+I{t+d−s>τ} − α(s, t)}) + ϵb]1

≤

[2e−
θ
opt
a (βove(d)−rα1

(d−τ))

2 + e−
(re−Pt)b

PtLe ]1 ind.

[(N + 1)e−
θ
opt
a (βove(d)−rα1

(d−τ))

N+1 + e−
(re−Pt)b

PtLe ]1 cor.
(21)

In the second line, we employed the stability condition (5) and
expression (18). Note that for any 0 ≤ s ≤ t, t + d − s ≥ τ
implies 0 ≤ τ ≤ d. And Pr{D(t) > d} is monotonically
decreasing as τ increases since Pr{D(t) > d} ∈ Ψ. If flow
A is scheduled with FIFO scheme, choosing τ = d minimizes
the upper bound of Pr{D(t) > d}.

C. Maximum Sustained Per-flow Throughput

In what follows, we are going to solve the throughput
problem (4) with the information of the energy harvesting
process, the cross traffic arrival process as well as the queueing
delay and energy storage constraints.

Let the righthand side term of (19) equal to ϵb, the maximum
total transmission power which the system can provide holds
as

Pmax
t =

reb

b− Le ln ϵb
. (22)

Therefore, the maximum transmission power allocated to
channel i (1 ≤ i ≤ N) holds as

Pmax
i =

reb

b− Le ln ϵb

Wi

Wt
.

Thereafter, the optimal transmission rate Ropt
i of channel i

can be determined according to (14) and (16). And then
the optimal overall stochastic service curve βove(t) can be
calculated according to (18).

Let the last line term of (21) equal to ϵd and replacing θopta

with θa, we have

βove(d) =

{
2
θa

ln 2
ϵd−ϵb

+ rα1(d− τ) ind.
(N+1)

θa
ln N+1

ϵd−ϵb
+ rα1(d− τ) cor.

. (23)

The parameter θa can be calculated by invoking (23) into
the second line term of (18). Note that θa depends on the
energy harvesting rate re, the arrival rate of flow A1, the
optimal transmission rate {Ropt

i |1 ≤ i ≤ N}, the channel
memory decaying rate {κi|1 ≤ i ≤ N}, the energy storage
constraint (ϵb, b), and the delay constraint (ϵd, d). It can be
easily calculated with the help of MATLAB.

After that, combining (23) with (20), we have

ra
θaLa

(eθaLa − 1)+ra1 ≤
N∑
i=1

1

2θa
(Ropt

i θa + κi

−
√
(Ropt

i θa + κi)2 − 4Ropt
i θaκie−

η2
i
2 )

=
βove(d)

d

.
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In the end, we ascertain the maximum sustained throughput
rmax
a according to (23). There holds

rmax
a =

{
(2 ln 2

ϵd−ϵb
− ra1τθa)

La

(eθaLa−1)d
ind.

((N + 1) ln N+1
ϵd−ϵb

− ra1τθa)
La

(eθaLa−1)d
cor.

(24)

V. NUMERICAL RESULTS

In this section, we are going to discuss the impact factors on
the per-flow throughput under the scenario of Section IV. For
all the numerical and simulation experiments, we set the total
bandwidth of the system Wt=20MHz. We assume the power
spectral density of the background noise N0=10−18W/Hz and
constant path loss K(l) = −110dB [31]. The mean decaying
rate of each channel memory κi(1 ≤ i ≤ N) is assumed to
be 1000s−1 [29]. Except special statement, the packets from
different flows are scheduled under FIFO scheme (i.e., τ = d),
the bandwidth is equally allocated to 10 independent channels,
the queueing delay constraint (ϵd, d) and the energy storage
constraint (ϵb, b) are set to (0.0002, 0.05s) and (0.0001, 50Wh)
(where 1Wh=3600J) respectively, the packet size La is set
to 10Kbits and the average energy block size Le is set to
1Wh, The cross traffic rate rα1 is set to 10Mbps. Furthermore,
we assume a wind turbine harvesting energy to support the
transmission. The average harvesting rate can be expressed as
re = 0.5ρπr2v3∆(λ1, λ2) ≈ 25W [32], where ρ is the air
density (about 1.22kg/m3), r is the blade radius (1m), v is
the average wind speed (3.1m/s), and ∆ is the average power
coefficient (0.44) which is a function of tip speed ratio λ1 and
blade pitch angle λ2.

