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• Discrete Symbiotic Organism Search algorithm for task scheduling is proposed.
• The proposed algorithm has better ability to exploit best solution regions than PSO.
• The proposed method has global ability in terms of exploring optimal solution points.
• The proposed algorithm performs significantly better than PSO for large search spaces.
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a b s t r a c t

Efficient task scheduling is one of the major steps for effectively harnessing the potential of cloud com-
puting. In cloud computing, a number of tasks may need to be scheduled on different virtual machines in
order to minimize makespan and increase system utilization. Task scheduling problem is NP-complete,
hence finding an exact solution is intractable especially for large task sizes. This paper presents a Dis-
crete Symbiotic Organism Search (DSOS) algorithm for optimal scheduling of tasks on cloud resources.
Symbiotic Organism Search (SOS) is a newly developed metaheuristic optimization technique for solv-
ing numerical optimization problems. SOS mimics the symbiotic relationships (mutualism, commen-
salism, and parasitism) exhibited by organisms in an ecosystem. Simulation results revealed that DSOS
outperforms Particle Swarm Optimization (PSO) which is one of the most popular heuristic optimization
techniques used for task scheduling problems. DSOS converges faster when the search gets larger which
makes it suitable for large-scale scheduling problems. Analysis of the proposed method conducted using
t-test showed that DSOS performance is significantly better than that of PSO particularly for large search
space.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

In cloud computing, resources such as processors, memory,
storage, and applications are provisioned as services, thereby
changing the way IT resources are designed and acquired [1]. The
cloud computing paradigm had greatly reduced the financial cost
of acquiring hardware and software for application deployment
as well as maintenance cost. Because of the high scalability, users
are not bothered with imprecise forecasting of service scale which
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will amount to resource wastage if over provisioned, and revenue
loss if under provisioned [2,3]. Cloud computing resources are
shared among cloud clients through the concept of virtualization.
Virtualization allows many remote running environments to be
safely combined on physical servers for optimum utilization of
physical resources and energy [2]. Virtual Machine (VM) is a vital
component of software stacks in the cloud data center. Cloud
data are located across servers which are interconnected through
networked resources and accessed via virtual machines. Amazon
Elastic Computing Cloud (Amazon EC2) [4] is an example of
cloud platform that provides infrastructure services in the form
of VMs. One of the cardinal objectives of cloud computing is
maximization of revenue both on the part of the cloud provider
and the user. Task scheduling has evolved as one of the focus
in cloud computing [5] since inefficient task scheduling can lead

http://dx.doi.org/10.1016/j.future.2015.08.006
http://www.elsevier.com/locate/fgcs
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mailto:abdullahilwafu@abu.edu.ng
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to revenue loss, performance degradation, and breach of Service
Level Agreement (SLA). Therefore, efficient scheduling algorithms
are required to minimize both computation-based metrics such as
response time, system utilization, makespan, system throughput
and network-based metrics such as network communication cost,
traffic volume, round trip time, data communication cost [6].
These metrics are central to monitoring cloud activities in order
to address issues like load balancing, energy efficiency, SLA and
Quality of Service (QoS) guarantee, fault tolerance [6].

There are encouraging research results for efficient task
scheduling in the cloud, but task scheduling problems are still NP-
complete [7]. Most of the task scheduling algorithms used in cloud
computing are rule based [8–10] because they are easy to imple-
ment. Rule based algorithms perform poorly when it comes to
complex task scheduling problems [5]. The most common meta-
heuristic techniques applied to task scheduling problems in grid
and cloud computing are Genetic Algorithm (GA) [11–15], Particle
Swarm Optimization (PSO) [16–26], and Ant Colony Optimization
(ACO) [27–30]. PSO converges faster and obtains better solution
than GA and ACO due to its exploratory capability for finding opti-
mal solutions [16,31]. Owing to the better performance of PSO over
ACO and GA, variants and hybrid versions of PSO have been used
for benchmarking the proposed algorithm.

