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Abstract
Resource scheduling is a procedure for the distribution of resources over time to perform a required task and a decision

making process in cloud computing. Optimal resource scheduling is a great challenge and considered to be an NP-hard

problem due to the fluctuating demand of cloud users and dynamic nature of resources. In this paper, we formulate a new

hybrid gradient descent cuckoo search (HGDCS) algorithm based on gradient descent (GD) approach and cuckoo search

(CS) algorithm for optimizing and resolving the problems related to resource scheduling in Infrastructure as a Service

(IaaS) cloud computing. This work compares the makespan, throughput, load balancing and performance improvement rate

of existing meta-heuristic algorithms with proposed HGDCS algorithm applicable for cloud computing. In comparison with

existing meta-heuristic algorithms, proposed HGDCS algorithm performs well for almost in both cases (Case-I and Case-

II) with all selected datasets and workload archives. HGDCS algorithm is comparatively and statistically more effective

than ACO, ABC, GA, LCA, PSO, SA and original CS algorithms in term of problem solving ability in accordance with

results obtained from simulation and statistical analysis.

Keywords Meta-heuristic algorithms · Resource scheduling · Cuckoo search · Gradient descent · Hybridization ·

Cloud computing

1 Introduction

Cloud computing is one of the most popular technologies

that has become a fundamental part of the computing world

nowadays. Its popularity and usage is growing every day

and expected to increase further. Cloud computing pro-

vides IT services over the Internet in such a way that cloud

user does not have knowledge about where the data or

information is being stored, where the infrastructure is

located and so on. The cloud users receive services without

knowing any of the details about how it’s provided [1, 2].

Organization spends time and money to scale up their IT

infrastructure, such as hardware, software and services

provisioning, to meet the business challenges. However,

the scaling up process is slow with un-premises IT

infrastructures. Cloud computing paradigm shift provides

computing over the Internet. Cloud computing services

contain highly optimized virtualized data centers providing

hardware, software and information resources for use,

whenever they are required [3]. In certain circumstances,

cloud computing deals workload fluctuations and provides

computation resources to manage large multimedia data

and development environments. However, the success of

cloud computing, resulting in more and larger data-centers,
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creates new challenges at the level of infrastructure mon-

itoring and management [4–6].

Resource scheduling is an important procedure in cloud

computing that is used to take decision in resource distri-

bution over time. However, there are some challenges in

resource scheduling such as NP-hard problem due to

fluctuating demand of cloud users and dynamic nature of

various resources shown in Fig. 1. In cloud computing, the

fitness function of resource scheduling is focused on cloud

providers’ and cloud users’ objectives. Cloud providers

want to enhance the utilization of resources by increasing

the growth of revenue and profit, on the other side cloud

users want to get maximum performance of required ser-

vice with minimum cost or expenditure [7]. The following

objective functions are generally considered for optimum

resource scheduling in cloud computing including the

availability, cost, energy, fault tolerance, load balancing,

makespan, reliability, throughput, etc. An optimization

problem is a function f mapping candidate solution to a

fitness measure ¼ Rn ! R. The optimization solution z 2
Rn achieves the best optimal solution from all feasible

solutions by proposed algorithm. Therefore it can be sat-

isfies the minimization by Eq. (1).

f xð Þ\f yð Þ; 8ðx; yÞ 2 Rn ð1Þ

Fig. 1 Resource scheduling in cloud computing environment
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Hybrid algorithm tries to attain all the factors whereas

other algorithms fail to do so. Hybridization intentions

gather the benefits of all algorithms in the form of a hybrid

algorithm, even though at the same time try to reduce the

extensive disadvantages. Generally, the consequences and

outcomes of hybrid algorithms are commonly made some

improvements in terms of either accuracy or speed. Opti-

mal resource scheduling is considered to be a basic influ-

ence of cloud computing. It is only achieved by adopting

the specific, enhanced and hybridization of greedy

approaches with meta-heuristic algorithms.

CS algorithm is a nature-inspired meta-heuristic algo-

rithm in which all entities have identical search behaviour.

However, this simple uniform search behaviour is not

always optimal to find the feasible solution for the specific

problem and trap it into the local region leading to pre-

mature convergence. To overcome this weakness in this

paper, we combined GD approach in term of local search

with CS algorithm for enhancing the convergence rate, in

order to assign a task to the specific Virtual Machine (VM)

with lowest execution time to fulfill the cloud user’s

demand and enhance the resource utilization for cloud

providers with less delay. In conclusion, a novel HGDCS

algorithm with non-identical search strategy is proposed

for resource scheduling in IaaS cloud computing, which

reduces the makespan, throughput and degree of

imbalance.

Our major contributions of this paper are as follows:

● Formulate the makespan, throughput and degree of

imbalance through mathematical models for optimal

resource scheduling as the objective functions.

● Hybridize the GD approach with CS algorithm for

optimum resource scheduling in IaaS cloud computing.

● Design the HGDCS algorithm to address the proposed

scheduling models.

● Implementation of the proposed HGDCS algorithm in

CloudSim simulation tool.

● Performance evaluation of the existing meta-heuristic

algorithms with HGDCS optimization algorithm by

considering the matrices of makespan, throughput,

degree of imbalance and performance improvement

rate (%).

● Comparative and statistical analysis of the HGDCS

algorithm with existing meta-heuristic algorithms for

resource scheduling in IaaS cloud computing.

The remaining sections of this paper are systematically

prepared as follows: In Sect. 2, we review the current

comparison based studies and related works for resource

scheduling algorithms in the area of IaaS cloud computing.

Problem formulation is discussed in Sect. 3. We provide

the description of local and global search, GD approach,

CS algorithm and HGDCS algorithm in Sect. 4. Section 5

defines the parameters for evaluation, while Sect. 6 pre-

sents simulation setups for Case-I and Case-II for resource

scheduling in cloud computing. Results and discussion

show performance evaluation with the help of experimental

simulation and statistical analysis in Sect. 7. The last sec-

tion is Sect. 8, which consists of details of the conclusion,

recommendation and future works.

2 Related works

In this section, we review the current comparison and

existing studies of various heuristic, meta-heuristic and

hybrid algorithms for resource scheduling in IaaS cloud

computing. Tsai and Rodrigues [8] provide the systematic

explanation of scheduling in cloud computing and also

interrelated it with heuristic and meta-heuristic algorithms.

Besides it, recommends instructions for the researchers to

shift from heuristic algorithms to the meta-heuristic algo-

rithms. In conclusion, meta-heuristic algorithms produce

better solutions by modification of operators, alteration of

the fitness function and hybridization with heuristic algo-

rithms [9]. Further, Thaman and Singh [10] classify the

algorithms as Greedy, Heuristics, Meta-heuristics and

Genetic approaches based solutions for task scheduling in

cloud computing.

The various meta-heuristic algorithms are analyzed for

scheduling the cloud computing, including the ant colony

optimization (ACO), genetic algorithm (GA), hill climbing,

Particle swarm optimization (PSO), simulated annealing

(SA) and Tabu Search with a discussion and future direc-

tion of a scheduling problem in cloud [8]. Further, Kalra

and Singh [11] evaluate the ACO, BAT algorithm, GA,

League Championship Algorithm (LCA) and PSO meta-

heuristic algorithms for scheduling in grid and cloud

computing with observations and open issue related to

scheduling are also discussed. Similarly, Madni et al. [12]

review and analyze the artificial bee colony (ABC), ACO,

GA, immune algorithm (IA), LCA, PSO and SA meta-

heuristic algorithms for assigning of resources in cloud

computing. Also, provide the description of selected

important parameters are applied for this problematic issue,

including the cost, execution time, makespan, response

time and utilization in cloud computing. In the same way,

Hallaj and Tabbakh [13] discuss numerous swarm intelli-

gence based algorithms for task scheduling and exactly

emphasis on ABC algorithm. A systematic comparison is

directed for presenting the features and uses of ABC for

optimal scheduling in cloud computing. However, Huang

and Ou [14] introduce and analyze the task scheduling

algorithms including the ACO, GA and PSO algorithm in
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cloud computing. Besides the good qualities each of them

is slow in convergence speed. Also, Singh et al. [15]

accomplish the an extensive review of various meta-

heuristics-based techniques for scheduling in cloud com-

puting including the ACO, bat algorithm (BA), GA,

imperialists competitive algorithm (ICA), lion algorithm

(LA), PSO and wind-driven optimization (WDO) algo-

rithms with describing the various factors. Hence, these

algorithms accomplish them no attention for resource

scheduling in cloud computing environment.

Cui et al. [16] enhance the GA algorithm to accomplish

a relevant task for the effective resource scheduling in

cloud computing. Further, Chen et al. [17] merge GA

algorithm with knapsack problem for utilization of

resources and energy consumption in cloud computing.

However, Sindhu and Mukherjee [18] combine the GA

algorithm with various heuristic algorithms including the

LCFP, SCFP and MCT for enhancing the convergence rate.

Similarly, Javanmardi et al. [19] propose a hybrid job

scheduling algorithm based on fuzzy theory and GA

algorithm for decreasing the number of iteration to gener-

ate the population and accurate allocation of resources in

order to node capacity. Moreover, Shojafar et al. [20]

propose a hybrid algorithm based on fuzzy theory and GA

(FUGA) algorithm for assigning the jobs to the optimal

resources. For this purpose, fuzzy theory and GA modify

with diverse fuzzy based stable state GA in order to min-

imize the makespan, execution cost, execution cost and

average degree of imbalance. Later, Saha et al. [21] merge

the GA algorithm and Queuing model as a tool for task

scheduling algorithm for minimizing the waiting time and

queue length for substantial the cloud users’ demand in

cloud computing.

In cloud computing, Zhang et al. [22] introduce the PSO

algorithm in order to achieve the local and global search

efficiently by weight inertia strategy and escape the

struggling into a local optimum while Netjinda et al. [23]

propose PSO algorithm for enhancing performance from

the views of the entire cost and fitness convergence rate.

The improvement in solution quality is perceived from the

preliminary schedule with the variable neighbour search.

