CENTRE OF PROFESSIONAL RESEARCH PUBLICATIONS

ISSN 2049-3444

Cross-Layer Integration Approach for Improving QoS for IPv6 Based VOIP

Full Text

Author(s) E.M. Dogo, A. Ahmed | O.M. Olaniyi

Pages 499-505

Volume 4 Issue 9

Date September, 2014

Keywords Cross-layer Integration Manager (CLM), IPv6, QoS, Telecommunication, VOIP

Abstract

Voice over IP (VOIP) is today one of the most innovative IP based Communication Technologies in the Telecommunications industry. This has made it to enjoy a high degree of success in its application in small, medium and large scale enterprises, primarily to save cost as well as leveraging on its enhance functionalities such as mobility and scalability. Despite all its successes, VOIP still faces challenges with Quality of Service (QoS) degradation. This paper proposes a cross-layer model to effectively manage interactions in the data, network and transport layers guided by trade-off between three performance metrics that affect QoS of VOIP for an improved QoS for Voice over IPv6 (VOIPv6). The parameters taken into consideration in this proposed model are: packet loss, delay and throughput observe by the end-user.

< Back to September Issue

Home | Author Guidelines | Call for Papers | Code of Ethics | Privacy Policy | Contact us | About us | Sitemap Copyright IJET © 2013 - IJET Publications UK

ISSN 2049-3444

International Journal of Engineering and Technology Volume 4 No. 8, August, 2014

Cross-Layer Integration Approach for Improving QoS for IPv6 Based VOIP

E.M. Dogo, A. Ahmed and O.M. Olaniyi

Department of Computer Engineering, Federal University of Technology P.M.B 65, Minna, Niger State Nigeria

ABSTRACT

Voice over IP (VOIP) is today one of the most innovative IP based Communication Technologies in the Telecommunications industry. This has made it to enjoy a high degree of success in its application in small, medium and large scale enterprises, primarily to save cost as well as leveraging on its enhance functionalities such as mobility and scalability. Despite all its successes, VOIP still faces challenges with Quality of Service (QoS) degradation. This paper proposes a cross-layer model to effectively manage interactions in the data, network and transport layers guided by trade-off between three performance metrics that affect QoS of VOIP for an improved QoS for Voice over IPv6 (VOIPv6). The parameters taken into consideration in this proposed model are: packet loss, delay and throughput observe by the enduser.

Keywords: Cross-layer Integration Manager (CLM), IPv6, QoS, Telecommunication, VOIP

1. INTRODUCTION

Advances in real life network applications such as Voice Over-IP, Video Over-IP and TCP/IP based data communication services have led to considerable attention in Quality of Service (QoS) in IP networks. Voice over IP is a technology for transmitting voice calls over the Internet using data packet linked routes [1]. The main feature of this IP-based technology is that it sends conversations as IP based data packets over the internet thereby by enabling people to use the internet as a transmission medium for sending voice data in packets using IP rather than the traditional circuit transmission of the Public Switched Telephone Network (PSTN) [2, 3]. This IP based telephony brings benefits to both consumers as well as enterprise or commercial customers. One of the main reasons for embracing VOIP is to reduce both personal and commercial voice communication cost [4]. Skype and Internet Protocol Private Branch Exchange (IP PBX) are some applications that use VOIP technology and are bringing innovation in the telecommunications industry by providing high-quality and cost-effective solutions while saving cost of trunking as with the case of IP PBX which is replacing the Plain Old Telephone System (POTS) in Western Europe [5].

The following are summarized benefits of VOIP [5]:

- 1. Greater efficiency compared to traditional PSTN in terms of bandwidth usage.
- 2. Cost savings as it is setup on existing internet and LAN infrastructure.
- 3. Higher reliability as internet is used as packet transmission medium.

- 4. Supporting Innovation though integration with other applications such as email, web browser by providing services as voice delivery via email, click-to-call service on a website
- Economic benefits to vendors of VOIP and customers alike, especially for long distance calls by avoiding access and settlement charges at least for now.

VOIP is digitized means of transmission due to its IP-based nature, which means a caller's analogue voice signal is first digitized, compressed and then encoded into digital voice stream using the CODECs (COder/DECoder) [4, 3]. Voice CODECs are standards set by the International Telecommunication Union – Telecommunication division (ITU-T), standards such as G.711, G.723 and G.729.