In this paper, DSOS is proposed and used to schedule a bag of
tasks in a cloud environment, hence network communication cost
and data transfer cost are not main optimization issues when deal-
ing with independent tasks. In the experimental setup, four data
set categories, normal, left-skewed, right-skewed, anduniformdis-
tributions,were used to test the suitability of the proposedmethod.
We used different forms of distributions to gain insight into the
performance trend of the proposedmethod.Web applications such
as web services are usually run for a long time and their CPU de-
mand is variable. Moreover, High Performance Computing (HPC)
applications have short life span and place a high demand on CPU.
Furthermore, chosen statistical models for task sizes represent dif-
ferent scenarios of concurrently scheduling HPC and web applica-
tions. Uniform distribution depicts a situation where HPC and web
applications are of the same magnitude. Left skewed distribution
represents a situation where HPC applications to be scheduled are
more than web applications and right skewed distribution repre-
sents the other way round. Uniform distribution represents a sce-
nario where a single application type is scheduled.

The proposed algorithm can be applied to obtain optimal solu-
tions to well defined problems on discrete space including, pro-
duction planning, scheduling, inventory control, optimization of
network synthesis and design problems, etc. These problems arise
in real-world situations like management, engineering, telecom-
munications, etc.

The main contributions of the paper are:

• Clearer presentation of SOS procedures.
• Design and implementation of discrete version of SOS algorithm

for scheduling of tasks in a cloud computing environment.
• Evaluation of the proposed method using makespan, response

and degree of imbalance among VMs as performance metrics.
• Statistical validation of the obtained results against that of PSO

using significance test.

The organization of the remainder of the paper is as follows.
Metaheuristic algorithms applied to task scheduling problems in
the cloud and SOS are presented in Section 2. Section 3 describes
the problem formulation. Design of proposed algorithm and its
description are presented in Section 4. Results of simulation and
its discussion are in Section 5. Section 6 presented a summary and
conclusion of the paper.
2. Related work

2.1. Metaheuristic algorithms in cloud scheduling

Metaheuristic methods [11,13,25,27,29,32–37] have been ap-
plied to solve task assignment problems in order to reduce
makespan and response time. The methods have proven to find
an optimum mapping of tasks to resources which reduce the cost
of computation, improve quality of service, and increase utiliza-
tion of computing resources. ACO, PSO, GA, and their variants
are the mostly commonly used nature inspired population based
algorithms in the cloud. PSO outperforms GA and ACO in most
situations [16,31] and has faster execution time. PSO is simple
to implement as compared to GA and ACO respectively. Work-
flow scheduling problems have beenwidely studied using PSO [25,
26,38–40] with the aim of reducing communication cost and
makespan. Scheduling of Independent tasks has also been stud-
ied in cloud using PSO [18,33,34,41,42] and it has proved to ensure
minimalmakespan. Improved and hybrid versions [5,20,25,40–42]
of PSO were also proposed for scheduling of tasks in the cloud, and
they obtained better solution than those of ACO and GA.

2.1.1. Symbiotic Organism Search algorithm
SymbioticOrganismSearch (SOS) algorithm, a novel population-

based metaheuristic algorithm, was presented in [43] for solv-
ing numerical optimization problems on a continuous real space.
SOS mimics the symbiotic associations (mutualism, commensal-
ism, and parasitism) among different species in an ecosystem. Mu-
tualism simply means the relationship between different species
where both individuals benefit from the association. Commensal-
ism is the association of two different species where one benefits
from the union and the other is not harmed while in parasitism
relation one species benefits and other is harmed. Each member
of the organism within an ecosystem is represented by a vector in
the solution plane. Each organism in the search space is assigned
a value which suggests the extent of adaptation to the sought ob-
jective. The Algorithm repeatedly uses a population of the possible
solutions to converge to an optimal position where the global op-
timal solution lies. The algorithm usedmutualism, commensalism,
and parasitismmechanisms to update the positions of the solution
vector in the search space.

SOS is a repetitive process for an optimization problem [44]
given in Definition 2.1. The procedure keeps a population of
organisms that depict the candidate solutions of the studied
problem. The relevant information concerning the decision
variables and a fitness value is encapsulated into the organism
as an indicator of its performance. Essentially, the trajectories of
the organisms are modified using the phases of the symbiotic
association.

Definition 2.1. Given a function f : D → ℜ find X ′ ∈ D : ∀X ∈
D f (X ′) ≤ or ≥ f (X). ≤ (≥) minimization (maximization), where
f is an objective function to be optimized and D represents the
search space while the elements of D are the feasible solutions. X
is a vector of optimization variables X = {x1, x2, x3, . . . , xn}. An
optimal solution is a feasible solution X ′ that optimizes f .