A. Comparison with simulation results

We first check the accuracy of the analysis with the help of
simulation experiments. The simulation results of the energy
depletion probability and per-flow throughput are depicted in
Fig. 3(a) and Fig. 3(b) respectively. The time slot length is set
to 1ms. In Fig. 3(a), we simulate each allocation power for
10 times with time length 108s and recorded the number of
energy depletion time slots. The energy depletion probability
is calculated by averaging the proportion of the number of
energy depletion time slots for each allocation power. Fig. 3(a)
validates that the derived energy depletion probability tightly
upper-bounds the corresponding simulation result. Moreover,
modeling the harvested energy with smaller energy block
size enables higher allocation power when energy depletion
probability requirement is invariant. That means a fluid model
is able to maximize the allocation power. In Fig. 3(b), the over-
all transmission power and the transmission rate per channel
are set to 21.11W and 6.47Mbps respectively according to
expressions (22) and (16). The simulation times for a given
traffic rate is set to 10, during which the queueing delays of
2 × 105 packets are recorded. We obtain the delay violation
probability through calculating the average proportion of the
packets whose delays exceed the given delay threshold. As
depicted in Fig. 3(b), the analytical results are confirmed to
be reasonable lower bounds of the corresponding simulation
results since the maximum gap is lower than 5Mbps even
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Fig. 3. Simulation results (blue) v.s. analytical results (red)

though the delay constraint is quite strict. Moreover, loosening
the delay constraint or transmitting smaller packets not only
guarantees higher per-flow throughput, but also improves the
accuracy of the analysis.

B. Impact of flow scheduling scheme

Fig. 4 illustrates the impact of flow scheduling scheme
through FIFO scheme (τ = d) and SP scheme (τ = 0).
The designated flow is served in the same priority with the
cross flow under FIFO scheme while it is served in the
lowest priority under SP scheme. Therefore, FIFO scheme
outperforms SP scheme in both per-flow throughput and
system throughput. Moreover, under FIFO scheme, the system
throughput increases with cross traffic rate though the per-
flow throughput decreases. This phenomenon implies that the
multiplexing gain of FIFO scheme increases with the cross
traffic rate. However, opposite trend is found under SP scheme.

C. Impact of Queueing Delay and Energy Storage Constraints

Fig. 5(a) and Fig. 5(b) indicate how much per-flow through-
put can be sustained under various queueing delay constraints
and energy storage constraints. In Fig. 5(b), the queueing delay
constraint (ϵd, d) is set to (ϵb+0.0001, 0.05s), meaning that the
delay violation probability is fixed as 0.0001 when energy is
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sufficient. It is obvious that system with looser performance
constraints can sustained higher per-flow throughput. However,
if the transmission power and transmission rate are fixed,
overly loosening performance constraints will not achieve
remarkable throughput gain. For instance, Fig. 5(a) shows that
the per-flow throughput increases quite slowly with the delay
threshold after which is larger than 0.05s. This is because
the system throughput has approached to the average system
capacity in such case.