Further, to minimize the consumption of energy and

enhance the cloud providers’ profit, job scheduling model

is developed by using the PSO algorithm in cloud envi-

ronment [24]. In addition, Abdi et al. [25] improve the PSO

algorithm for enhancing the performance, merge with SJFP

algorithm for improving the local search for reducing the

makespan. However, Al-Olimat et al. [26] propose the

hybrid scheduling algorithm by using the SA algorithm to

enhance the performance of binary PSO algorithm. The

proposed hybrid algorithm is used to reduce the makespan

and enhance the utilization of resource in cloud computing.

For optimal resource scheduling, Wang and Yu [27]

improve the Min-min algorithm for enhancing the perfor-

mance of scheduling in cloud computing by considering

the makespan and degree of imbalance. Hence, Li et al.

[28] develop a Load Balancing aware ACO algorithm for

task scheduling by considering the makespan and degree of

imbalance in cloud computing. further, Tawfeek et al. [29]

present a cloud task scheduling policy by using the ACO

algorithm for reducing the makespan and degree of

imbalance. While, Wen et al. [30] and Yang [31] combine

the ACO and PSO for improving the local optimization for

efficient resource scheduling in cloud computing. Simi-

larly, Cho et al. [32] propose hybrid ACOPS algorithm for

VM scheduling through load balancing by enhancing the

convergence speed. In the same way, Liu et al. [33]

introduce hybrid GA-ACO algorithm for optimal solution

quickly by considering convergence speed for task

scheduling. Optimized scheduling and VM validation are

required for the optimum resource allocation in IaaS cloud

computing. For this purpose, Muthulakshmi and Soma-

sundaram [34] propose the Hybrid ABC-SA algorithm for

efficient scheduling that improves the efficiency in terms of

resource time searching by dynamic and random search.

Abdullahi, et al. [35] propose a discrete symbiotic

organism search (DSOS) algorithm for an ultimate sched-

ule of tasks to VMs in order to improve the convergence

rate in cloud computing. Further, Abdullahi and Ngadi [36]

merge SA and symbiotic organisms search (SOS) algo-

rithms in SASOS algorithm for achieving ideal scheduling

of tasks in order to attain better convergence ratio and

quality of results in cloud computing. Similarly, Tsai et al.

[37] improve the differential evaluation algorithm (DEA),

by combining the Taguchi method for optimal resource

scheduling. Improved DEA shows the ideal results for

reducing cost and makespan. While, Guddeti and Buyya

[38] propose hybrid bio inspired algorithm combination of

modified PSO and cat swarm optimization (CSO) algo-

rithms to assign a task to VMs in order to enhance the

reliability, response time and resource utilization. Hence,

Gabi et al. [39] put forward a new version of CSO for cloud

task scheduling called Orthogonal Taguchi based-cat. The

researchers explored the Taguchi approach to optimize task

scheduling that returned minimum task makespan as

compared to other existing tasks scheduling algorithms.

For optimized parameter mapping, Moon et al. [40] pro-

posea slave ants basedACO(SACO)algorithm that schedules

tasks to virtual machines (VMs) of cloud users in cloud

computing environments in a competent way. The global

optimization problem is solved by avoiding long paths with

slave ants, whose pheromones are imperfectly accumulated

by leading ants and minimal preprocessing. Experimental

results SACO algorithm performed better than ACO algo-

rithm for task scheduling while maximizing utilization of
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Table 1 Summary of the related works for resource scheduling in IaaS cloud computing

References Problems Methods Parameters Achievements Comparison methods

Huang and Ou

[14]

Task

scheduling

ACO, GA and PSO Nil Show the advantages

of algorithms

Not implements

Cui et al. [16] Resource

scheduling

Improved GA Execution time Enhanced the

performance

Min-min, max–min and

GA

Chen et al. [17] Resource

scheduling

GA Time Verify the

effectiveness of the

algorithm

Not mentioned

Sindhu and

Mukherjee [18]

Resource

scheduling

GA-LCFP, GA-SCFP and

GA-MCT

Makespan Enhanced the

performance

FCFS-RR

Javanmardi et al.

[19]

Job scheduling GA with fuzzy theory Execution time,

execution cost and

degree of imbalance

Enhanced the

performance

ACO

Shojafar et al.

[20]

Job scheduling Fuzzy theory and GA

(FUGE)

Execution time,

execution cost and

degree of imbalance

Enhanced the

performance

ACO

Saha et al. [21] Resource

scheduling

GA and queuing model Waiting time Enhanced the

performance

FCFS

Zhang et al. [22] Resource

scheduling

PSO based hierarchical

resource scheduling

Load balance and

satisfaction

Avoid the local

optima

PSO and best resource

selection (BRS)

Netjinda et al.

[23]

Cost

optimization

scheduling

PSO with neighbourhood

search

Cost Enhanced the

performance

IaaS Cloud-partial critical

paths (IS-PSP)

Liu et al. [24] job scheduling PSO Energy and profit Enhanced the

performance

GA and random

scheduling algorithm

Abdi et al. [25] Resource

scheduling

Modified PSO and shortest

job fastest processor

(SJFP)

Makespan Avoid the local

optima

GA and PSO

Al-Olimat et al.

[26]

Resource

scheduling

Hybrid PSO and SA Makespan Enhanced the

performance

PSO

Wang and Yu

[27]

Task

scheduling

Improved Min-min Execution time and

degree of imbalance

Improved speed and

quality of schedule

Min–min

Li et al. [28] Task

scheduling

Load balancing ACO Makespan and degree

of imbalance

Enhanced the

performance

FCFS and ACO

Tawfeek et al.

[29]

Task

scheduling

ACO Makespan and degree

of imbalance

Enhanced the

performance

FCFS and round robin

(RR)

Wen et al. [30] Resource

scheduling

ACO-PSO Execution time Avoid the local

optima

ACO

Yang [31] Resource

scheduling

ACO-PSO Execution time Avoid the local

optima

ACO

Cho et al. [32] Resource

scheduling

ACO-PSO Makespan and degree

of imbalance

Enhanced the

performance

ACO, PRACO, SA, GA

and FCFS?RR

Liu et al. [33] Task

scheduling

GA-ACO execution time Avoid the local

optima

ACO and GA

Muthulakshmi

and

Somasundaram

[34]

Resource

scheduling

ABC-SA Makespan and

response time

Enhanced the

performance

Modified FCFS, shortest

job first (SJF) and

longest job first (LJF)

Abdullahi, et al.

[35]

Task

scheduling

Discrete symbiotic

organism search (DSOS)

Makespan, response

time and degree of

imbalance

Improve the search

space

PSO

Abdullahi and

Ngadi [36]

Task

scheduling

Simulated annealing based

on symbiotic organism

search (SASOS)

Makespan, response

time and degree of

imbalance

Improve the

convergence rate

and quality of

solution

SOS
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cloud servers in cloud computing. Furthermore, Gill et al. [41]

design the PSO based resource schedULing algorithm in

cLoudEnvironmenT (PSOBULLET) for resource scheduling

QoS constraints to execute the workloads on available

resources in cloud computing efficiently. The simulations

outcomes show that the proposed PSO BULLET technique

competently decreases the execution cost, execution time and

energy consumption along with other QoS parame-

ters. Table 1 presents the summary of the related works for

resource scheduling in IaaS cloud computing.

The analysis of the review revealed that the majority of

the studies based on meta-heuristic algorithms such as

ACO, ABC, GA and PSO. Usually, these algorithms have

the drawback of trapping in local optima during scheduling

in cloud computing. In addition, these proposed algorithms

and techniques present more accurate results due to a

comparison of basic or heuristics algorithms instead of

other meta-heuristic algorithms. These comparisons are not

sufficient for the true picture of algorithms performance. In

contrast, this research is used eight (8) meta-heuristics

algorithms to show the performance for near-optimal

resource scheduling in IaaS cloud computing. Furthermore,

proposed HGDCS algorithm avoids the local optima

problem as well as performs better in case of global

optima.

3 Problem formulation

Scheduling consists of the assignment of starting and

completion times for the various operations to be per-

formed. Like other scheduling problems, resource

scheduling in cloud computing is a method that applies to

the distribution of valuable cloud resources, generally

processors, networks, storage and VMs to fulfill the

demands of cloud users by the cloud providers. It is applied

for balancing the load, ensure equal distribution of

resources according to the demand and give some priori-

tization according to set rules. It also ensures that a cloud

computing is able to serve all the cloud users’ requests,

with a certain quality of service.

Resource scheduling problem can clarify with the help

of Eq. (2) and Fig. 1.

RS ¼
Xm;n
x¼1

ðRx þ Sx. . .NxÞ � Tx ! UZ
x ð2Þ

where it assigns m required numbers of cloudlets/task T ¼
T1; T2; T3; . . .; Tmð Þ onto n available physical resources to

virtual resources in cloud data centers

R ¼ R1; R2; R3; . . .;Rnð Þ, S ¼ S1; S2; S3; . . .; Snð Þ up to

N ¼ N1; N2; N3; . . .;Nnð Þ. The Fitness of particular

objective F ¼ F1; F2; F3; . . .;Fzð Þ may be enhanced for

the cloud users U ¼ U1;U2;U3; . . .;Unð Þ. When Z=1, the

fitness function F1 is assigned to the cloud users, when Z=

2, the fitness function F2 is assigned to the cloud users and

so on, according to the their demand.

Cloud computing consists of various datacenters and all

datacenters are interrelated with VMs with different spec-

ification. Suppose there is a set of cloudlet/task Ti ¼
T1; T2; T3; . . .; Tnð Þ that are originated from the cloud

users as their required demands. Cloud broker is respon-

sible for assigning the cloudlet/task to requisite virtual

resources Vj ¼ V1; V2; V3; . . .;Vmð Þ as virtual resources

with minimum completion time. The expected time to

completion (ETC) is described as the expected time of all

cloudlets/tasks are execute on a definite virtual resource

acquired by using ETC matrix as shown in Eq. (3). Total

number of cloudlets/tasks multiply by the total number of

resources gives the ETC matrix’s dimension and their

elements are characterized as an ETC ðTi;VjÞ.