2.1.2. Procedures of Symbiotic Organism Search
The steps of the Symbiotic Organism Search algorithm are given

below:
Step 1: Ecosystem initialization
Initial population of the ecosystem is generated and other control
variables such as ecosystem size, maximum number of iterations
are specified. The positions of the organisms in the solution space
are represented by real numbers.
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Step 2: Selection of the organism with the best fitted objective
function represented as xbest

Step 3: Mutualism phase

In ith iteration, an organism xj is randomly selected from the
ecosystem to interact with an organism xi for mutual benefit with
i ≠ j according to (1) and (2) respectively.

x′i = xi + r ′

xbest −


(xi + xj)/2


f1


(1)

x′j = xj + r ′′

xbest −


(xi + xj)/2


f2


(2)

where r ′ and r ′′ are uniformly generated randomnumbers between
0 and 1. f1 and f2 are the mutual benefit factors resulting from
the association between the organisms in the relationship. The
two organisms may benefit equally from the mutual relationship
or one may benefit more than the other. Values of f1 and f2 are
determined randomly as either 1 or 2. 1 denotes partial benefit
while 2 indicates full benefit. The term


(xi + xj)/2


defines the

extent of adaptation of the two specie to ecosystem. The fitness
functions f (x′i) and f (x′j) are evaluated, xi is updated to x′i using (1)
only if f (x′i) is greater than f (xi) and xj is updated to x′j using (2) only
if f (x′j) is greater than f (xj). xbest is the organismwithhighest fitness
function so far indicating highest degree of adaptation for survival.

Step 4: Commensalism phase

In ith iteration, an organism xj is randomly selected from the
population to interact with xi where i ≠ j. In this phase, xi benefits
from xj but xj neither gains nor loses from the interaction. The
interaction is modeled according to (3).

x′i = xi + r ′

xbest − xj


(3)

where r ′ is a uniformly generated random number between −1
and 1. The fitness function f (x′i) is evaluated and xi is updated to x′i
using (3) only if f (x′i) is greater than f (xi).

Step 5: Parasitism phase

In ith iteration, a parasite vector xp is created bymutating xi using a
randomly generated number in the range of the decision variables
under consideration and an organism xj with i ≠ j is selected
randomly from the population to serve as host to xp. If the fitness
value f (xp) is greater than f (xj), then xp will replace xj, otherwise
xp is discarded.

Steps 2 through 5 are repeated until stopping criterion is reached.

Step 6: Stopping criterion

The pseudocode of Symbiotic Organism Search is presented as
Algorithm 1.

3. Problem description

When tasks to be scheduled are received by Cloud Broker (CB),
Cloud Information Service (CIS) is queried to identify the services
required to execute the received tasks from the user and then
schedule the tasks on the discovered services. For instance, tasks
{T1, T2, T3, . . . , Tn} may be submitted to CB in a given time in-
terval. The processing elements (Virtual Machines) are heteroge-
neous having varied processing speeds and memory, indicating
that a task executed on different Virtual Machines (VMs) will
result in varying execution cost. Suppose Virtual Machines
{V1, V2, V3, . . . , Vm} are available when the tasks are received by
CB. The tasks are scheduled on the available VMs and execution of
the tasks is done on the basis of First-Come First-Serve.
Table 1
An example of an ETC matrix.

T1 T2 T3 T4

V1 T1/V1 T2/V1 T3/V1 T4/V1
V2 T1/V2 T2/V2 T3/V2 T4/V2
V3 T1/V3 T2/V3 T3/V3 T4/V3

Our aim is to schedule tasks on VMs in order to achieve higher
utilization of VMs with minimal makespan. As a result, Expected
Time to Compute (ETC) of the tasks to be scheduled on eachVMwill
be used by the proposed method to make schedule decision. ETC
values are determined using the ratio of million instructions per
second (MIPS) of a VM to the length of the task [45,46] as illustrated
in Table 1. ETC values are usually represented in matrix form
[45,46], where the number of tasks to be scheduled is represented
by the rows of the matrix and number of available VMs is
represented by the columns of the matrix. Each row of ETC matrix
represents execution times of a given task for each VM, while each
column represents execution times of each task on a given VM.
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Fig. 1. Organogram of the DSOS.
Our objective is to minimize the makespan by finding the
best group of tasks to be executed on VMs. Let Cij(i ∈