Note that the queueing delay constraint herein is not only
dominated by the traffic and service characteristics as usual
[19] when energy is sufficient, but also by the energy storage
constraint. Fig. 6 illustrates the maximum sustained throughput
rmax
a as a function of energy depletion probability ϵb when

queueing delay constraint is fixed. It is shown that each
case has optimal ϵb corresponding to unique maximum rmax

a .
That means higher traffic arrival rate can be accessed under
the same queueing delay constraint if the tolerable energy
depletion probability can be reasonably loosened, i.e., the
transmission power can be reasonably raised. However, the
sustained rmax

a decreases sharply as ϵb increases when ϵb is
larger than the optimal point. In addition, a counterintuitive
phenomenon is shown that a larger tolerable queueing deadline
may lead to a lower sustained throughput even though the
delay violation probability ϵd is fixed. For instance, fixing
ϵd = 0.003, the rmax

a under a larger delay deadline (e.g.
d = 0.07s) is lower than the one under a smaller deadline
(e.g. d = 0.05s) when the former corresponding ϵb = 0.0025
and the latter ϵb = 0.002. Therefore, excessively loosening the
energy depletion probability would reduce rmax

a . The reason
addresses that the delay constraint of energy sufficient case
is too strict to be guaranteed for high traffic arrival rate. In
summary, traffic throughput can be improved by dealing well
with the tradeoff between the queueing delay constraint and
energy storage constraint.

D. Impact of Bandwidth Allocation Schemes

In a practical communication system, the available radio
spectrum may not always be consecutive. The inconsecutive
radio spectrums can be considered as different orthogonal
channels. We consider 4 bandwidth allocation schemes in
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Table I. Scheme 1 is regarded as the reference case where
bandwidth is equally allocated to all channels. It has been
validated by simulation experiments in Fig. 3 that the through-
put evaluation under Scheme 1 is accurate enough when the
channel service processes are all independent. In schemes 2-
4, different amounts of bandwidth are allocated to different
channels in terms of different geometric distances from scheme
1. The geometry distance is used to check the deviation
between the accurate result (i.e., Scheme 1 with independent
channel service processes) and the throughput evaluation under
other schemes with different interdependencies among the
channel service processes. Fig. 7 shown that the throughput
evaluation of schemes 2-4 is accurate and irrelevant to the
geometric distance while channel service processes are all
independent. However, when channel service processes are
not independent, the scheme with larger geometry distance
achieves more conservative throughput evaluation.

Secondly, we are interested in the relationship between
the sustained throughput and the number of channels. Fig.
8 depicts the variation tendency of rmax

a based on scheme 1.
There is no doubt that the analytical result of the independent

TABLE I
BANDWIDTH ALLOCATION

Scheme Bandwidth allocation (MHz) Geometric distance
Scheme 1 (2 2 2 2 2 2 2 2 2 2) 0
Scheme 2 (0.5 0.5 1 3 5 5 3 1 0.5 0.5)

√
31 · 106

Scheme 3 (0.5 0.5 0.5 4 6 6 1 0.5 0.5 0.5)
√
50.5 · 106

Scheme 4 (0.5 0.5 0.5 0.5 8 8 0.5 0.5 0.5 0.5)
√
90 · 106



0018-9545 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2017.2690560, IEEE
Transactions on Vehicular Technology

10

0 10 20 30 40 50

Energy harvesting rate (W)

0

5

10

15

20

25

30

35

40

45

50

M
ax

im
um

 s
us

ta
in

ed
 th

ro
ug

hp
ut

 r
at

e 
(M

bp
s) Scheme 1: ind

Scheme 2: ind
Scheme 3: ind
Scheme 4: ind
Scheme 1: cor
Scheme 2: cor
Scheme 3: cor
Scheme 4: cor

Fig. 7. Traffic throughput v.s. energy harvesting rate for different cases of
bandwidth allocation

1 2 3 4 5 6 7 8 9 10

Number of channels

25

30

35

40

M
ax

im
um

 s
us

ta
in

ed
 th

ro
ug

hp
ut

 r
at

e 
(M

bp
s) r

e
=30W: ind

r
e
=25W: ind

r
e
=30W: cor

r
e
=25W: cor

Fig. 8. Traffic throughput v.s. number of channels for different cases of
energy harvesting rate

case agrees with that of the correlated case under the single-
channel scenario (i.e., N = 1). However, as N increases, the
throughput variation trend becomes different. With indepen-
dence assumption on service processes, rmax