According to [6], the following are pending issues with VOIP QoS:

- 1. Lack of clarity as to where to locate QoS functionality
- 2. Lack of clarity on which QoS support should a protocol provide
- 3. No clear QoS architecture in place
- 4. Lack of consensus agreement on services, although there is a consensus to offer users a differentiated traffic.

2. QUALITY OF SERVICE (QOS) FOR IP BASED NETWORKS

QoS is service requirements that are set to guarantee performance which must be meet by the network while

transporting a flow. It is the efficient use of network resources for a reliable delivery of data [7]. QoS performance guarantees could be measured using the following attributes or metrics which vary according to Service Level Agreement (SLA) and usually depends on the priority intended for a given application (voice or data) in question: bandwidth, delay (echo, talk overlap), jitter (inter-packet delay variation) and packet loss [8]. Therefore, improving QoS is hinged on reducing values of these metrics.

Internet generally uses "Best Effort" approach which is associated with IPv4, in which content of packet is not sensitive to real-time data flow [3] [7]. As demand exceed capacity, service degrades, thereby causing jitters, packet loss and delays; which a big hitch to real-time applications. [7]

3. QOS ISSUES WITH VOIP

Presently, VOIP uses IPv4 that is a best-effort service IP network with no built-in QoS and therefore arise several QoS issues. For example, quality of a voice-call can degrade significantly, if IP voice packets are lost or delayed at any point in the network between VoIP users [6] [5].

Users can also notice this quality degradation more in highly congested networks or over long distances. In order to address this quality issue, the next generation VOIP technology plans to use IPv6 that ensures QoS, a set of service requirements to deliver performance assurance while transporting voice traffic over the network [5].

Therefore the main aim of QoS in VOIP application is to provide some degree of certainty and management of bandwidth beyond the best-effort IP service [6] [7]. There are well established approaches in dealing with issues arising from these metrics as proposed by IETF (Internet Engineering Task Force) refer to as QoS protocols:

- 1. Best effort internet (associated with IPV4, content of packet is not sensitive or important to real-time data)
- 2. ReSource reserVation Protocol (RSVP)
- 3. RSVP + Integrate Services (IntServ)
- 4. Differentiated Services (prioritization) (DiffServ)
- 5. Multi-Protocol Labelling Switching (MPLS)
- 6. Subnet Bandwidth Management (SBM)

Comparison of theses QoS protocols is summarized on table 1.

Delay is the main reason for packet loss during VOIP transmission at the receiving end. It is therefore, expected that reduction of delay will improve QoS of VOIP. However, the independence of the QoS protocols at different layers of the OSI model at the receiving end would tend to increase the overall transmission delay as shown on figure 1 [7]. An approach integrating the different QoS protocol at different layers of the OSI model will help in reducing the values of QoS of VOIP performance metrics. The concept of cross-layer integration is to allow the use of each QoS protocol at different OSI model layer as well as communicating and exchange of information with each other starting from the bottom layer to the higher layer to better achieve QoS.

The purpose of this study is to propose a cross-layer integration approach for VOIPv6 QoS support. The cross-layer interaction is managed between the data, network and transport layers by applying the different IETF QoS protocols in dealing with the metrics that affect QoS of VOIP in an integrated manner.

Table 1: Comparison BEST-Effort, RSVP, RSVP (IntServ), DiffServ, MPLS and SBM [6] [7]

QoS Protocol	Attributes		
Best-Effort	Associated with IPv4		
Best Effort	Not sensitive to content of packet to		
	real-time data		
	No guarantees, just connectivity		
	No isolation		
	Service scope is end-to-end		
	No setup		
	Highly scalable		
Resource	Most complex of all QoS protocols		
Reservation -	Biggest departure from "Best-effort"		
RSVP	approach		
	Provides highest level of QoS in		
	terms of service guarantee, resource		
	allocation & detail of feedback to		
	QoS-enabled applications on per		
	flow basis		
RSVP +	Guaranteed as close as to a dedicated		
IntServ	circuit		
	Controlled load equivalent to best-		
	effort under unloaded scenario		
	per flow guarantee		
	per flow isolation		
	per setup		
	Not scalable (each router maintain		
	per flow state)		
DiffServ	Applied on per traffic flow		
prioritization	aggregates		
	Services scope is at domain		
	A predefined Per Hop Behaviour		
	(PHB) is applied to every service		
	class		

	Long term setup Scalable (edge router maintain per aggregate state, core router per class state
MPLS	Aimed at simplifying routing processes For establishing fixed bandwidth routes Traffic is marked and used to determine next router hop and not priority
SBM	Is a top-to-bottom QoS approach Applies to OSI layer 2 (Data link layer) which makes QoS enabled on LAN Provided all traffic passes through at least one SBM enabled switch

flow labelling [5]. Problem associated with NAT is hiding multiple hosts behind pool of IP addresses and VOIP through the internet do not work smoothly with NAT [5].