{1, 2, 3, . . . ,m}, j ∈ {1, 2, 3, . . . , n}) be the execution time of ex-
ecuting jth task on ith VM where m is the number of VMs and n
is the number of tasks. The fitness value of each organism can be
determined using (4), which determines the strength of the level
of adaptation of the organism to the ecosystem.

fitness = max{Cij,∀all tasks j mapped to VM i}

i ∈ {1, 2, 3, . . . ,m}. (4)
4. Discrete symbiotic organisms search algorithm

SOS was proposed and applied to solve continuous problems.
The Discrete Symbiotic Organism Search (DSOS) is presented and
applied to solve task scheduling problems in cloud computing en-
vironment,with task scheduling formulated as a discrete optimiza-
tion problem. The pseudocode and organogram of the proposed
algorithm are presented in Algorithm 2 and Fig. 1 respectively. The
continuous version of SOS can be used to solve optimization prob-
lems for which the optimization variables xi, i = 1, 2, 3, . . . , n
are continuous, xi ∈ ℜ i = 1, 2, 3, . . . , n while DSOS can be
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Table 2
An example of a task schedule.

T1 T2 T3 T4

1 1 3 2

applicable to optimization problems for which the optimization
variables xi, i = 1, 2, 3, . . . , n are members of a countable set.
SOS operates entirely on continuous optimization variables while
DSOS operates on discrete optimization variables. In DSOS, the
movement and position of organisms in the continuous space are
mapped into developed discrete functions as shown in (7) through
(12).

DSOS consists of three phases: initialization phase, repetition
phase, and termination. The initialization phase generates the
initial population of organisms. Each organism consists of D
elements indicating candidate solutions and a fitness function to
determine the extent of optimality of solutions. Therefore, each
organism corresponds to a choice for task schedule encoded in a
vector of dimension 1×n as illustrated in Table 2, with n being the
number of tasks. The elements of the vector are natural numbers
in the range [1,m], where m is the number of VMs. Suppose xk
is the position of the kth organism in the solution space; xk(j)
signifies the virtual machine where task j is assigned by scheduler
in the organism. The iterative phase mimics the mutualism,
commensalism, and parasitism kinds of association to update
the positions of the organisms. In mutualism and commensalism
stages, xbest forms part of the update variables which act as the
memory of the procedure. xbest is the best point an organism and
its neighbors have visited so far. (5) through (8) are used to create
modified positions of the selected organisms at mutualism phase.

s1(p)← xi + r1

xbest −


(xi + xj)/2


f1


(5)

s2(p)← xj + r2

xbest −


(xi + xj)/2


f2


(6)

x′i(q)←
s1(p) mod m+ 1 (7)

x′j(q)←
s2(p) mod m+ 1 (8)

∀p ∈ {1, 2, 3, . . . , n} ∀q ∈ {1, 2, 3, . . . ,m}

where x′i and x′j are the modified positions of the ith and jth mem-
bers of the ecosystem with i ≠ j, xj is the randomly selected or-
ganism in ith iteration for i ≠ j, f1, f2 ∈ {1, 2} are randomly
determined and they represent the benefit factor from the mutual
relationship, r1, r2 ∈ rand(0, 1) are uniformly generated random
numbers in the specified interval and ⌈⌉ is a ceiling function. In
commensalism phase, the modified position of the organism x′i is
obtained using (9) and (10)

s3(p)← r3

xbest − xj


(9)

x′i(q)← ⌈s3(p)⌉ mod m+ 1 (10)
∀p ∈ {1, 2, 3, . . . , n} ∀q ∈ {1, 2, 3, . . . ,m} and j ≠ i

where r3 is a uniformly generated random number between 0 and
1.
In parasitism phase, the parasite vector xp is created using (11) and
(12).

s4(p)← r4xi (11)

xp(q)← ⌈s4(p)⌉ mod m+ 1 (12)
∀p ∈ {1, 2, 3, . . . , n} ∀q ∈ {1, 2, 3, . . . ,m} and j ≠ i

where r4 is a uniformly generated random number between 0
and 1.
5. Simulation and results