Table 1 continued

References Problems Methods Parameters Achievements Comparison methods

Tsai et al. [37] Resource

allocation

and

scheduling

Improved DEA (IDEA) Cost and time Enhanced the

performance

DEA and NSGA

Guddeti and

Buyya [38]

Resource

scheduling

Modified PSO and CSO

(MPSO-CSO)

Time and resource

utilization

Enhanced the

Performance

ACO, MPSO, CSO, RR

and exact

Gabi et al. [39] Task

scheduling

Orthogonal Tanguchi

based cat swarm

optimization (OTBCSO)

Makespan and degree

of imbalance

Enhanced the

performance

Min–Max, PSO-LDIW

and HPSO-SA

Moon et al. [40] Task

scheduling

SACO Makespan Enhanced the

performance

ACO and IACO

Gill et al. [41] Resource

scheduling

PSO BULLET Execution cost,

execution time and

energy

Enhanced the users’

satisfaction

PSO-HPC, PSO-SW and

PSO-DVFS
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ETCðTi;VjÞ ¼

T1V1 T1V2

T2V1 T2V2

T1V3 . . .
T2V3 . . .

. . . T1Vm

. . . T2Vm

T3V1 T3V2

: :
T3V3 . . .
: . . .

. . . T3Vm

. . . :
: :

TnV1 TnV2

: . . .
TnVi3 . . .

. . . :

. . . TnVm

2
666664

3
777775

ð3Þ
Therefore, the main objective of this research paper is to

hybridize the Gradient decent approach onto local search of

optimized CS algorithm for mapping the cloudlets/tasks on

virtual resources with minimum ETC in order to minimum

makespan and throughput with a balanced degree of

imbalance by enhancing the convergence rate.

3.1 Mathematical models for the resource
scheduling problem

This study considers the makespan, throughput and degree

of imbalance as the objective functions for optimal

resource scheduling in cloud computing. Therefore, the

fitness value of a HGDCS can be calculated for makespan,

throughput and degree of imbalance by using the Eqs. (4),

(5) and (6), respectively.

3.1.1 Makespan model

f xð Þ ¼ max
[m
i¼1

Ci; 8 i � N; i ¼ 1; 2; 3; . . .. . .;m ð4Þ

3.1.2 Throughput model

f xð Þ ¼
Xm
i¼1

Ci; 8i�N; i ¼ 1; 2; 3; . . .. . .;m ð5Þ

3.1.3 Degree of imbalance model

f xð Þ ¼
Sm

i�1 maxCi �
Sm

i�1 minCi

avg Ci

; 8i�N; i

¼ 1; 2; 3; . . .. . .;m ð6Þ
where Ci indicates the completion time of specific clou-

dlet/task. The lesser makespan and throughput, while

smooth and stable degree of imbalance show the better

efficiency of the proposed algorithm. Our main objective is

to reduce the completion time of specific cloudlet/task on

Fig. 3 Composition of hybrid

gradient descent cuckoo search

(HGDCS) algorithm

Fig. 2 Behaviour of gradient descent method
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all VMs during the resource scheduling, then we get min-

imum makespan, throughput and stable degree of

imbalance.

4 Methodology

This section presents the description of the local and global

search, the basic structure of GD approach, standard CS

algorithm and proposed HGDCS algorithm in detail.

4.1 Local search versus global search

A search technique which always reaches the same locally

optimal solution from the same starting point is probably a

local search technique. Equally, the performance of a

global search technique should be less dependent on its

initial position(s). Whereas a local search technique will

target nearby local optima, global search techniques should

be able to find (local) optima anywhere in the search space.

Both search techniques attempt to find a solution that

optimizes a cost criterion. Local search algorithms start

exploring the state space in a certain point of the state

space (this point can be selected using a huge variety of

techniques. These techniques are highly dependent on the

problem domain and the local search algorithm), and iter-

atively try to find a better solution in terms of the cost

function. In general, these algorithms are faster than other

global search techniques and they can provide quite good

solutions if the initialization step is adequated to the

problem. Also, these algorithms are iterative, and we

always know the best found solution at the current itera-

tion. This leaves us total freedom to select the stop con-

dition. As other answers point, these algorithms only

provide local optimas, which may have a much higher cost

than the global one, and which also depend on the initial

solution in which the exploration started.

Ideally speaking, a global searching technique is pro-

mised to make sure to find the best global formation but

this is achieved mostly at the cost of a long time searching.

But then again in reality, they are run and stop when the

stopping criterion comes across. Examples of this search

include the PSO, SA, GA, etc. Whereas, local search

algorithms do not totally focus on search and but it

attempts to move from a current formation to a neighboring

refining formation. This is much depending on the initial

search space and initial formation. An example of a local

search is hill climbing algorithm, which is an iterative

algorithm which can start with a random solution and then

after the algorithm tries to find a better solution by incre-

mentally altering a solution of a single element. If this

alteration harvests a better solution, an incremental alter-

ation is made to a new solution, this process can be repe-

ated in anticipation of no more enhancement is identified.

There are NP problems where finding one optimal and

the definite solution are not possible. From a classification

Fig. 4 Pseudo-code of hybrid

gradient descent cuckoo search

(HGDCS) algorithm
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point of view, this differs from the method used to find the

solution. Any method that searches in the vicinity of a

starting point (incremental methods) and has the potential

to get stuck the moment it sees extrema is a local method.

GD approach is the classic example for this. Global

methods will usually treat the whole feature space as one

when finding the best solution. A very slow and a primitive

example would be the exhaustive search.

4.2 Gradient descent approach

Gradient descent (GD) is a principal order iterative opti-

mization method. It is used for finding a local minimum of

a function, one takes steps proportional to the negative of

the gradient (or of the approximate gradient) of the func-

tion at the current point. If instead one takes steps pro-

portional to the positive of the gradient, one approaches a

local maximum of that function, the procedure is then

known as a “Sleepest Ascent Method” [42, 43].

Gradient descent is founded on the observation that if

the multi-variable function F(x) is distinct and differen-

tiable in a neighborhood of a point a, then F(x) decreases

fastest if one goes from a in the direction of the negative

gradient of F at a, �rFðaÞ. It follows that, if
b ¼ a� crFðaÞ ð7Þ
where a is the current position, b is the next position, γ is

the weight factor, rFðaÞ is the direction of sleepest ascent.

For c minor sufficient, then F að Þ�FðbÞ. In other words,
the term crFðaÞ is subtracted from a because we want to

move against the gradient, namely down toward the min-

imum. With this observation in mind, one starts with a

guess x0 for a local minimum of F, and considers the

sequence x0; x1; x2. . . such that:

xnþ1 ¼ xn � cnrF xnð Þ; n[ 1 ð8Þ
then

Fig. 5 Flow chart of hybrid gradient descent cuckoo search (HGDCS) algorithm
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F yið Þ ¼ aðxi � yiÞ2 þ bðyi � yiþ1Þ2 þ bðyi � yi�1Þ2 ð9Þ
or

y
0
i ¼ yi þ 2aðxi � yiÞ þ 2bðyiþ1 � yi � 2yiÞ2 ð10Þ
So we have x0

F x0ð Þ�F x1ð Þ�F x2ð Þ. . .:
So hopefully the sequence xn converges to the desired

local minimum. Note that the value of the step size c is

allowed to change with each iteration. With certain

assumptions on the function F and particular choices of c,

convergence to a local minimum can be guaranteed.

The behaviour of GD approach is illustrated in Fig. 2.

Here F is assumed to be defined on the plane, and that its

graph has oval shapes. The blue curves lines are the con-

tour lines, that is, the regions on which the value of F is

constant. A red dotted line creating at a point shows the

direction of the negative gradient at that point x0 to xn.

Note that the (negative) gradient at a point is orthogonal to

the contour line going through that point. We see that

gradient descent indicates to the center of the oval shape,

that is, the point where the value of the function F is

minimal.

4.3 Cuckoo search algorithm

Cuckoo search (CS) is created by “Xin-She Yang” and

“Suash Deb”. CS has been originated to contribute in

global optimization problems [44]. Cuckoo in real is a

captivating bird, not only because of the sweet sound but

also due to the aggressive nature of reproduction. Some of

the species of cuckoo bird “Ani” and “Guira” lay their eggs

in the commune’s nest. Although, they may pass through

other bird’s eggs to maximize the hatching probability of

their own [45].

(1) Cuckoo’s eggs, nest or cuckoo represents as a

solution of the algorithm.

(2) Flight from one nest to another nest is also a solution

for updating or modification.

(3) If the host bird identifies the cuckoo’s eggs in the

nest is considered as the worst solution, it will not be

fruitful for further processing.

Assumptions of CS algorithm

(1) Cuckoo bird lays one egg at a time, which shows one

solution.

(2) Nests having the best solution would be the finest

nests, that means nests itself represent the solution.

Table 3 Simulation parameters setting of CloudSim for Case-I in

cloud computing for resource scheduling

Sr. No Entities Parameters Values

1 User Number of users 50

Number of brokers 5

2 Cloudlet Number of cloudlets 100–1000

Length 800,000

File size 600

3 Host RAM 2048 MB

Storage 1,000,000

Bandwidth 10000

4 VM No of VMs 25

Type of policy Time shared

RAM 512 MB

Bandwidth 10000

MIPS 1000

Size 10000

VMM Xen

Operating system Linux

Number of CPUs 1 on each

5 Data center Number of data centers 2

Table 2 Parameters setting of meta-heuristic algorithms in cloud

computing for resource scheduling

Algorithms Parameters Values

ACO Number of ants 10

Vaporization factor, ρ 0.4

Pheromone tracking weight, α 0.3

Heuristic information weight, β 1

Pheromone updating constant, Q 100

ABC Number of scout bees 1000

Number of sites 5

Number of best sites 1

Number of bees for e sites 800

Number of bees for other e-m sites 200

CS Population size 20

Abandon probability Pα 0.25

Max iteration 1000

Step size λ 0.01, 1

GA Population size 1000

Max iteration 1000

Crossover rate 0.5

Mutation rate 0.1

PSO Particle size 100

Self-recognition coefficients, c1, c2 2

Uniform random number, R1 0,1

Max iteration 1000

Inertia weight, W 0.9–0.4

SA Initial temperature, Finit 10

Final temperature, Ffinal 0.001

Cooling rate, δ 0.9
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(3) A fixed number of the nests would be available;

there are finite numbers of initial solutions, which

will remain same throughout the algorithm.