By allowing packets belonging to a particular traffic flows to be labelled using flow labelling, real-time data stream packets in a network can be prioritize [7]. IPv6 implements QoS with the help of classification and marking (of IP packets) to ensure a reliable VOIP infrastructure. With the help of classification and marking technique, the network can identify packets or traffic flows and then can assign certain parameters within the packet headers in order to group them [6]. In order to implement QOS marking, IPv6 provides a traffic class field (8 bits) in the IPv6 header. Table 2 defines the function of fields in IPv6 header, while Figure 2 shows the structure of IPv6 header in a graphical form. IPv6 does not by itself provide QoS, it relies on the network router to make logical decisions based on the data provided header. In general, IPv6 has in it the best characteristics of IPv4 in addition to enhanced capabilities. IPv6 and QoSIPv6 or Internet Protocol version 6 is the next generation protocol for internet [5].

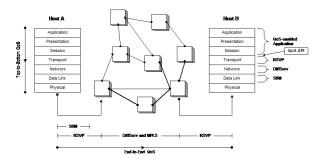


Figure 1: QoS Architecture [7]

4. INTERNET PROTOCOL VERSION 6 (IPv6)

Both IPv4 and IPv6 define data communication from one computer to another computer over the internet network layer. IPv6 is documented on different RFCs (Request for Comments) stating from RFC 2460 of IETF. IPv6 addresses the main issue with IPV4 which is exhaustion of IPv4 in the nearest future [5] [9]. IPv6 has a very large address space and consists of 128 bits as compared to 32 bits in IPv4. Therefore, it is now possible to support 2¹²⁸ unique IP addresses, a substantial increase in number of computers that can be addressed with the help of IPv6 addressing format [5].

In addition, this addressing format will also eliminate the need of network address translation (NAT) that causes several networking problems in end-to-end nature of the Internet, simplifies header, improve support for extensions and headers, better support for authentication and privacy, as well as allowing a 20-bit

Table 2: IPv6 Fields Length and their Functions [5]

IPv6	Length	Function		
Version	8 bits	Identifies the version of the		
		protocol. For example, for IPv6,		
		the version is 6		
Class	8 bits	Intended for originating nodes		
		and forwarding routers to		
		identify and distinguish between		
		different classes or priorities of		
T1 1 1 1	20.1.4	IPv6 packets		
Flow label	20 bits	Defines how traffic is handled		
		and identified. A flow is a		
		sequence of packets either sent to a unicast or a multicast		
		destination. This field identifies		
		packets that require special		
		handling by the IPv6 node		
Payload	16 bits	Identifies the length, in octet, of		
length		the payload. The payload		
		includes the optional extension		
		headers, as well as the upper-		
		layer protocols e.g. TCP		
Next header	8 bits	Identifies the header		
		immediately following the IPv6		
		header. Examples of next header		
		are:		
		0 = Hop-by-hop options		
		1 = ICMPv4		
		4 = IP in IP (encapsulation)		

		1
		6 = TCP 17 = UDP 43 = Routing
		44 = Fragment
		50 = Encapsulation security
		payload 51 = Authentication
		58 = ICMPv6
		59 = None
		60 = Destination options
Hop limit	8 bits	Identifies the number of network
1		segments, on which the packet is
		allowed to travel before being
		discarded by a router. The hop
		limit is set by the sending host
		and is used to prevent packets
		from endless circulation on an
		IPv6 internetwork.
		When forwarding an IPv6
		packet, IPv6 routers must
		decrease the hop limit by 1, and
		must discard the IPv6 packet when the hop limit is 0
Source	128 bits	Identifies the IPv6 address of the
address	120 0118	original source of the IPv6
addicss		packet.
Destination	128 bits	Identifies the IPv6 address of the
source		intermediate or final destination
		of the IPv6 packet.

Version	Traffic class	Flow label			
Payload length		Next header	Hop limit		
Source address					
Destination address					

Figure 2: IPv6 Header Structure

IPv6 is a step and way forward towards dealing with the aforementioned QoS issues stated above most specifically the lack of consensus about QoS architecture which is preventing adequate support from protocols. Therefore a new cross-layer integrated approach is been proposed.