In order to test the performance of the proposed method, it
was implemented in CloudSim [47] which is a toolkit for simulat-
ing Cloud computing scenarios. Twodatacenterswere created each
containing two hosts respectively. Each host has 20 GB ram, 1 TB
storage, 10 GB/s bandwidth and time-shared VM scheduling algo-
rithm. One host is a dual-core machine while the other is a quad-
core machine each with X86 architecture, Linux operating system,
Xen virtual machine monitor (VMM), and cumulative processing
power of 1 000000 MIPS. 20 VMs were created, each with image
size of 10 GB, 0.5 GB memory, 1 GB/s bandwidth and 1 process-
ing element. The processing power of the VMs ranges from 1000
to 10000 MIPS respectively. Time-shared cloudlet scheduler and
Xen VMM were used for all the VMs. Task sizes (cloudlet length)
were generated from normal, left-skewed, right-skewed, and uni-
form distribution. Uniform distribution depicts more medium size
tasks, and fewer small and large size tasks. Left-skewed represents
a few small size tasks andmore large size taskswhile right-skewed
is the opposite. Uniform distribution depicts an equal number of
large,medium, and small size tasks. For each distribution, 100, 200,
300, 400, 500, 600, 700, 800, 900, 1000 instances were generated.
The larger instances will enable us to gain insight into the scalabil-
ity of performance of the algorithms with large problem sizes. The
parameter settings for SAPSO and DSOS are presented in Table 3.
The choice of values for inertia weight and constriction factors (c1,
c2) was based on [48].



M. Abdullahi et al. / Future Generation Computer Systems 56 (2016) 640–650 645
Table 3
Parameter settings for PSO and SOS.

Algorithm Parameter Value

PSO Particle size 100
Self-recognition coefficient c1 2
Social effect c2 2
Static inertia weight 0.9
Variable inertia weight 0.9–0.4
Number of iterations 1000

SOS Number of organisms 100
Number of iterations 1000

Fig. 2. Makespan (normal dist.)

Fig. 3. Makespan (left skewed).

Figs. 2–5 show the average makespan for executing task
instances 10 times, using PSO with fixed inertia, PSO with variable
inertia, SAPSO, and DSOS. The figures indicated a minimization
of makespan using DSOS in most scenarios, particularly from
task instances of 300 upward. The percentage improvement of
DSOS over SAPSO for different distribution of data instances is
summarized in Tables 4–7, showing that the degree of performance
of DSOS over SAPSO increases as search space increases. Figs. 6–9
showed the response times obtained by PSO versions and DSOS,
with the figures showcasing that DSOS has minimal response time
for different distributions of tasks sizes. DSOS also gives a better
degree of imbalance among VMs for large problem instances as can
be observed in Figs. 10–13.

The convergence graphs showing improvements in the quality
of solutions for makespan obtained by SAPSO and DSOS using data
Fig. 4. Makespan (right skewed).

Fig. 5. Makespan (uniform dist.)

Fig. 6. Response time (normal dist.)

instances 100, 500, and 1000 are presented in Figs. 14–16. As can
be observed, both methods showed improvement in quality of
solution at the beginning of the search but DSOS demonstrated the
ability of improving its quality of solution at a later stage of the
search process. The quality of solutions obtained by DSOS is better
than that of SAPSO especially when the problem size is larger.
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Fig. 7. Response time (left skewed).

Fig. 8. Response time (right skewed).

Fig. 9. Response time (uniform dist.)

One sided t test was carried out to examine whether the
makespan obtained by DSOS is significantly less than that of
SAPSO for all task instances using the same stopping criteria. The
alternative hypothesis (Ha) was set as the statement of the test
while the null hypothesis (H0) was set as the complementary
Fig. 10. Degree of imbalance (normal dist.)

Fig. 11. Degree of imbalance (left skewed).

Fig. 12. Degree of imbalance (right skewed).

statement. Acceptable Type I and Type II errors of 1% were used
to conduct a test with critical value obtained from statistical table
as 2.554. The statistical analysis of performance of DSOS and SAPSO
under different data instances are presented in Tables 2–5 which
indicate that for data instances 400 through 1000 the calculated
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Fig. 13. Degree of imbalance (uniform dist.)