Pα depicts the probability of finding alien’s eggs that is

represented as Pa 2 ½0; 1�. Lowering Pa results in reducing

the chances of finding alien’s eggs by the host bird and vice

versa.

Three parameters are used in CS algorithm

● Pa 2 0; 1½ � where the probability of worse nest is to be

abandoned

● α[0

The step size α that is related to the scale the problem in

most cases is greater than 1 i.e. α[1.
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● λ step length random.

4.3.1 Significance of cuckoo search algorithm

CS has essentially two searching abilities that include the

local and global search, which is controlled with the help of

a discovery and switching probability. Discussed before,

the local search is very insensitive with about ¼ of the

search time (for Pα=0.25), on the other hand, the global

search takes about of the search time (for 1−Pa=0.75).
This shows that the search space is explored more effi-

ciently on the global scale, with higher probability.

CS algorithm is considered as an effective technique due

to the less number of iterations and convergence rate. The

decreased input data is the cause of its smaller number of
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calculations and input data. By adding Levy flight function,

the global search is conducted simultaneously as local

search in CS algorithm. Due to these reasons, it is exten-

sively rewarded attention by researchers to get the optimal

results in multi-discipline areas [46–50].

The global search of CS uses the Levy flights rather

random walk strategy. Due to the fact theta, the Levy

flights have infinite mean and variances. Therefore, CS

explores more efficiently than other algorithms which

depend on standard Gaussian processes. This benefit

combines with both searches capabilities (local and global),

which provides the guarantee of global convergence

[51–54].
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Table 4 Statistical significance of meta-heuristic algorithms for makespan in Case-I after 50 runs

Algorithm ACO ABC GA LCA

Statistical dispersion/

number of cloudlets

�x σ Best �x σ Best �x σ Best �x σ Best

S01

100 795.84 2.04 793.66 667.53 0.58 667.10 781.01 3.55 774.06 659.89 1.16 657.57

500 982.61 6.59 974.90 914.39 0.69 913.37 1472.32 7.34 1434.73 863.53 2.29 863.17

1000 1575.77 9.14 1560.91 1218.15 13.41 1191.80 2370.83 4.40 2365.51 1159.24 1.53 1158.37

S02

100 918.03 2.23 914.91 832.09 5.55 831.14 906.29 3.47 899.80 849.88 5.06 848.04

500 1174.76 4.18 1170.13 1143.32 1.08 1141.67 1821.21 91.77 1775.03 1133.08 5.37 1132.64

1000 1842.63 17.13 1813.71 1525.33 19.88 1486.15 2719.24 5.46 2709.52 1486.66 0.71 1485.48

S03

100 770.97 1.95 768.74 647.11 1.64 646.59 756.69 3.31 750.26 650.63 1.40 648.20

500 977.60 6.37 970.16 885.96 1.76 884.81 1479.44 72.72 1441.68 863.53 1.29 863.17

1000 1567.70 8.94 1553.65 1180.00 12.60 1155.26 2380.45 4.42 2375.07 1142.19 0.54 1141.29

S04

100 693.39 1.86 691.69 580.78 1.40 580.58 680.28 3.36 673.67 596.27 1.89 594.57

500 888.62 9.60 877.54 796.40 2.50 795.80 1336.34 66.24 1302.30 793.76 2.30 793.76

1000 1425.72 15.00 1399.15 1061.46 12.41 1037.04 2115.71 3.92 2110.11 1042.68 0.47 1042.00

S05

100 1562.73 4.18 1558.90 1308.93 2.91 1308.48 1533.18 7.57 1518.29 1351.64 2.09 1347.63

500 2002.73 21.64 1977.76 1794.87 2.12 1793.52 3011.76 149.28 2935.06 1797.63 2.33 1797.63

1000 3213.22 33.81 3153.32 2392.26 27.97 2337.22 4768.28 8.84 4755.65 2355.25 1.11 2353.64

S06

100 719.02 1.92 717.26 722.96 2.49 722.68 718.26 3.53 711.33 713.17 2.08 711.11

500 954.25 10.88 941.73 991.45 1.61 990.69 1374.29 67.96 1339.27 948.69 3.03 948.66

1000 1457.44 16.85 1428.03 1321.50 15.53 1290.92 2174.43 4.05 2168.42 1253.13 3.58 1242.27

Algorithm PSO SA CS HGDCS

Statistical dispersion/number

of cloudlets

�x σ Best �x σ Best �x σ Best �x σ Best

S01

100 779.32 3.96 688.70 818.32 9.96 727.70 660.83 1.31 658.37 620.98 1.28 618.76

500 973.42 5.70 967.00 1140.98 9.06 1130.25 876.44 0.81 875.30 818.01 0.78 816.94

1000 1256.23 3.25 1251.50 1634.08 11.25 1622.31 1146.73 0.47 1145.77 1062.71 0.46 1061.76

S02

100 915.06 60.54 777.80 717.20 37.31 632.59 846.58 4.62 816.91 677.98 1.33 674.96

500 1221.96 17.87 1201.08 1140.98 9.07 1130.25 1083.43 1.05 1082.17 894.86 0.84 893.54

1000 1614.99 4.36 1608.35 1634.09 11.25 1622.31 1409.23 0.65 1407.97 1164.72 0.48 1163.76

S03

100 755.39 5.37 670.64 794.39 7.33 709.64 640.53 1.31 638.35 615.11 1.26 612.86

500 973.42 5.71 967.00 1140.98 9.07 1130.25 848.92 0.80 847.86 810.42 0.77 809.36

1000 1256.23 3.25 1251.50 1634.09 11.25 1622.31 1109.98 0.48 1109.02 1053.05 0.45 1052.13

S04

100 678.20 7.31 593.59 717.20 3.31 632.59 575.09 1.11 572.57 565.08 1.11 562.56

500 884.48 7.56 875.54 1140.98 9.07 1130.25 763.86 0.71 762.76 745.85 0.71 744.74

1000 1145.76 8.44 1136.94 1634.09 11.25 1622.31 1000.80 0.40 1000.00 970.76 0.40 959.96

S05

100 1528.49 8.09 1337.81 1567.13 8.02 1376.62 1296.12 2.51 1290.43 1129.60 2.22 1124.56

500 1993.40 17.03 1973.25 2405.96 20.42 2381.80 1721.55 1.60 1719.07 1490.94 1.41 1488.74
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4.4 Hybrid gradient decent cuckoo search
(HGDCS) algorithm

In the existing meta-heuristic algorithms proposed the

solutions for optimization issues of resource scheduling in

IaaS cloud computing, but the consequences and outcomes

show some limitations such as less accuracy and speed.

One algorithm is effective but not all the time only might

be effective to resolve the optimization problems and

change the behaviour due to the large amount of heavy

load, which indirectly effects on the performance and

objective function. There are many optimization algo-

rithms are proposed for resource scheduling in the litera-

ture of cloud computing, but no single algorithm is

suitable for all problems.

To overcome these drawbacks, HGDCS algorithm is

implemented in IaaS cloud computing for resource

scheduling, fast local optimization achieves due to the GD

approach and global optimization maintains through the

breeding and behaviour skills of the optimized CS algo-

rithm shown in Fig. 3.

HGDCS algorithm uses the sensible arrangement of

local and global search and controls them by switching

parameter Pα. The local search is calculated by using GD

approach with the help of Eqs. (8) and (9). However, the

global search is calculated using Levy flight with the help

of Eq. (11).

Levy flight is a random walk in which the steps are

defined in terms of the step length, which are distributed

according to a heavy tailed probability distribution with the

direction of steps being isotropic and random.

xti ¼ xtþ1
i þ a� LevyðkÞ ð11Þ

where xti is the new solution, xtþ1
i is the current solution and

a� levyðkÞ is thetransaction probability

For the better understanding of HGDCS algorithm, the

pseudo-code and flow of the HGDCS algorithm are shown

in Figs. 4 and 5. The first step is initialization, in which the

fixed numbers of cuckoo’s eggs are generated randomly.

Fitness represents a numbers of inter-partition connections.

The low value of inter-partition is better for the quality of

the solution. After finding the fitness values of all eggs,

select the best having the least value of inter-partition cuts.

All cuckoo fly towards the best nest, this represents the all

random generated moves toward the best solution, with

step-size variable decides how is the distance traveled by a

cuckoo towards the best in one iteration. Selection of n best

solution from 2n−1, total solution, where n solution is

generated from previous solution and n−1 solution from

the new generation. With the help of iteration criteria,

achieve the better quality of the solution. There are two

criteria to stop the iteration either achieving the required

quality of the solution or by fixing the number of iteration.

Both criteria are depending upon the application of cuckoo

search algorithm.

5 Performance metrics

Resource scheduling parameters are used for evaluating the

scheduling algorithms in cloud computing environment.

These parameters are based on computing, network and

storage including the availability, bandwidth/speed, cost,

degree of imbalance, energy, execution time, memory,

performance, priority, reliability, response time, SLA,

temperature, throughput, time and utilization [7, 55, 56].