a increases with N .
This tendency coincides with that of the M/M/K systems based
on the traditional queueing theory [33]. It can be explained that
the system with more channels has higher probability to avoid
the buffer backlogs. Differently, with correlation assumption
on service processes, there exits optimal N to maximize rmax

a .
This is because the min-plus convolution makes the analytical
result conservative and meanwhile the times of using the min-
plus convolution to derive rmax

a is correlated with N . When
N is less than the optimal point, the gain of increasing N
outperforms the degradation of using min-plus convolution,
the sustained throughput still increases with N . However, the
phenomenon is reversed when N is larger than the optimal
point.

Note that the result of correlated case is derived in the
worst case where all the service processes of the channels
are not independent. It has reference value in suggesting
how much per-flow throughput can be sustained at least if
we cannot ascertain any correlation information among the
channel service processes.

VI. DISCUSSION

This paper focuses on the generic approach of analyzing
the per-flow performance including the queueing delay con-
straint, energy storage constraint and throughput. For ease of
understanding the analysis procedure, we characterized the
stochastic processes with classic queueing models and ana-
lyzed the performance quantitatively. However, we highlight
that the approach is also applicable to the practical scenarios.
The reason is as follows. On the one hand, the stochastic
arrival curve and stochastic energy consumption curve can be
achieved by retracting the statistical information from the prac-
tical sample data. For example, self-similar and heavy tailed
traffic was characterized by the stochastic arrival curve as
α(t) = (ra + a)t, fa(x) = Kx−b(1−H), where a, b,K,H are
all free parameters [24]. The solar energy harvesting process
was characterized by the stochastic energy harvesting curve as
e(t) = (re + a)t, fe = (b1 + b2)(

c2
b1
)

b1
b1+b2 ( c1b2 )

b2
b1+b2 e−

b1b2
b1+b2 ,

where a, b1, b2, c1, c2 are all fitting parameters [7]. On the
other hand, the energy consumption process is constrained by
the energy storage constraint and energy harvesting process,
such that the stochastic energy consumption curve always
exits in the form of (12). For example, if the overall power
allocation is based on the greedy police, i.e., the the system
always uses the whole power stored in the battery at time
t to transmit data at time t + τ , where τ is the power
allocation interval and we assume the energy harvesting during
τ cannot exceeding the energy storage capacity b. In this
case, the stochastic energy consumption curve holds as p(t) =
(t−τ)+

θe
logE[eθeE(1)] + max{t, τ} b

τ , fp(x) = fe(x). Further-
more, the stochastic service curve for single channel has been
extensively studied not only in stochastic network calculus
framework [23], but also in effective capacity framework
[34]. For example, with the perfect channel state information,
the SNR is partitioned into different levels corresponding to
different transmission rates. Therefore, the service process of
each channel is generalized as finite state Markov channel
(FSMC) model. Moreover, the FSMC model can also be
characterized by the the stochastic service as defined in this
paper (detail see in [23]). Thereafter, the overall service curve
of the system can be derived by using Theorem 3 and per-flow
performance can be derived according to Theorem 2. Since the
practical model is complex in calculation due to large amounts
of free parameters, the future work addresses how to simplify
the practical model without sacrificing analysis accuracy.

VII. CONCLUSION

This paper proposed a stochastic network calculus based
approach to study the per-flow performance in an renewable
energy harvesting multichannel system with finite energy
storage. We completed a general derivation for the distribution
of queueing delay of a designated flow and that of energy
depletion of the considered system. Furthermore, we shown
how to jointly use the statistical information of traffic arrivals,
system service, energy harvesting and energy consumption, the
energy storage and queueing delay constraints to determine the
traffic access rate for the considered system, which provided
analytical insight into the traffic admission control.
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APPENDIX A

Lemma 1. For the sum of a collection of random variables
Z =

∑N
i=1 Xi, no matter whether Xi is independent of Xj

(i ̸= j) or not, the CCDF of Z holds as

FZ(z) ≤ [FX1 ⊗ FX2 ⊗ · · · ⊗ FXN
(z)]1

= [ inf
z1,···,zN≥0,

∑N
i=1 zi=z

{
N∑
i=1

FXi(zi)}]1
,

where FXi (1 ≤ i ≤ N ) represent the CCDF of Xi.