Fig. 14. Convergence graph (100 tasks).

Fig. 15. Convergence graph (500 tasks).

t-value is greater than 2.554(critical t-value) which means that
there is a significant difference between the performance of DSOS
and SAPSO for these data instances. This leads to acceptance of
Fig. 16. Convergence graph (1000 tasks).

Ha for data instances 400 through 1000. For the data instances
100 through 300, calculated t-value is less than critical t-value
which indicates that the difference between the performances
is insignificant. Therefore, H0 is accepted for data instances 100
through 300. This means that for large task instances (400 and
above) makespan obtained by SOS is significantly less than that of
SAPSO using the same stopping criteria at 99% confidence level. It
can be concluded that DSOS outperforms SAPSO when the search
space is larger.

The performance improvement by DSOS is believed to be at-
tributed to mutual benefit and parasite vector mechanisms which
are unique to SOS. Themutual benefit factormechanism inmutual-
ism phase gives the search process exploitative power by enabling
it to traverse the best solution regions. The parasite vector tech-
nique in parasitism phase is capable of preventing premature con-
vergence by eliminating inactive solutions and introducing a more
active solution which pushes away search processes from local
optima. The parasitism phase empowers search process with the
explorative ability by not concentrating only on the best solution
regionswhich could likely trap the search in a certain search region
as demonstrated in Figs. 14–16. The method is able to improve its
quality even at a later stage of search process which means that
DSOS has a higher probability of obtaining near-optimal solution
than SAPSO.

6. Summary and conclusion

In this paper, we designed a discrete version of Symbiotic Or-
ganism Search metaheuristic algorithm. The continuous version of
the algorithmwas inspired by symbiotic relationships exhibited by
organisms in a habitat. The algorithmmimics themutualism, com-
mensalism and parasitic relationship to improve the quality of a
given objective function. The method was implemented to sched-
ule independent tasks using the CloudSim tool kit. Makespan, re-
sponse time, and degree of imbalance among VMs were measured
and DSOS was found to be better than SAPSO. The performance of
DSOS over SAPSO increases with increase in search space. The av-
erage makespan minimization by DSOS was 3.8%–25.5% less than
that of SAPSO for 300 through 1000 instances of tasks respectively.
The results of statistical test conducted revealed that DSOS outper-
forms SAPSOespeciallywhen the search space is larger. Themutual
benefit factor mechanism in mutualism phase enables DSOS to ex-
plore new regions of the search for better solutions. The parasite
vector technique in parasitism phase is capable of preventing pre-
mature convergence by adding perturbation to the ecosystem. The
benefit factor and parasite vector mechanism are unique to SOS
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Table 4
Comparison of makespan obtained by SAPSO and DSOS for data instances generated using normal distribution.

Task size SAPSO DSOS Improvement t-test
Best Worst Avg Best Worst Avg Best (%) Worst (%) Avg (%) Calculate

t-value

100 56.92 75.59 67.37 58.52 86.30 68.87 −2.81 −14.17 −2.23 −0.479
200 120.35 160.66 142.35 126.64 151.52 139.41 −5.23 5.69 2.07 0.538
300 217.29 269.49 241.31 218.10 250.17 233.86 −0.37 7.17 3.09 1.114
400 328.34 400.17 359.87 313.28 331.90 320.65 4.59 17.06 10.90 4.909
500 415.05 501.15 456.53 391.55 434.03 416.92 5.66 13.39 8.68 3.658
600 574.68 646.56 607.96 468.22 537.55 510.02 18.53 16.86 16.11 8.846
700 674.65 874.20 743.28 576.83 651.63 612.30 14.50 25.46 17.62 5.617
800 860.65 963.29 908.47 654.91 763.11 708.04 23.91 20.78 22.06 14.039
900 1007.28 1225.58 1074.82 751.48 868.11 809.73 25.40 29.17 24.66 10.716

1000 1140.45 1357.25 1242.98 863.72 1015.56 934.05 24.26 25.18 24.85 11.91
Table 5
Comparison of makespan obtained by SAPSO and DSOS for data instances generated using normal distribution.