4.1 Why IPv6?

For the past 40 years IPv4 has been the underlying protocol that has makes it possible for us to connect our devices to the internet, with unique IP address computers are able to communicate and send data across to each other [9] [5]. But, with improve technology which has lead to growth of IP-based devices, there is serious concerns about IPv4 limited features, robustness, and scalability. This led to the creation of IPv6 by the Internet Engineering Task Force (IETF) with sole aim of

making the internet work better [5] [9]. Table 3 is a compelling argument on why IPv6 will improve QOS in VOIP applications as well as been the future of the internet.

Table 3: Comparison between IPv4 and IPv6
[9] [5]

	Γ	T
IPv4	IPv6	IPv6 advantage
		over IPv4
IPV4	IPV6 address	Substantially Larger
addresses are	are 128 bit	address space (3.4
32 bit length	length	*10 ³⁸ unique
		addresses)
Due to IP	Due to large	Provides better end-
address	address space	to-end connectivity
constraint	NAT not	due to large address
NAT is	required for	space, which is
implemented,	end-to-end	efficient & effective
but NAT has	connectivity	for VOIP
some inherent		applications
issues		
Manual	Auto-	Better ability for
configuration	configuration of	auto -configuration
(static) or	addresses	of devices (plug-and-
DHCP		play, DHCPv6 auto-
(dynamic) is		configuration of
required to		address without need
configure IP		for a server)
addresses		101 4 501 (01)
Checksum &	No checksum	Simplified header
option fields in	and option	structure for faster
header, which	fields in header,	routing
degrade	except	Touting
performance	extension	
during	headers to	
forwarding of	support more	
IP packets	capabilities	
Fragmentation	Fragmentation	Simplified and better
is done by	is done by the	routing
sender and	sender only	Touting
	Schuel Only	
forwarding routers		
	Indendate IDC	Dattan as assistantan
IPSec support	Inbuilt IPSec	Better security for
is optional	support	application &
No poolest	Packet flow	networks Potter Quality of
No packet		Better Quality of
flow	identification is	Service (QOS)
identification	within the IPv6	
	header, using	
	the Flow label	
David 1	field	D. 11.
Broadcast	A link-local	Better multicast and
messages in	scope all-nodes	anycast capabilities
IPv4	multicast	
	address is used	
	for broadcast.	37
Address	ARP is replaced	Neighbour
resolution	with Neighbour	Discovery Protocol

1		
protocol	Discovery	& auto-configuration
(ARP) present	Protocol	offer better mobility
in IPv4 to map		feature by using
its addresses to		Mobile IPv6 (
MAC		MIPv6).
addresses		
In terms of	Network	Offer easier
Administration	renumbering	administration for
network	happen	host & routers during
renumbering	automatically	switchovers or
and assigning	·	merger of networks
of new address		C
scheme is		
done manually		
No transition	Compatibility	Permit smooth
mechanism	IPv4 and	transition from IPv4
defined to	transition	
allow	mechanism	
coexistence of	from IPv4 to	
IPv4 & IPv6	IPv6 is	
	incorporated	
	into network	
	using Dual	
	IPv4/IPv6 stack	
	implementations	
	Implementations	

5. LAYERED ARCHITECTURE VOIP NETWORK

The native network for Wired Networks is based on Layered architecture. Since this was not initially designed for Wireless Networks, it introduces inefficiencies when applied to the wireless networks [1], [10]. It has significant effect on the performance metrics of Wireless Networks and in turn poses significant issues on QoS of VoIP. This section describes briefly the layers of the layered network architecture.

- a. Physical Layer This layer is normally represented as PHY layer. It is the bottommost layer in the Transmission Control Protocol/Internet Protocol (TCP/IP) architecture. It defines the hardware technologies of a network. The QoS factors that are considered measurable in this layer are: BER (Bit Error Rate), SNR (Signal to Noise Ratio) and interference [1], [11] and [12].
- b. The Data Link layer is made up of two sub layers: Logical Link Control (LLC) and Media Access Control (MAC). The LLC for the assignment of channel access for reliability in communication, while MAC handles scheduling, packet retransmission, etc. [11]. The MAC sub-layer is made up of Distributed Coordination Function

- (DCF) and Point Coordination Function (PCF) [10], [13].
- c. The Network layer is responsible for data routing. It handles transmission of data from source to its destination
- **d. Transport layer** handles the delivery of data with respect to process-to-process [1]. It provides services such as congestion control and error recovery [10]. Further several protocols are available in this layer for different applications.
- e. The Application layer houses protocols such as http, ftp, etc. which serve as the interface between the users and the network protocols. Figure 3 shows the TCP/IP layered Architecture for implementation in VoIP realm.