Proof. The proof of Lemma 1 can be found in [15]
(see Lemma 1.5 of [15]). Here, we improve the
bound by adding function [·]1. This is because if
infz1,···,zN≥0,

∑N
i=1 zi=z{

∑N
i=1 FXi(zi)} > 1, the probabilistic

bound will be meaningless.

APPENDIX B
PROOF OF THEOREM 1

According to the definition of B(t) in (1), we have

B(t) = max{0, B(tl) + P (tl, t)− E(tl, t)}
= sup

0≤s≤t
{P (s, t)− E(s, t)} .

In the second line we recursively calculated the first line from
time 0 to time t. Consequently, for ∀ t, b ≥ 0, there holds

Pr{B(t) > b}
=Pr{ sup

0≤s≤t
{P (s, t)− E(s, t)} > b}

=Pr{ sup
0≤s≤t

{P (s, t)− p(s, t) + e(s, t)

− E(s, t) + p(s, t)− e(s, t)} > b}
≤Pr{ sup

0≤s≤t
{P (s, t)− p(s, t)}+ sup

0≤s≤t
{e(s, t)− E(s, t)}

> b− sup
0≤s≤t

{p(s, t)− e(s, t)}}

(a)

≤Pr{ sup
0≤s≤t

{P (s, t)− p(s, t)}+ sup
0≤s≤t

{e(s, t)− E(s, t)}

> b− p⊘ e(0)}
(b)

≤ [fp ⊗ fe(b− p⊘ e(0))]1

.

In step (a), we employed the definition of min-plus deconvo-
lution. In step (b), we used Lemma 1 in Appendix A. Thus,
the proof is completed.

APPENDIX C
PROOF OF THEOREM 2

As mentioned earlier, energy depletion means no energy
is left to sustain the traffic transmission. In this case, the
queueing delay constraint cannot be satisfied definitely, i.e.,
for all t, d ≥ 0, there holds

Pr{D(t) > d} = 1.

Even though the harvested energy is sufficient for the cur-
rent energy consumption, the traffic may violate the queueing
threshold since the traffic arrival process and service process

are both stochastic. In this case, the violation probability of
the queueing threshold d is bounded by

Pr{D(t) > d}
(a)

≤Pr{A(t)−A∗(t+ d) > 0}
≤Pr{ sup

0≤s≤t
{A(s, t)− α(s, t) + α(s, t)− β(s, t+ d)}

+A⊗ β(t+ d)−A∗(t+ d) > 0}
≤Pr{ sup

0≤s≤t
{A(s, t)− α(s, t)}+A⊗ β(t+ d)−A∗(t+ d)

> inf
0≤s≤t

{β(s, t+ d)− α(s, t)}}

(b)

≤ [fα ⊗ fβ( inf
0≤s≤t

{β(s, t+ d)− α(s, t)})]1

Here, step (a) holds because event {D(t) > d} implies event
{A(t) > A∗(t + d)}. In step (b), we applied Lemma 1 in
Appendix A. Furthermore, < fβ , β > is the stochastic service
curve for flow A, which has been derived in the Theorem 1
of [35]. There holds

β(s, t) = [βove(s, t)−
M∑
i=1

αi(s, t− τ)]+I{t−s>τ}

fβ(x) = fα1 ⊗ · · · ⊗ fαM
⊗ fβove(x)

. (25)

Here, τ = 0 means flow A is scheduled in the lowest priority
among all the flows while 0 < τ ≤ t− s means all the flows
are scheduled with FIFO principle.