Task size SAPSO DSOS Improvement t-test
Best Worst Avg Best Worst Avg Best (%) Worst (%) Avg (%) Calculate

t-value

100 49.50 88.39 62.14 50.55 73.14 61.63 −2.12 17.25 0.83 0.127
200 124.13 160.14 144.91 128.95 157.31 146.71 −3.88 1.77 −1.24 −0.31
300 189.49 220.06 202.70 179.50 208.10 191.17 5.27 5.43 5.69 2.532
400 274.10 321.22 296.72 234.99 284.77 268.45 14.27 11.35 9.53 3.943
500 407.25 469.88 442.37 355.38 450.46 390.93 12.74 4.13 11.63 4.653
600 554.92 646.33 585.76 447.64 452.37 479.36 19.33 30.01 18.16 8.226
700 621.63 678.24 653.88 519.87 579.81 554.16 16.37 14.51 15.25 12.388
800 767.26 987.08 851.99 692.59 621.44 656.93 9.73 37.04 22.90 9.399
900 862.02 1016.98 952.30 665.89 752.85 716.98 22.75 25.97 24.71 13.442

1000 1127.74 1245.06 1185.46 769.52 888.99 836.29 31.76 28.60 29.45 18.998
Table 6
Comparison of makespan obtained by SAPSO and DSOS for data instances generated using normal distribution.

Task size SAPSO DSOS Improvement t-test
Best Worst Avg Best Worst Avg Best (%) Worst (%) Avg (%) Calculate

t-value

100 42.85 56.71 50.74 51.66 60.21 55.81 −20.56 −6.17 −9.99 −3.106
200 85.64 118.67 106.82 102.07 122.75 109.01 −19.18 −3.44 −2.05 −0.574
300 154.58 205.79 175.48 156.74 180.00 168.46 −1.40 12.53 4.00 1.176
400 235.96 283.93 253.93 209.56 243.20 232.03 11.19 14.35 8.62 3.635
500 300.42 384.22 338.74 286.86 334.59 306.20 4.51 12.92 9.61 3.372
600 413.89 482.06 450.72 367.46 407.87 388.89 11.22 15.39 13.72 6.509
700 510.38 638.15 570.55 427.65 488.48 461.83 16.21 23.45 19.06 7.895
800 583.46 693.98 654.16 492.08 577.81 523.90 15.66 16.74 19.91 8.85
900 642.47 827.08 755.51 554.29 655.03 614.74 13.73 20.80 18.63 7.445

1000 806.24 940.52 883.69 646.60 733.27 684.83 19.80 22.04 22.50 11.369
Table 7
Comparison of makespan obtained by SAPSO and DSOS for data instances generated using normal distribution.

Task size SAPSO DSOS Improvement t-test
Best Worst Avg Best Worst Avg Best (%) Worst (%) Avg (%) Calculate

t-value

100 66.66 72.15 64.45 59.80 73.00 64.83 10.29 −1.18 −0.59 −0.156
200 111.56 145.93 129.96 124.64 150.32 138.55 −11.72 −3.01 −6.61 −1.862
300 196.92 243.14 217.70 185.75 229.66 212.40 5.67 5.54 2.44 0.83
400 289.48 353.06 326.02 292.16 307.18 301.28 −0.93 12.99 7.59 3.464
500 426.06 507.54 451.06 353.41 408.19 378.59 17.05 19.57 16.07 8.006
600 502.74 617.33 556.55 440.88 509.89 468.49 12.30 17.40 15.82 6.16
700 623.93 782.27 693.54 510.26 628.74 570.48 18.22 19.63 17.74 5.707
800 648.59 791.52 778.22 606.72 702.22 654.08 6.46 11.28 15.95 3.982
900 893.18 1044.98 988.48 686.35 801.27 760.97 23.16 23.32 23.02 11.641

1000 1062.00 1259.73 1156.24 819.43 907.57 864.78 22.84 27.96 25.21 13.337
which are considered as its advantage. Themechanisms play a vital
role in the exploration and exploitation in the search process. SOS
has fewer parameters and is easier to implement which is consid-
ered an advantage in addition to the explorative and exploitative
ability.
Application of DSOS to other discrete optimization problems is
a potential future research. Also,multi-objective version of SOS can
be designed for the cloud environment, taking into consideration
other factorswhen scheduling tasks. Study ofworkflow scheduling
using SOS is another future investigation.
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