This study considers the makespan, throughput, degree of

imbalance and performance improvement rate. These per-

formance metrics are discussed below:

5.1 Makespan

Makespan uses to determine the maximum completion

time, by calculating the finishing time of the latest task,

when all tasks are scheduled. If the makespan of specific

cloudlet or task is not minimized then the demand will not

be completed on time [57, 58]. This study reduces the

Table 4 continued

Algorithm PSO SA CS HGDCS

Statistical dispersion/number

of cloudlets

�x σ Best �x σ Best �x σ Best �x σ Best

1000 2582.26 19.02 2562.36 3450.63 25.34 3424.12 2255.55 0.91 2253.74 1940.56 0.80 1938.96

S06

100 711.97 8.55 624.55 717.20 7.31 632.59 704.35 1.36 701.27 565.08 1.11 562.56

500 1036.11 11.25 1022.80 1140.98 9.07 1130.25 935.51 0.87 934.17 745.84 0.70 744.74

1000 1346.02 16.05 1327.28 1634.09 11.25 1622.31 1219.35 0.49 1218.37 970.76 0.40 969.96

S01 uniform distribution, S02 normal distribution, S03 left skewed, S04 right skewed, S05 HPC2N, S06 NASA)
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Table 5 Statistical significance of meta-heuristic algorithms for throughput in Case-I after 50 runs

Algorithm ACO ABC GA LCA

Statistical

dispersion/

number of

cloudlets

�x σ Best �x σ Best �x σ Best �x σ Best

S01

100 3217.22 20.09 2922.59 2367.63 27.44 2344.57 2640.35 31.54 2615.25 2117.97 19.13 2072.74

500 8031.71 130.67 7987.74 3359.59 199.23 3113.48 5908.08 428.30 5498.96 2709.76 72.46 2596.41

1000 14,045.46 102.11 13,888.32 5968.79 998.48 5068.21 9021.12 289.49 8932.56 3949.76 224.61 3602.17

S02

100 3582.43 43.03 3247.13 2965.19 36.45 2932.78 3001.86 25.53 2977.63 2998.70 25.44 2938.54

500 9219.69 94.21 9101.91 4193.03 239.03 3912.96 7300.61 572.33 6702.05 3582.21 105.83 3414.36

1000 12,626.53 229.37 12445.88 7319.52 859.59 6160.28 11,653.53 126.93 11,510.04 5041.21 283.99 4602.21

S03

100 3103.65 305.91 2818.20 2296.08 27.50 2272.19 2557.78 28.80 2534.19 2271.25 19.12 2226.04

500 7989.73 231.91 7943.98 3251.82 188.68 3025.28 5938.44 431.01 5526.09 2776.84 257.98 2596.41

1000 10,899.55 178.64 10782.20 5801.48 980.81 4933.11 10,207.17 197.95 10,106.16 3821.32 213.93 3490.69

S04

100 2827.21 28.44 2570.57 2058.26 22.21 2040.04 2300.50 30.77 2277.28 2047.22 19.14 2001.98

500 7282.02 125.93 7245.94 2932.21 181.69 2695.69 5396.79 401.24 5001.00 2450.00 68.07 2342.31

1000 11,657.35 120.64 11430.29 5164.56 846.35 4372.37 9070.54 289.83 8981.97 3481.64 199.58 3173.13

S05

100 6371.82 64.81 5793.41 4638.79 50.06 4597.73 5184.74 69.34 5132.40 4769.02 45.04 4662.52

500 9847.10 35.06 9798.30 6608.46 409.49 6075.41 12163.00 904.29 11270.98 5695.82 160.20 5442.36

1000 13,957.38 144.45 13,685.52 11,639.61 1907.46 9854.21 20442.70 202.46 20,243.09 8095.69 469.75 7369.57

S06

100 2830.04 87.72 2573.14 2561.93 27.46 2539.36 2300.50 30.77 2277.28 2516.30 23.55 2460.61

500 7296.57 125.98 7260.42 3651.08 227.14 3354.09 5396.79 401.24 5001.00 3005.36 84.88 2871.00

1000 9938.45 202.85 9744.86 6425.58 1051.11 5438.46 9070.54 389.83 8981.97 4267.90 246.92 3886.08

Algorithm PSO SA CS HGDCS

Statistical

dispersion/

number of

cloudlets

�x σ Best �x σ Best �x σ Best �x σ Best

S01

100 2664.31 56.40 2114.40 2894.78 32.44 2253.74 2328.83 15.98 2289.20 2015.81 14.75 1978.97

500 7937.31 73.50 7818.66 8752.85 86.31 8582.09 2809.25 67.64 2683.47 2457.45 55.73 2310.31

1000 10,899.69 227.34 10,856.94 13,355.20 270.66 13,258.45 3787.14 144.97 3559.19 3072.06 117.87 3072.06

S02

100 3087.49 38.80 2459.89 2860.83 37.08 2185.46 2884.51 18.63 2838.92 2921.66 20.67 2869.97

500 9174.56 163.24 9095.98 8752.85 186.31 8582.09 3490.96 89.46 3332.63 3684.95 83.56 3684.95

1000 13,547.70 217.78 13231.36 13,355.20 170.66 13,258.45 4727.66 191.94 4437.56 4606.56 176.75 4606.56

S03

100 2570.01 40.45 2055.88 2784.76 73.27 2185.46 2257.75 15.06 2220.60 2195.41 14.98 2158.33

500 7937.31 63.50 7818.66 8752.85 86.31 8582.09 2727.65 67.54 2604.79 2674.94 64.78 2674.94

1000 10,899.69 227.34 10,856.94 13,355.20 270.66 13,258.45 3693.10 145.02 3468.95 3354.88 138.97 3354.88

S04

100 2341.79 39.94 1828.11 2784.76 37.27 2185.46 2025.82 14.75 1788.99 2015.81 14.75 1978.97

500 7227.71 71.92 7085.41 8752.85 86.31 8582.09 2436.03 55.73 2328.33 2457.45 55.73 2310.30
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makespan of all tasks mapping on VMs as defined in

Eq. (4).

5.2 Throughput

Throughput uses to estimate the total number of tasks,

whose are executed successfully. In cloud computing,

throughput means some tasks completed in a certain time

period. Minimum throughput is required for task schedul-

ing in cloud computing [55, 56]. This study decreases the

throughput of total numbers of tasks mapping on VMs as

defined in Eq. (5).

5.3 Degree of imbalance

Degree of imbalance (DI) describes the amount of load

distribution amongst the VMs regarding to their execution

competencies. It also uses to examine the unbalanced load

on the VMs. A stable n average DI is considered for the

better performance for resource scheduling [35, 55].

Although, proposed HGDCS algorithm calculates the bal-

anced DI by using the Eq. (6).

5.4 Performance improvement rate

Performance improvement rate is used to estimate the

percentage of performance improvement for the ith algo-

rithm with regards to the kth algorithm. It always repre-

sents in percentage (%) [59].

PIRð%Þ ¼
P

kth PM �P
ith PM

� �
P

ith PM

� �
� 100 ð12Þ

where PM represents the specific performance metric for

the evaluation.

6 Simulation setup

The simulation setup is described in this section along with

the computational results and significance analysis

obtained after the implementation of hybrid gradient des-

cent cuckoo search (HGDCS) algorithm and other meta-

heuristic algorithms for optimization of resource schedul-

ing in IaaS cloud computing. All algorithms are imple-

mented in CloudSim simulator [60, 61] using two cases

that are with using datasets and workload traces.

In order to get more precise results, the experimental

setup is classified into two cases. This classification will

cover the high and low demand of cloud users. Case-I is

considered for the small scale of cloud computing. Here

small scale means less number of users, cloudlets and

VMs. Case-II is considered for large scale of cloud com-

puting. Here large scale means the large number of users,

cloudlets and VMs. Large cloudlets will enable the

improvement perception in scalability with large problem

size and fluctuating cloud user’s demands in heterogeneous

cloud computing environment.

Datasets are created based on uniform, normal, left-

skewed and right-skewed distribution presented as S01,

S02, S03 and S04 respectively. Uniform distribution con-

sists of the equal amount of small, medium and large size

tasks. Normal distribution signifies more medium size

tasks, while small and large size tasks are less in amount.

Skewness is the amount of asymmetric of the probability

distribution of tasks in the datasets. It can be right (posi-

tive) skewed or left (negative) skewed. Furthermore, left

skewed includes the more small and less large size tasks of

the dataset. Hence the right skewed includes less small and

large size task in the data sets. These datasets show the

Table 5 continued

Algorithm PSO SA CS HGDCS

Statistical

dispersion/

number of

cloudlets

�x σ Best �x σ Best �x σ Best �x σ Best

1000 9936.60 252.99 9864.03 13355.20 270.66 13,258.45 3296.23 117.88 3102.10 3072.06 117.87 3072.06

S05

100 5277.80 72.07 4120.10 6178.64 84.50 4829.19 4565.69 33.25 4482.67 4029.61 29.49 3955.97

500 16,289.42 162.10 15968.72 19545.98 194.34 19161.48 5490.20 125.61 5247.46 4912.45 111.40 4912.45

1000 22,394.57 119.43 22,231.03 29,843.62 159.10 29625.76 7428.87 265.67 6991.34 6141.06 235.63 6141.06

S06

100 2431.91 28.67 1845.91 2860.83 79.08 2185.46 2481.16 18.04 2436.12 2015.81 14.75 1978.97

500 7249.37 72.14 7106.65 8752.85 86.31 8582.09 2983.80 68.34 2851.83 2457.45 55.73 2457.45

1000 9966.38 253.15 9893.60 13355.20 270.66 13,258.45 4037.46 144.61 3799.56 3072.06 117.87 3072.06

S01 uniform distribution, S02 normal distribution, S03 left skewed, S04 right skewed, S05 HPC2N, S06 NASA
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behavior of the meta-heuristic algorithms for resource

scheduling in cloud computing.

Workload traces (S05 and S06) are generated by the

“Parallel Workload Archives” that consists of HPC2N

(High-Performance Computing Center North) [62] and

NASA Ames iPCS/860 [63]. These workload archives are

provided by “Ake Sandgren” and “Bill Nitzberg”, in the

standard workload format (swf) acknowledged by the

CloudSim tool. HPC2N comprises the statistics of 527,371

tasks and NASA comprises the statistics of 14,794 tasks.

These workloads are mostly applied for evaluating the

performance of algorithms in cloud computing environ-

ment [35, 36, 64–67].

The specification of cloud users, cloudlets, host, VMs

and data center are shown in Tables 3 and 10 for Case-I and

Case-II. These cases are implemented for simulation based

on [36, 59, 68, 69]. The larger cloudlets will improve the

perception in scalability of the performance of the algo-

rithms with the large problem sizes and little user demand.