Therefore, for the energy sufficiency case, we have

Pr{D(t) > d}
≤[fα ⊗ fα1 ⊗ · · · ⊗ fαM ⊗ fβove( inf

0≤s≤t
{[βove(s, t+ d)

−
M∑
i=1

αi(s, t+ d− τ)]+I{t+d−s>τ} − α(s, t)})]1

In the end, the overall violation probability of the queueing
threshold is bounded by

Pr{D(t) > d}
=[Pr{D(t) > d|B(t) ≤ b}+ Pr{B(t) > b}]1
(a)

≤ [[fα ⊗ fβ( inf
0≤s≤t

{β(s, t+ d)− α(s, t)})]1ϵm + ϵb]1

(b)

≤ [[fα ⊗ fβ( inf
0≤s≤t

{β(s, t+ d)− α(s, t)})]1 + ϵb]1

≤[fα ⊗ fα1 ⊗ · · · ⊗ fαM ⊗ fβove( inf
0≤s≤t

{[βove(s, t+ d)

−
M∑
i=1

αi(s, t+ d− τ)]+I{t+d−s>τ} − α(s, t)}) + ϵb]1

In step (a), ϵm (1 − ϵb ≤ ϵm ≤ 1) denotes the maximum
probability that the battery has energy. In step (b), we loosened
ϵm to 1, which is reasonable because ϵm must be quite close
to 1 for a reliable communication system.

APPENDIX D
PROOF OF THEOREM 3

From the perspective of the system, the aggregated traf-
fic flow is denoted by Aove, and the corresponding de-
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parture of the buffer is denoted by A∗
ove. There hold-

s Aove(s, t) = A(s, t) +
∑M

i=1 Ai(s, t) and A∗
ove(s, t) =

A∗(s, t) +
∑M

i=1 A
∗
i (s, t).

Let us consider any time t ≥ 0. Since the system is work-
conserving, the proof can be classified into two cases.

Case 1: t is not in any backlogged period. In this case all
the packets arrived up to time t have left the buffer before
time t. Hence, Aove(t) = A∗

ove(t), and

Aove ⊗ βove(t)−A∗
ove(t)

≤Aove(0, t) + βove(t, t)−A∗
ove(t)

=βove(t, t)− S(t, t)

.

Case 2: t is within a backlogged period. Suppose t0 is the start
time of the last backlogged period and t0 ≤ t. That means
A∗

ove(t0) = Aove(t0), and A∗
ove(t0, t) = S(t0, t). Thus, we

have

A⊗ βove(t)−A∗
ove(t) ≤ Aove(t0) + βove(t0, t)−A∗

ove(t)

=βove(t0, t)−A∗
ove(t0, t) = βove(t0, t)− S(t0, t)

.

Thus, for boht two cases and all x > 0, there exits t0 ≤ t
to hold as

Pr{Aove ⊗ βove(t)−A∗
ove(t) > x}

≤Pr{βove(t0, t)− S(t0, t)) > x}
,

where for the first case we let t0 = t. Besides, for the service
processes of all the channels {Si(t) : 1 ≤ i ≤ N}, we have

S(t) =
N∑
i=1

Si(t).

Since the service processes all have stationary increments, if
{Si(t) : 1 ≤ i ≤ N} are all independent of each other,
according to the Definition 2, there holds

Pr{Aove ⊗ βove(t)−A∗
ove(t) > x}

≤Pr{βove(t0, t)− S(t0, t) > x}
(a)

≤ e−θaxE[eθa(βove(t0,t)−S(t0,t))]

=e−θaxE[eθa(
∑N

i=1(βi(t0,t)−Si(t0,t)))]

≤e−θax
N∏
i=1

E[eθa(βi(t0,t)−Si(t0,t))]

(b)
=e−θax

.

Here, in step (a) we applied the Chernoff bound, and in step
(b) we chosen the value βi(t) ≤ − 1

θa
logE[e−θaSi(t)] (1 ≤

i ≤ N ).