Application Layer	Voice			
	RTP	RTCP	SIP	H.323
Transport Layer	UDP/TCP			
Network Layer	IPv6			
Data-Link Layer	802.3/802.11: LLC		MAC	
Physical Layer	Ethemet/SDH/RF			

Figure 3: TCP/IP Layered Architecture for VOIP Implementation

6. RELATED WORK

One of the main issue that affect VOIP is it QoS which is highly dependent on metrics such as jitters, delay, packet loss and bandwidth. Several research and studies have been done to improve voice transmission in IP based networks including [8] [2] [3] [1]. A cross-layer interaction approach to enhance QoS of VOIP over WLAN has been proposed by [1] by introducing a communication agent between the data link layer and transport layer of the TCP/IP protocol for better communication and interaction, while [2] uses QoS parameters relevant to VOIP transmission to evaluate its performance. Generally, most researchers have adopted a test bed, laboratory experimentation and simulation in an artificial setting within which relevant information and data can be generated as a means to study QoS of VOIP. Reason has been that laboratory experimentation usually permits an observation of the dynamic behaviour of the monitoring system (or its sub-system) under controlled conditions, but the limitation is getting only approximated results compared to real-life situation.

Authors in [1] proposed a cross-layer approach that incorporates ARQ (Automatic Repeat reQuest) scheme between the Transport and Data Link layer employed for increasing wireless reliability. The major limitation of this technique is that it does not take acknowledgement (ACK) generated at the receiver side into consideration, because, locally generated ACK does not contain vital fields such as advertised window for the sender. An

intended solution to the limitation of technique in [1] was proposed in [14]. In [14], cross-layering approach is used which locally generates TCP ACK thereby reducing the duplication of acknowledgments at Data link and Transport layers. It introduces agents at the MAC layer of mobile station for updating TCP ACK header at the AP (Agent AP).

7. CROSS-LAYER INTEGRATION FRAMEWORK

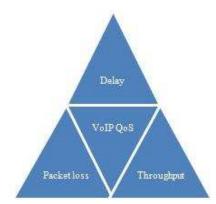


Figure 4: VOIP and Performance Metrics Trade-off Triangle

In order to achieve a balanced trade-off among the three metrics with improved QoS of VoIP, there is need to implement mechanism among the MAC, Network and Transport layers which can provide minimum packet loss, minimum delay and maximum throughput in fairness to VoIP QoS.

b. Cross-Layer integration between MAC, Network and Transport Layers

Cross Layer Interaction Manager (CLM) handles the interactions in the Media Access Control (MAC) layer, Network layer and Transport Layer. Moreover, retransmitting lost packets from AP instead of retransmitting them from the sender side would reduce delay and at the same time hide the occurrence of lost packets from transport layer which then does not need to apply congestion control whenever there are packets lost layer, and if it is a voice packet error, then it will relay the event to Transport layer. Accordingly, it will adjust voice packet related parameters, such as window size, compression ratio, etc. to encounter the error. This will reduce the delay and improve the overall TCP throughput, since TCP will now know when to segregate the error types and when to apply the congestion mechanism. The proposed framework is depicted in figure 5.

a. Trade-off Triangle

The proposed framework is guided by the trade-off triangle shown in Figure 4. The three performance metrics that consequentially affects the QoS of VoIP are indicated. Traditionally, reducing packet loss will mean moving towards increasing delay which negatively affects the VoIP QoS. In the same vein, reducing delay means moving toward increasing packet loss and decreasing throughput, this also negatively affects the QoS of VoIP.

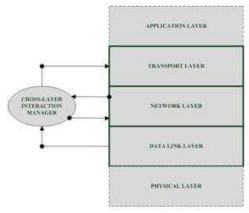


Figure 5: Proposed cross-layered integration framework

8. CONCLUSION AND FUTURE WORK

This paper has presented the basic features of VOIP, QoS and IPv6. Issues associated with VOIP and QoS as well as reasons as to why IPv6 will help in addressing QoS issues in VOIP as against IPv4 have been highlighted. We also proposed a Cross-layer integration framework, Cross-Layer Interaction Manager (CLM) aiding with the handling of interactions between the data (MAC), network and transport layers with the aim of improving the QoS in IPv6 based VOIP. Future work will involve experimentation and simulation study to implement the proposed framework on existing simulation packages such as Network Simulator-2 (NS2), autoVOIPTM, and OPNET.