The parameters setting of selected nature-inspired meta-

heuristic algorithms are shown in Table 2. The parameters

values of ACO is based on [28, 68], ABC is based on

[70, 71], GA is based on [68, 72], LCA is based on [73],

PSO is based on [39, 74], SA is based on [36] and CS is

based on [75, 76]. These algorithms are compared with

HGDCS algorithm, on a set of parameters including

makespan, throughput, degree of imbalance and perfor-

mance improving rate for resource scheduling in IaaS

cloud computing. In the statistical analysis, mean, standard

deviation and best value are mentioned after the 50 runs of

the simulation, for the comparison of performance metrics,

are shown in Tables 4, 5 and 6 in Case-I and Tables 11 to

13 in Case-II. Hence for the comparison of HGDCS

algorithm’s PIR % over existing algorithms is presented in

Tables 7, 8 and 9 in the Case-I and Tables 14, 15 and 16 in

the Case-II.

7 Results and discussion

This section presents and discusses the results of the sim-

ulation formulated in two cases with statistical significance

analysis, to evaluate the performance of the proposed

HGDCS algorithm for resource scheduling in IaaS cloud

computing.

7.1 Case-I

In Case-1, we have fixed the specification of VMs to check

the performance of HGDCS algorithm for evaluating the

performance for resource scheduling, while changing the

number of cloudlets with using datasets (S01, S02, S03 and

S04) and workload traces (S05 and S06) in the simulations.

Table 3 shows the simulation parameters setting of

CloudSim for Case-I in cloud computing environment.

The comparison of makespan for resource scheduling

among ACO, ABC, GA, LCA, PSO, SA and CS algorithms

with HGDCS algorithm using the uniform distribution,

normal distribution, left skewed, right skewed, HPC2 N

and NASA in Case-I, is shown in Fig. 6. The x-axis rep-

resents the number of cloudlets while the y-axis represents

the makespan. Figure 6(a) to (f) identify that makespan

time of resource scheduling is increased with increasing the

number of cloudlets. The comparison of simulation results

clearly precise that the HGDCS algorithm delivers the less

makespan time than other meta-heuristic algorithms with

using all four datasets and two workload traces for the

optimization of resource scheduling in IaaS cloud

computing.

In Fig. 7, the comparison of throughput for resource

scheduling is shown among ACO, ABC, GA, LCA, PSO,

SA and CS algorithms with HGDCS algorithm using the

uniform distribution, normal distribution, left skewed, right

skewed, HPC2 N and NASA in Case-I. The horizontal axis

signifies the number of cloudlets and the vertical axis

signifies the throughput parameter. Figure 7(a) to (f) show

that throughput of resource scheduling is increased with

increasing the number of cloudlets. The comparison of

simulation results expresses that the HGDCS algorithm

provides the minimum throughput than other meta-heuris-

tic algorithms with using all four datasets and two work-

load traces for the optimization of resource scheduling in

IaaS cloud computing. Hence after the analysis of graphs, it

is clearly distinct that HGDCS algorithm offers better

results than all other comparison algorithms, while

HGDCS algorithm results are near to the CS and LCA

algorithms for the throughput.

The comparison of the degree of imbalance of imbal-

ance for resource scheduling among ACO, ABC, GA,

LCA, PSO, SA and CS algorithms with HGDCS algorithm

using the uniform distribution, normal distribution, left

skewed, right skewed, HPC2 N and NASA in Case-I, is

shown in Fig. 8. The x-axis represents the number of

cloudlets while the y-axis represents the degree of imbal-

ance. The comparison of simulation results clearly

demonstrates that the HGDCS algorithm provides the

better degree of imbalance than other meta-heuristic

algorithms due to the less fluctuation and move smoothly

with increasing of cloudlets by using all four datasets and

two workload traces for the optimization of resource

scheduling in IaaS cloud computing.

Tables 4, 5 and 6 show that the mean, standard deviation

and best values for makespan, throughput and degree of

imbalance after the 50 runs at 100, 500 and 1000 number of

cloudlets, are very close and significance from the values

of the standard deviation by using all datasets and
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Table 6 Statistical significance of meta-heuristic algorithms for degree of imbalance in Case-I after 50 runs

Algorithm ACO ABC GA LCA

Statistical dispersion/number of

cloudlets

�x σ Best �x σ Best �x σ Best �x σ Best

S01

100 0.5191 0.0737 0.5108 0.5291 0.0752 0.5208 0.5189 0.0741 0.5127 0.5256 0.0749 0.5190

500 0.5078 0.0755 0.5112 0.5210 0.0741 0.5131 0.5161 0.0735 0.5094 0.5228 0.0742 0.5143

1000 0.5068 0.0790 0.5218 0.5159 0.0738 0.5099 0.5956 0.0844 0.5851 0.5536 0.0786 0.5446

S02

100 0.5857 0.0845 0.5957 0.5591 0.0807 0.5677 0.5845 0.0844 0.5923 0.5432 0.0784 0.5522

500 0.5246 0.0790 0.5084 0.5429 0.0784 0.5514 0.6239 0.0901 0.6341 0.5550 0.0801 0.5644

1000 0.5368 0.0836 0.5083 0.5694 0.0823 0.5713 0.5643 0.0814 0.5740 0.5618 0.0811 0.5712

S03

100 0.5273 0.0761 0.5360 0.5372 0.0776 0.5459 0.5292 0.0764 0.5358 0.5264 0.0760 0.5332

500 0.5107 0.0752 0.5062 0.5296 0.0765 0.5378 0.5069 0.0732 0.5136 0.5143 0.0742 0.5228

1000 0.5213 0.0787 0.5056 0.5264 0.0761 0.5327 0.5827 0.0841 0.5932 0.5527 0.0798 0.5620

S04

100 0.5023 0.0725 0.5089 0.4923 0.0711 0.4995 0.5003 0.0723 0.5046 0.4940 0.0713 0.5020

500 0.5526 0.0828 0.5401 0.4998 0.0721 0.5069 0.5226 0.0754 0.5305 0.5054 0.0730 0.5138

1000 0.5548 0.0877 0.5188 0.5029 0.0728 0.5031 0.5330 0.0769 0.5424 0.5120 0.0739 0.5204

S05

100 0.5026 0.0726 0.5092 0.4926 0.0711 0.4998 0.5006 0.0723 0.5050 0.4944 0.0714 0.5024

500 0.5529 0.0828 0.5404 0.5001 0.0722 0.5072 0.5229 0.0755 0.5308 0.5064 0.0731 0.5148

1000 0.5552 0.0878 0.5192 0.5033 0.0728 0.5035 0.5334 0.0770 0.5428 0.5133 0.0741 0.5217

S06

100 0.5023 0.0725 0.5089 0.4955 0.0715 0.5028 0.4980 0.0720 0.5023 0.4986 0.0720 0.5066

500 0.5593 0.0837 0.5471 0.5030 0.0726 0.5102 0.5081 0.0734 0.5157 0.5105 0.0737 0.5189

1000 0.5628 0.0887 0.5272 0.5061 0.0732 0.5065 0.5186 0.0749 0.5277 0.5174 0.0747 0.5258

Algorithm PSO SA CS HGDCS

Statistical dispersion/number of

cloudlets

�x σ Best �x σ Best �x σ Best �x σ Best

S01

100 0.5149 0.0808 0.5208 0.5148 0.0801 0.5198 0.5265 0.0749 0.5190 0.5293 0.0764 0.5370

500 0.5016 0.0739 0.5039 0.5411 0.0802 0.5464 0.5165 0.0734 0.5085 0.5186 0.0734 0.5268

1000 0.5058 0.0793 0.5233 0.5375 0.0859 0.5627 0.5072 0.0720 0.4988 0.5085 0.0734 0.5170

S02

100 0.5936 0.0905 0.5396 0.5112 0.0758 0.5111 0.5355 0.0773 0.5434 0.4943 0.0714 0.4995

500 0.6485 0.0947 0.6457 0.5464 0.0802 0.5411 0.5441 0.0785 0.5529 0.5049 0.0729 0.5135

1000 0.5184 0.0769 0.4998 0.5627 0.0859 0.5375 0.5369 0.0775 0.5461 0.5149 0.0743 0.5241

S03

100 0.5372 0.0829 0.5317 0.5354 0.0821 0.5308 0.5354 0.0773 0.5433 0.5250 0.0758 0.5326

500 0.5039 0.0739 0.5016 0.5464 0.0802 0.5411 0.5250 0.0758 0.5334 0.5143 0.0758 0.5224

1000 0.5233 0.0793 0.5058 0.5627 0.0859 0.5375 0.5153 0.0744 0.5240 0.5042 0.0728 0.5126

S04

100 0.5129 0.0762 0.5124 0.5112 0.0758 0.5111 0.4941 0.0713 0.4995 0.4944 0.0714 0.4997

500 0.5508 0.0811 0.5444 0.5464 0.0802 0.5411 0.5044 0.0728 0.5131 0.5051 0.0729 0.5138

1000 0.5678 0.0872 0.5402 0.5627 0.0859 0.5375 0.5140 0.0742 0.5232 0.5151 0.0743 0.5244

S05

100 0.5132 0.0763 0.5128 0.5126 0.0760 0.5124 0.4944 0.0714 0.4998 0.4942 0.0714 0.4995

500 0.5511 0.0811 0.5447 0.5507 0.0810 0.5444 0.5048 0.0729 0.5135 0.5048 0.0728 0.5134
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workload. This significance analysis shows that results

follow a normal distribution and robustness of the proposed

HGDCS optimization algorithm and its capability to attain

near optimum values in almost all runs.

Performance Improvement Rate (%) is based on make-

span, throughput and degree of imbalance in Case-I of the

CS algorithm as it relates to the ACO, ABC, GA, LCA,

PSO, SA and CS meta-heuristic algorithms are presented in

Tables 7, 8 and 9 respectively. For the makespan, HGDCS

algorithm shows the 11.79% makespan improvement on

CS algorithm and 47.74% makespan improvement on GA

algorithm. In the case of throughput, HGDCS algorithm

produces the 9.88% throughput improvement on CS algo-

rithm while the 62.90% throughput improvement on ACO

algorithm. In the same way, HGDCS algorithm gives the

1.10% for the improvement of degree of imbalance on CS

algorithm and 7.59% for the improvements of degree of

imbalance on PSO algorithm. This specifies that the

HGDCS algorithm performs better in terms of makespan,

throughput and degree of imbalance for resource schedul-

ing in IaaS cloud computing.