On the other hand, if {Si(t) : 1 ≤ i ≤ N} are not
independent, there holds

Pr{Aove ⊗ βove(t)−A∗
ove(t) > x}

≤Pr{
N∑
i=1

(βi(t0, t)− Si(t0, t)) > x}

(a)

≤ [ inf
x1+...+xN=x

{
N∑
i=1

(Pr{βi(t0, t)− Si(t0, t) > xi})}]1

(b)

≤ [ inf
x1+...+xN=x

{
N∑
i=1

(e−θaxiE[e(θa(βi(t0,t)−Si(t0,t))])}]1

(c)
=[ inf

x1+...+xN=x
{

N∑
i=1

e−θaxi}]1

=[Ne−
θax
N ]1

.

In step (a), we applied Lemma 1 in Appendix A. In step (b),
we used the Chernoff bound. In step (c), we chosen the value
βi(t) ≤ − 1

θa
logE[e−θaSi(t)] (1 ≤ i ≤ N ). Hence, Theorem

3 is proved.

APPENDIX E
PROOF OF STOCHASTIC ENERGY HARVESTING CURVE

According to Definition 3, we should prove the following
expression

Pr{ sup
0≤s≤t

{− 1

θe
logE[e−θeE(s,t)]− E(s, t) > x}} ≤ e−θe .

We first introduce the definition of martingale.

Definition 5. (Martingale) [22, 36, 37] Consider a stochastic
process U = {U(t) : t ≥ 0} such that U(t) is integrable for
all t. Let also a family F = {Ft : t ≥ 0} of sub-σ-algebras
of F satisfying two properties: (1) Fs ⊆ Ft for all s ≤ t, and
(2) U(t) is Ft-measurable for all t ≥ 0. U(t) is said to be a
martingale iff for all 0 ≤ s ≤ t, there holds

E[U(t)|Fs] = U(s).

Since E(t) is compound Poisson process, it has indepen-
dent and stationary increments. Consider a sequence of non-
negative random variables {U(s) : 0 ≤ s ≤ t}, formed by

Us = eθe(−
1
θe

log E[e−θeE(s)]−E(s)).

Consider also the filtration of σ-algebras

Fs = σ{E(i) : 0 ≤ i ≤ s},

i.e., Fs ⊆ Ft for all s ≤ t. It is obvious that U(s) is Fs-
measurable for all s ≥ 0 and u ≥ 0, we consequently have

E[U(s+ u)|Fs]

(a)
=E[U(s)eθe(−

1
θe

log E[e−θeE(u)]−E(s,s+u))|Fs]

(b)
=U(s)E[eθe(−

1
θe

log E[e−θeE(u)]−E(s,s+u))]

(c)
=U(s)

1

E[e−θeE(u)]
E[e−θeE(u)]

=U(s)
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Here, step (a) and (b) hold since E(t) has independent
increments and U(s) is Fs-measurable. Step (c) holds since
E(t) has stationary increments. Let u = t − s, we prove
U(t) = eθe(−

1
θe

log E[e−θeE(t)]−E(t)) is a martingale. We have

Pr{ sup
0≤s≤t

{− 1

θe
logE[e−θeE(s,t)]− E(s, t) > x}}

=Pr{ sup
0≤s≤t

{eθe(−
1
θe

log E[e−θeE(s,t)]−E(s,t))} > eθex}

=Pr{ sup
0≤s≤t

{U(t− s)} > eθex}

=Pr{U(1) > eθex}

=Pr{eθe(−
1
θe

log E[e−θeE(1)]−E(1)) > eθex}
(a)

≤ e−θexE[eθe(−
1
θe

log E[e−θeE(1)]−E(1))]

=e−θex

.

In step (a), we used the Chernoff bound. Therefore,
− 1

θe
E[e−θeE(t)] is a stochastic energy harvesting curve of E(t)

with violation probability e−θex. According to the statistical
information of E(t), there holds

− 1

θe
E[e−θeE(t)] =

ret

1 + θeLe
.

Thus, the stochastic energy harvesting curve of E(t) is proved.
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