REFERENCES

- [1] S. A. A. Alshakhsi and H. Hasbullah, "Improving QoS of VoWLAN via Cross-Layer interaction Approach," in 4th International Symposium on Information Technology 2010 (ITSim'10), Kuala Lumpur, 2010.
- [2] A. Sharma, M. Varshney, N. K. Singh and J. Shekhar, "Performance Evaluation of VOIP: QoS Parameters," *VSRD International Journal of*

- Computer Science & Information Technology, vol. I, no. 4, pp. 210-221, 2011.
- [3] S. Alshomrani, S. Qamar, S. Jan, I. Khan and I. A. Shah, "QoS of VOIP over WiMax Access Network," *International Journal of Computer Science and Telecommunications*, vol. 3, no. 4, pp. 92-98, 2012.
- [4] L. Cai, Y. Xiao, X. Shen, L. Cai and J. W. Mark, "VOIP over WLAN: Voice capacity, admission control, QoS, and MAC," *International Jurnal of Communication Systems*, no. 19, pp. 491-508, 2006.
- [5] D. Minoli, Voice over IPv6: Architectures for next Generation VOIP Networks, Oxford: Newnes, 2006.
- [6] A. L. Toledo, "QoS in IPv6," in Madrid Global IPv6 Summit 2002, Madrid, 2002.
- [7] Startdust Technologies Inc & QoSforum, White Paper QoS Protocols & Architectures, California, 1999.
- [8] A. H. Muhammed Amin, "VOIP Performance Measurement Using QoS parameters," in *The second International Conference on Innovations in Information Technology (IIT'05)*, Petronas, 2005.
- [9] A. N. A. Ali, "Comparison study between IPv4 & IPv6," *International Journal of Computer Science*, vol. 9, no. 3, 2012.
- [10] V. Srivastava and M. Motani, "Cross-Layer Design: A Survey and the Road Ahead," *IEEE Communicons Magazine*, vol. 43, no. 12, pp. 112-119, 2005.
- [11] G. F and K. D, "Cross-Layering for Performance Improvement in Multi-Hop Wireless Networks," in *ISPAN 2005 Proceedings. 8th International* Symposium on, 2005.
- [12] W. Wei, W. Yinqiu and S. R. Syed, A Cross-Layer Design Approach for Improving QoS of Wireless Networks, Bridgeport.
- [13] Q. Wan and M. H. Du, "Improving the performance of WLAN to support VoIP application," in *Mobile Technology, Applications and*, 2005.

[14] A. Hussain, S. M. Akbar and A. M. Cheema, "A simple cross-layer approach to reduce duplicate acknowledgements for TCP over WLAN," *Networking and Communications Conference, INCC 2008 IEEE International*, pp. 63-66, 2008.

AUTHORS

E. M. Dogo had his BSc (Electrical Engineering) and M.Eng. (Electromechanical Engineering) from Saint Petersburg State Polytechnical University, Russia. He has working experience as an Information Technology expert in areas of networking administration

and network security development & deployment in financial institutions in Nigeria, as well as a Field Engineer with Schlumberger in Nigeria and Europe. He is now with the Department of Computer Engineering, Federal University of Technology, Minna, Nigeria.

A. Ahmed had his B. Eng (Electrical and Electronic Engineering) from the Federal University of Technology Minna and his MSc in Computer Networking from the University Bedfordshire, UK. He now lectures at the Department of Computer

Engineering, Federal University of Technology, Minna, Nigeria.

O. M. Olaniyi is currently the Acting Head of Department of Computer Engineering, Federal University of Technology, and Minna, Niger State. He had B.Tech (Computer Engineering) and MSc (Electronic and Computer Engineering) From Ladoke

Akintola University of Technology, Ogbomosho, Oyo State and Lagos State University, Lagos, Nigeria Respectively. He is currently a doctoral student at the Department of Computer Science and Engineering, LAUTECH, Ogbomosho, Oyo State, Nigeria. He is a Professional member of Institute for

Electrical/Electronic Engineering (IEEE), Nigeria Computer Society (NCS), Association of Computer Machinery (ACM), International Association of Engineers and Computer Scientists and Registered with the Council of Regulation of Engineering in Nigeria. He has published in reputable journals and learned conferences. His areas of research include: Intelligent embedded systems, Information Security and Telemedicine.