7.2 Case-II

In Case-II, we have selected the specification of VMs

randomly with different RAM, Bandwidth and MIPS to

check the performance of HGDCS algorithm for evaluating

the performance for resource scheduling, while changing

the number of cloudlets with using datasets (S01, S02, S03

and S04) and workload traces (S05 and S06) in the simu-

lations. Table 10 shows the simulation parameters setting

of CloudSim for Case-II in cloud computing environment.

The comparison of makespan for resource scheduling

among ACO, ABC, GA, LCA, PSO, SA and CS algorithms

with HGDCS algorithm using the uniform distribution,

normal distribution, left skewed, right skewed, HPC2 N

and NASA in Case-II, is shown in Fig. 9. The x-axis rep-

resents the number of cloudlets while the y-axis represents

the makespan. Figure 9(a) to (f) identify that makespan

time of resource scheduling is increased with increasing the

number of cloudlets. The comparison of simulation results

clearly precise that the HGDCS algorithm delivers the less

makespan time than other meta-heuristic algorithms with

using all four datasets and two workload traces for the

optimization of resource scheduling in IaaS cloud

computing.

Table 7 Performance Improvement Rate (%) on makespan in Case-I

ACO ABC GA LCA PSO SA CS HGDCS

Total makespan 77,484.93 67,418.02 108,636.42 66,326.56 70,931.52 84,198.34 64,357.25 56,769.43

PIR over ACO – 12.99 −40.20 14.40 8.46 −8.66 16.94 26.73

PIR over ABC – – −61.14 1.62 −5.21 −24.89 4.54 15.79

PIR over GA – – – 38.95 34.71 22.50 40.76 47.74

PIR over LCA – – – – −6.94 −26.95 2.97 14.41

PIR over PSO – – – – – −18.70 9.27 19.97

PIR over SA – – – – – – 23.56 32.58

PIR over CS – – – – – – – 11.79

Table 6 continued

Algorithm PSO SA CS HGDCS

Statistical dispersion/number of

cloudlets

�x σ Best �x σ Best �x σ Best �x σ Best

1000 0.5682 0.0873 0.5405 0.5679 0.0872 0.5404 0.5144 0.0742 0.5237 0.5147 0.0743 0.5240

S06

100 0.5076 0.0771 0.5044 0.5112 0.0758 0.5111 0.4935 0.0713 0.4996 0.4942 0.0714 0.4995

500 0.5891 0.0864 0.5839 0.5464 0.0802 0.5411 0.5037 0.0727 0.5124 0.5048 0.0727 0.5134

1000 0.6056 0.0920 0.5798 0.5627 0.0859 0.5375 0.5109 0.0737 0.5201 0.5147 0.0743 0.5240
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In Fig. 10, the comparison of throughput for resource

scheduling is shown among ACO, ABC, GA, LCA, PSO,

SA and CS algorithms with HGDCS algorithm using the

uniform distribution, normal distribution, left skewed, right

skewed, HPC2 N and NASA in Case-II. The horizontal

axis signifies the number of cloudlets and the vertical axis

signifies the throughput parameter. Figure 10(a) to (f) show

that throughput of resource scheduling is increased with

increasing the number of cloudlets. The comparison of

simulation results expresses that the HGDCS algorithm

provides the minimum throughput than other meta-heuris-

tic algorithms with using all four datasets and two work-

load traces for the optimization of resource scheduling in

IaaS cloud computing. Hence after the analysis of graphs, it

is clearly distinct that HGDCS algorithm offers better

results than all other comparison algorithms, while

HGDCS algorithm results are near to the CS and LCA

algorithms for the throughput.

The comparison of the degree of imbalance of imbal-

ance for resource scheduling among ACO, ABC, GA,

LCA, PSO, SA and CS algorithms with HGDCS algorithm

using the uniform distribution, normal distribution, left

skewed, right skewed, HPC2 N and NASA in Case-II, is

shown in Fig. 11. The x-axis represents the number of

Table 8 Performance improvement rate (%) on throughput in Case-I

ACO ABC GA LCA PSO SA CS HGDCS

Total throughput 874,391.65 462,264.03 782,414.69 371,228.28 909,731.00 1,092,522.95 356,972.17 189,192.7232

PIR over ACO – 46.57 11.85 57.23 −2.47 −24.32 58.83 62.90

PIR over ABC – – −64.97 19.95 −91.78 −132.68 22.95 30.56

PIR over GA – – – 51.48 −16.25 −41.04 53.30 57.91

PIR over LCA – – – – −139.59 −190.67 3.75 13.25

PIR over PSO – – – – – −21.32 59.82 63.79

PIR over SA – – – – – – 66.89 70.16

PIR over CS – – – – – – – 9.88

Table 9 Performance

improvement rate (%) on degree

of imbalance in Case-I

ACO ABC GA LCA PSO SA CS HGDCS

Total DI 32.13 30.98 31.92 31.45 33.06 32.89 30.89 30.55

PIR over

ACO

– 3.58 0.66 2.11 −2.89 −2.37 3.86 4.92

PIR over ABC – – −3.03 −1.53 −6.71 −6.17 0.29 1.39

PIR over GA – – – 1.46 −3.57 −3.05 3.23 4.29

PIR over LCA – – – – −5.10 −4.57 1.79 2.88

PIR over PSO – – – – – 0.51 6.56 7.59

PIR over SA – – – – – – 6.09 7.13

PIR over CS – – – – – – – 1.10

Table 10 Simulation parameters setting of CloudSim for Case-II in

cloud computing for resource scheduling

Sr. No Entities Parameters Values

1 User Number of users 100

Number of brokers 10

2 Cloudlet Number of cloudlets 1000–10,000

Length 800,000

File Size 600

3 Host RAM 2048 MB

Storage 1,000,000

Bandwidth 10,000

4 VM Number of VMs 50

Type of policy Time shared

RAM 128 to 15,360 MB

Bandwidth 128 to 15,360 MB

MIPS 256 to 30,720

Size 10000

VMM Xen

Operating system Linux

Number of CPUs 2 on each

5 Data center Number of data centers 5
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cloudlets while the y-axis represents the degree of imbal-

ance. The comparison of simulation results clearly

demonstrates that the HGDCS algorithm provides the

better degree of imbalance than other meta-heuristic

algorithms due to the less fluctuation and move smoothly

with increasing of cloudlets by using all four datasets and
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two workload traces for the optimization of resource

scheduling in IaaS cloud computing.

The mean, standard deviation and best values for the 50

runs at 100, 500 and 1000 number of cloudlets of the

makespan, throughput and degree of imbalance are com-

puted and presented in Tables 11, 12 and 13. The results

show that mean, standard deviation and best values are

very close and significance from the values of the standard

deviation by using all datasets and workload. This signifi-

cance analysis shows that results follow a normal distri-

bution and robustness of the proposed HGDCS

optimization algorithm and its capability to attain near

optimum values in almost all runs.
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Table 13 Statistical significance of meta-heuristic algorithms for degree of imbalance in Case-II after 50 runs

Algorithm ACO ABC GA LCA

Statistical dispersion/number of

cloudlets

�x σ Best �x σ Best �x σ Best �x σ Best

S01

1000 0.3838 0.0576 0.3136 0.2098 0.0307 0.2054 0.2755 0.0536 0.2044 0.2078 0.0305 0.1844

5000 0.3471 0.0526 0.3178 0.2090 0.0308 0.2018 0.2727 0.0526 0.2102 0.2126 0.0310 0.1205

10000 0.3350 0.0509 0.3094 0.2083 0.0305 0.2042 0.2631 0.0509 0.2037 0.2126 0.0316 0.0975

S02

1000 0.3830 0.0575 0.3136 0.2098 0.0307 0.2054 0.3283 0.0493 0.2044 0.2078 0.0305 0.1844

5000 0.3472 0.0485 0.3178 0.2090 0.0308 0.2019 0.3255 0.0485 0.2103 0.2126 0.0310 0.1205

10000 0.3345 0.0466 0.3094 0.2083 0.0305 0.2042 0.3136 0.0466 0.2037 0.2126 0.0316 0.0975

S03

1000 0.3876 0.0576 0.3136 0.2119 0.0307 0.2054 0.3323 0.0493 0.2043 0.2099 0.0305 0.1843

5000 0.3506 0.0484 0.3178 0.2111 0.0308 0.2018 0.3286 0.0484 0.2102 0.2147 0.0310 0.1205

10000 0.3384 0.0468 0.3094 0.2104 0.0305 0.2042 0.3172 0.0468 0.2037 0.2147 0.0316 0.0975

S04

1000 0.3997 0.0159 0.3135 0.2184 0.0051 0.2053 0.3426 0.0136 0.2043 0.2164 0.0054 0.1843

5000 0.3615 0.0120 0.3177 0.2176 0.0063 0.2018 0.3389 0.0120 0.2102 0.2214 0.0042 0.1204

10000 0.3489 0.0120 0.3094 0.2170 0.0051 0.2041 0.3271 0.0120 0.2036 0.2214 0.0079 0.0974

S05

1000 0.3839 0.0576 0.2056 0.2099 0.0307 0.1852 0.3264 0.0534 0.2045 0.2080 0.0305 0.2066

5000 0.3466 0.0517 0.2019 0.2091 0.0308 0.1225 0.3215 0.0563 0.2103 0.2127 0.0310 0.2075

10000 0.3348 0.0500 0.2043 0.2084 0.0305 0.0976 0.3098 0.0560 0.2037 0.2127 0.0316 0.2094

S06

1000 0.5482 0.0161 0.3189 0.2997 0.0051 0.2066 0.4699 0.0138 0.2091 0.2969 0.0053 0.1638

5000 0.4958 0.0122 0.3129 0.2986 0.0061 0.2101 0.4648 0.0122 0.2053 0.3037 0.0043 0.1139

10000 0.4786 0.0114 0.3136 0.2976 0.0052 0.2054 0.4487 0.0114 0.2024 0.3037 0.0037 0.1844

Algorithm PSO SA CS HGDCS

Statistical dispersion/number of

cloudlets

�x σ Best �x σ Best �x σ Best �x σ Best

S01

1000 0.4362 0.0646 0.4231 0.2302 0.0410 0.2258 0.1856 0.0272 0.1765 0.1457 0.0227 0.1374

