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Abstract 
This work analyses the stability of the equilibrium state of a logistic growth model of the 
Algae population dynamics on a water body thereby obtaining the critical patch length which 
will determine the subsistence or extinction of the water organisms. 
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Introduction 
Algae are found in freshwater and marine environments; a few grow in terrestrial habitats. 
The algae are not a single, closely related taxonomic group but, instead, are a diverse 
assemblage of unicellular, colonial, and multicellular eukaryotic organisms. Although algae 
can be autotrophic or heterotrophic, most are photo autotrophs. They store carbon in a 
variety of forms, including starch, oils and various sugars (Microsoft Cooperation, 2003). The 
body of algae is called the thallus. Algae thalli range from small solitary cells to large, 
complex multicellular structures. Algae reproduce asexually and sexually. Some species of 
algae are edible and are used as gelling agent in some food. There is substantial evidence 
for the health benefits of algal-derived food products, but there remain considerable 
challenges in quantifying these benefits, as well as possible adverse effects. First, there is a 
limited understanding of nutritional composition across algal species, geographical regions, 
and seasons, all of which can substantially affect their dietary value (Mark et al, 2017).  
Some other types contain harmful toxins and are hazardous to health. When found in 
drinking water, algae can make the process of filtration more complex and costlier.  
 
Algae are needed in aquaria and lakes to create a balanced ecosystem but can constitute 
problems if its growth is not controlled, (Algae Wikipedia, 2018). 
 
A Model may be defined as a simplified or idealized descriptions or conception of a particular 
system, situation or process.  It may be categorized according to the medium in which they 
are expressed, (Akinwande, 2018).  
 
Mathematical modeling is the process of creating a mathematical representation of some 
phenomenon in order to gain a better understanding of that phenomenon, (Benyah, 2009). 
It has become an important scientific technique over the last three decades and is becoming 
more and more a powerful tool to solve problems arising from science, engineering, 
economics, industries and the society in general, (Akinwande, 2018). 
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The logistic population growth model assumes that environment has a carrying capacity K. 
This is the maximum population which the environment can sustain; the model equation is 
given by; 
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The analytic solution of (1) is given by  
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This model has been successful applied to several population dynamics with a great 
measure of success by Akinwande (2006). The major deficiency of this model is that it gives 
no information regarding the age distribution of the population, hence assuming that the 
birth rate and death rates are independent of age. Lotka and Von Foerster model addressed 
this crucial question in their age dependent population model, giving rise to the use of 
partial differential equations as the population is now treated as depending on the two 
variables age a and time t. 
 
Model Formulation 
Following Lotka and von Foerster model, the exponential model suggests that the population 
apparently grows without bounds as t increases. This is unrealistic for t, the reasons being 
that for large N, one expects that the competition for living space and scarce resources tend 
to limit population size. To be more specific, the growth of algae be without bounds 
considering the losses at the patch boundary as the ocean body moves to and fro. In order 
to improve the exponential model, suppose the habitat can support a maximum population 
level K which is known as the environmental carrying capacity. When N reaches K, the 
growth rate is taken to be zero. This represents the extreme case in which the capacity for 
growth has been saturated. A reasonable modification of the rate r to account for this 
limited capacity is to consider a per capital growth rate that decreases as the patch density 

( )r  increases such that; 
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Where (x, t)M  represents the difference in the source term and the sink term, and K is the 
environmental carrying capacity. If we consider the diffusion model with the intensity of 
diffusion V  the rate of change of the plankton density with time is given as 
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Where is the (x, t)R source term which represent internal reproduction within the algae body. 
Putting equation (3) into model equation (4) we obtain 
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Equation (5) is the model equation for the logistic population growth model 
 
Methods of Solution 
In dealing with equation (5) which is a non-linear system. Let us assume that the 
interchange between internal growth and loss at the patch boundary has been going on for 
a long time, so that a population density is eventually reached that depends only on position 
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and not on the time at which it occurs, where ρ is the patch density, ν is the intensity of 
diffusion, t is the time, Kis the environmental carrying capacity, r is the growth rate. 
 
In essence the system has reached a steady state (equilibrium)with the environment. Under 
this condition, r  no longer depends explicitly on time. It is a useful approximation to 

suppose that 
t
r¶
¶

 is zero. Partial derivative with respect to x becomes ordinary derivative in 

a single independent variable. 
 At equilibrium state ( ) ( ),x t xr r= , (5) then simplifies to 
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Dividing through by v gives  
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                            (7) 

This is a second order equation   
 
Stability Analysis 
If equation (7) is written as a first order system by letting 1u r=  and 2u r¢=  then  

1 2u u¢ =                               (8) 

Equation (7) then becomes 
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The equation has equilibria at 
0
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. Considering the linearized stability 

analysis (Erwin, 1988) of (8) and (9). We then obtain the Jacobian determinant for the 
eigenvalue l  
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The characteristic equation is therefore given by 
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 equation (11) becomes  
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Figure 1: phase portrait 
 
In a steady state, the boundary condition becomes ( ) ( )0 0Lr r= = . 

 
 
 
 
 
             
 
 
 
 
 
 
 
 
 
 
 
 Figure 2: Phase portrait 
 
The initial point is outside the region bounded by the separatrix (stable manifold) leading to 

the saddle,
0

K
u =

æ ö
ç ÷
è ø

 then such a path is impossible. It follows that Kr <  for all x. 

Equations (14) and (17) can be represented by the phase portraits shown in figure 1 and 
figure 2 respectively. 

(K, O) 

(0, 0) 
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In a steady state, the boundary condition becomes ( ) ( )0 0Lr r= = . If a non-trivial 

solution (7) exists then it must begin and end on the vertical r¢axis, since 0r ³ for all x, 
this can only occur if the orbits begin on the positive r¢axis and moves clockwise around 
the oval shaped path. If the initial point is outside the region bounded by the separatrix 

(stable manifold) leading to the saddle,
0

K
u =

æ ö
ç ÷
è ø

 then such a path is impossible. It follows 

that Kr <  for all x. When the orbit begins on the separatrix itself. Since the saddle is an 
equilibrium state it can only approach it asymptotically. (Beltrami, 1989). 
This means that the orbit corresponds to an interval of infinite length and in this case the 
boundary condition ( ) 0Lr =  cannot be satisfied since the orbit is not able to continue onto 

the r¢  axis.  

( ) ( )( )2x C Ur r¢ = ± -                                                                        (18) 

Let an orbit cross the horizontal axis at some 1 Kr < since the path is symmetrical about the 

r¢axis. Consider only half of it as r goes from zero to 1r  it covers a distance 
2
L
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We assume here that r¢ is not zero. Otherwise r is a constant namely zero because of the 
boundary conditions. If we consider C = U(ρ1) 
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Integrating by part, we have  
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Substituting ( )U r  for Z 
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Substituting equation (34) into equation (33) we have 
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Equation (35) gives the critical value of the patch which has to be maintained for the 
phytoplankton to still be in existence. It will be observed that the patch length varies directly 
as the growth rate (r) and inversely as the intensity of diffusion (v). This means that length 
of the patch increases with increased growth rate and decreased intensity of diffusion. 
 
Conclusion  
Equation (35) gives the critical value of the length of phytoplankton that should be 
maintained by fish farmers to avoid going into extinction as they supply some essential 
nutrients needed in the fishpond. 
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