5000 0.4172 0.0609 0.4136 0.2108 0.0307 0.2090 0.1197 0.0173 0.1076 0.1325 0.0144 0.1307

10000 0.4245 0.0630 0.4167 0.2093 0.0310 0.2000 0.0972 0.0141 0.0893 0.1203 0.0133 0.1175

S02

1000 0.4363 0.0646 0.4231 0.2344 0.0410 0.2246 0.1857 0.0272 0.1777 0.1432 0.0255 0.1401

5000 0.4172 0.0609 0.4136 0.2109 0.0307 0.2180 0.1197 0.0177 0.1155 0.1365 0.0157 0.1281

10000 0.4245 0.0630 0.4167 0.2084 0.0310 0.2050 0.0972 0.0154 0.0955 0.1223 0.0144 0.1142

S03

1000 0.4406 0.0646 0.4231 0.2325 0.0410 0.2228 0.1875 0.0256 0.1755 0.1211 0.0231 0.1173

5000 0.4214 0.0609 0.4136 0.2130 0.0307 0.2089 0.1209 0.0169 0.1176 0.1135 0.0155 0.1105

10000 0.4287 0.0630 0.4167 0.2115 0.0310 0.2085 0.0982 0.0141 0.0899 0.1059 0.0137 0.0975

S04

1000 0.4543 0.0148 0.4230 0.2397 0.0246 0.2355 0.1933 0.0249 0.1822 0.1447 0.0233 0.1344

5000 0.4345 0.0092 0.4136 0.2196 0.0043 0.2147 0.1246 0.0212 0.1199 0.1314 0.0217 0.1280

10000 0.4421 0.0147 0.4167 0.2180 0.0069 0.2110 0.1012 0.0210 0.0993 0.1063 0.0207 0.1023

S05

1000 0.4364 0.0646 0.4233 0.3660 0.0411 0.2303 0.1858 0.0272 0.1845 0.1714 0.0233 0.1685

5000 0.4173 0.0609 0.4137 0.3332 0.0307 0.2109 0.1198 0.0173 0.1106 0.1565 0.0117 0.1481
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In the Case-II, Performance Improvement Rate (%) is

based on makespan, throughput and degree of imbalance of

the HGDCS algorithm as it compares to the ACO, ABC,

GA, LCA, PSO, SA and CS meta-heuristic algorithms are

presented in Tables 14, 15 and 16 correspondingly. In the

case of makespan, HGDCS algorithm shows the 6.51%

makespan improvement on CS algorithm and the 33.79%

makespan improvements on SA algorithm. Similarly,

HGDCS algorithm produces the 9.80% throughput

improvement on CS algorithm, also the 44.68% makespan

improvement on GA algorithm. In the same way, HGDCS

algorithm offers the 22.38% for the improvements of

degree of imbalance on CS algorithm and the 67.41% for

the improvements of degree of imbalance on GA algo-

rithm. This identifies that the HGDCS algorithm performs

better in terms of makespan, throughput and degree of

imbalance for resource scheduling in IaaS cloud

computing.

The novelty of the proposed approach in terms of local

search trap, global search tarp, processing speed, selection

criteria, scalability and robustness are shown in Table 17.

The processing speed is based on execution of task suc-

cessfully and measuring scale is as (Fastest: 0–10 min,

Fast: 10–25 min, Medium: 25–1 h and Slow: 1 h and

Table 13 continued

Algorithm PSO SA CS HGDCS

Statistical dispersion/number of

cloudlets

�x σ Best �x σ Best �x σ Best �x σ Best

10000 0.4245 0.0630 0.4168 0.3278 0.0310 0.2094 0.0973 0.0141 0.0956 0.1466 0.0107 0.1424

S06

1000 0.6232 0.0143 0.4273 0.3289 0.0250 0.3122 0.2653 0.0349 0.2068 0.1690 0.0293 0.1647

5000 0.5960 0.0091 0.4135 0.3012 0.0044 0.2938 0.1710 0.0312 0.1669 0.1552 0.0277 0.1523

10000 0.6064 0.0143 0.4131 0.2991 0.0067 0.2758 0.1389 0.0310 0.1265 0.1394 0.0207 0.1225

S01 uniform distribution, S02 normal distribution, S03 left skewed, S04 right skewed, S05 HPC2N, S06 NASA

Table 14 Performance improvement rate (%) on makespan in Case-II

ACO ABC GA LCA PSO SA CS HGDCS

Total makespan 1,259,749.58 1,054,483.83 1,377,928.31 1,051,228.28 1,061,096.86 1,356,676.35 960,867.96 898,285.85

PIR over ACO – 16.29 −9.38 16.55 15.77 −7.69 23.73 28.69

PIR over ABC – – −30.67 0.31 −0.63 −28.66 8.88 14.81

PIR over GA – – – 23.71 22.99 1.54 30.27 34.81

PIR over LCA – – – – −0.94 −29.06 8.60 14.55

PIR over PSO – – – – – −27.86 9.45 15.34

PIR over SA – – – – – – 29.17 33.79

PIR over CS – – – – – – – 6.51

Table 15 Performance improvement rate (%) on throughput in Case-II

ACO ABC GA LCA PSO SA CS HGDCS

Total throughput 6,477,793.19 6,518,675.90 7,701,770.95 5,675,931.80 6,277,924.25 7,139,316.41 4,723,356.45 4,260,323.12

PIR over ACO – −0.63 −18.89 12.38 3.09 −10.21 27.08 34.23

PIR over ABC – – −18.15 12.93 3.69 −9.52 27.54 34.64

PIR over GA – – – 26.30 18.49 7.30 38.67 44.68

PIR over LCA – – – – −10.61 −25.78 16.78 24.94

PIR over PSO – – – – – −13.72 24.76 32.14

PIR over SA – – – – – – 33.84 40.33

PIR over CS – – – – – – – 9.80
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more). The robustness measure in terms of standard devi-

ation with measuring scale is as (Highest: 0–10 values,

High: 10–20 values, Medium: 20–30 values and Low: 30 or

more values). The results in Table 17 show that the pro-

posed HGDCS algorithm competes all the features delib-

erated in Table 17 with the previous meta-heuristic

algorithms. However, HGDCS algorithm outperforms in

terms of processing speed, and robustness.

The HGDCS algorithm uses the beneficial information

of the best solution, to accelerate the convergence speed

and enhance its capacity for handling the optimization of

resource scheduling problematic issue in IaaS cloud com-

puting. The results obtained using the HGDCS algorithm

for resource scheduling may yield better solutions than

other existing meta-heuristic algorithms, which demon-

strate the effectiveness and robustness of HGDCS algo-

rithm. After the performance evaluation, we suggest that

the HGDCS algorithm is potentially a powerful search and

optimization technique for resolving the complex prob-

lematic issues of resource scheduling in IaaS cloud

computing.

The efficient searching of HGDCS algorithm due to the

GD approach supporting the local search and improves the

convergence rate. Due to the ideal features of HGDCS

algorithm including the satisfaction of global search

through Levy Flights, supporting the global search provide

the optimal solution for resource scheduling in both sce-

narios. Moreover, there are still open loopholes are remain

for improving HGDCS algorithm, including how to design

self-adaptive, alteration of parameters and control these

achievements for best performance. The simulation results

and statistical analysis show that the proposed HGDCS

algorithm is significantly performed better than the original

CS algorithm and rest of the compared algorithms

according to achieve the high performance. Therefore, it

will be very useful to carry out large world scale applica-

tions for resource scheduling in IaaS cloud computing.

8 Conclusion and recommendations

Scheduling of resources is an NP-hard problem in IaaS

cloud computing environment. The execution of tasks

silently relies on the schedule of resources to be executed

effectively. This paper provides the overview of resource

scheduling problem, propose the HGDCS algorithm and

Table 16 Performance

improvement rate (%) on degree

of imbalance in Case-II

ACO ABC GA LCA PSO SA CS HGDCS

Total

makespan

19.95 13.68 20.66 13.70 25.02 13.28 10.51 8.15

PIR over ACO – 31.41 −3.57 31.34 −25.44 33.45 47.33 59.12

PIR over ABC – – −51.00 −0.10 −82.88 2.97 23.22 40.40

PIR over GA – – – 33.71 −21.11 35.74 49.15 60.53

PIR over LCA – – – – −82.69 3.07 23.29 40.46

PIR over PSO – – – – – 46.94 58.01 67.41

PIR over SA – – – – – – 20.86 38.57

PIR over CS – – – – – – – 22.38

Table 17 Significance analysis of meta-heuristic algorithms for resource scheduling in IaaS cloud computing

Algorithms

Features

ACO ABC GA LCA PSO SA CS HGDCS

Local search

trap

Yes Yes No No No No No No

Global search

trap

No No No No No Yes No No

Processing

speed

Slow Medium Slow Fast Medium Medium Fast Fastest

Selection

criteria

Random

selection

Random

selection

Random

selection

Random

selection

Random

selection

Random

selection

Random

walk

Gradient and random

isotropic

Scalability No No No Yes No No Yes Yes

Robustness Medium Medium Medium Medium Low Medium High Highest
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discusses it with respect to convergence speed and per-

formance. This paper also presents a performance com-

parison of meta-heuristic algorithms, which includes the

ACO, ABC, GA, LCA, PSO, SA and original CS algo-

rithms with HGDCS algorithm for solving and optimizing

the resource scheduling problems in IaaS cloud computing.

This paper compares the makespan, throughput, degree of

imbalance and performance improvement rate of each

algorithm applicable for cloud computing system. Simu-

lation results are presented with the help of graphical

representation and statistical analysis, which indicate that

proposed HGDCS algorithm is efficient and outperform

than existing meta-heuristic algorithms for optimal

resource scheduling in cloud computing environment.

Time/Space complexity, additional cases and comparison

of the proposed algorithm with existing meta-heuristic

algorithms are required. In the future, we will enhance the

CS algorithms for multi-objective resource scheduling in

IaaS cloud computing. It can also help to provide solutions

for the certain problem in cloud computing like decision

making, security, green computing (heat and energy con-

sumption), big data (storage), etc.
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