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Population-based optimization algorithms have been successfully applied to hydrological forecasting
recently owing to their powerful ability of global optimization. This paper investigates three algorithms,
i.e. differential evolution (DE), artificial bee colony (ABC) and ant colony optimization (ACO), to deter-
mine the optimal one for forecasting downstream river flow. A hybrid neural network (HNN) model,
which incorporates fuzzy pattern-recognition and a continuity equation into the artificial neural net-
work, is proposed to forecast downstream river flow based on upstream river flows and areal pre-
cipitation. The optimization algorithm is employed to determine the premise parameters of the HNN
model. Daily data from the Altamaha River basin of Georgia is applied in the forecasting analysis. Dis-
cussions on the forecasting performances, convergence speed and stability of various algorithms are
presented. For completeness' sake, particle swarm optimization (PSO) is included as a benchmark case
for the comparison of forecasting performances. Results show that the DE algorithm attains the best
performance in generalization and forecasting. The forecasting accuracy of the DE algorithm is com-
parable to that of the PSO, and yet presents weak superiority over the ABC and ACO. The Diebold–
Mariano (DM) test indicates that each pair of algorithms has no difference under the null hypothesis of
equal forecasting accuracy. The DE and ACO algorithms are both favorable for searching parameters of
the HNN model, including the recession coefficient and initial storage. Further analysis reveals the
drawback of slow convergence and time-consumption of the ABC algorithm. The three algorithms pre-
sent stability and reliability with respect to their control parameters on the whole. It can be concluded
that the DE and ACO algorithms are considerably more adaptive in optimizing the forecasting problem
for the HNN model.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

River flow forecasting is a prerequisite for many water resource
applications such as flood warning and reservoir design. The hydr-
ological process of river flows is so complex that simple data-
driven models are not able to describe its behavior. It is therefore
worth investigating suitable models for the highly-nonlinear and
seasonal river flows. The reasoning ability of fuzzy-based neural
networks has led to an increasing interest within the hydrology
community. So far a number of neuro-fuzzy computing techniques
and fuzzy set theories have already been applied in hydrological
modeling (Li and Chen, 2010; Tabari et al., 2012; Rath et al., 2013).
Incorporating a fuzzy concept activation function into an artificial
au).
neural network (ANN) model is a good alternative to the latter
since the former can be flexibly implemented. Qiu et al. (1998)
introduced a fuzzy pattern-recognition activation function (from
the input layer to the hidden layer) into an ANN model to forecast
annual runoff. This function classified runoff into a number of
categories during wet and dry seasons, and therefore reflected
nonlinear and seasonal characteristics of the river system. Zhao
and Chen (2008) developed a mixed forecasting model combining
neural networks with fuzzy pattern-recognition, considering the
fuzziness in the concept of similar basins. This practice, in which
activation functions in the ANN structure are modified with chara-
cterization, is more easily executed and also addresses the fuzzy
behavior of river flows. In this paper, this type of fuzzy pattern-
recognition activation function is introduced into a hybrid neural
network (HNN) model, representing uncertainties of the river flow
problem.
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As an important issue in hydrological modeling, conceptual
models have been developed for river flow forecasting over the
past few decades. Rainfall-runoff models have extensively emer-
ged in river flow forecasting by considering simplified forms of
physical laws (Moore, 2007; Bhadra et al., 2010; Rezaeianzadeh
et al., 2013). Another practical approach is to directly integrate
physical equations into the ANN models. Yang et al. (1998)
developed a hydrological modeling network (HYMN) model using
the continuity equation and considering nodes in the hidden or
output layers as storage reservoirs. This method has been suc-
cessful applied to compute the monthly river flow at the Salford
University station in the Irwell River basin using daily evaporation
data and precipitation records from six upstream stations. Li and
Gu (2003) further expanded the HYMN model to sediment yield
forecasting. These investigations are rather limited, whereas they
attain the possibility of directly integrating fundamental physical
principles into an ANN structure. This paper contributes to
assembling the fuzzy pattern-recognition concept and continuity
equation into the ANN framework, with an explicit emphasis on
the seasonal and non-stationary features of the river flows.

The proposed forecasting model is highly nonlinear and vary-
ing with time. Traditional optimization algorithms, e.g. the Gauss–
Newton algorithm and gradient descent method are not appli-
cable for this non-differentiable and multi-dimensional problem.
Recently, population-based optimization algorithms have attracted
the interest of many researchers (Blum and Roli, 2003; Chiong
et al., 2012). They are characterized by a population consisting of
possible solutions to the problem, which are modified by appl-
ying different types of operators and thus moving towards a near-
optimal solution area. These algorithms are very powerful in
finding a global optimum since they simultaneously search in
many directions by using a population of possible solutions. Gene-
rally, there are two categories of population-based optimization
algorithms: evolutionary algorithms and swarm intelligence
algorithms (Blum et al., 2012). Typical methods of evolutionary
algorithms are the genetic algorithm (GA) and differential evolu-
tion (DE), which attempt to simulate natural evolution. The DE
algorithm was proposed by Storn and Price (1995) and has been
applied extensively in hydrological modeling (e.g., Babu and
Angira, 2003; Vasan and Simonovic, 2010; Liu and Pender, 2013). It
shows better performances than the GA in terms of convergence
characteristics and computational efficiency (Wang et al., 2008; Li
et al., 2013; Song et al., 2014). In view of its ability to handle
optimization problems that are non-differentiable, nonlinear, non-
continuous and varying with time (Rocca et al., 2011), it is adopted
in this paper for the comparative study.

The second category, swarm intelligence-based algorithms are
inspired by the collective behavior of animal societies, including
particle swarm optimization (PSO), artificial bee colony (ABC) and
ant colony optimization (ACO). This paper focuses on ABC and ACO
as stochastic global optimization algorithms. The ABC algorithm
was introduced and popularized by Karaboga (2005) to solve
numerical optimization problems. It has predictive capability
comparable to the GA, PSO and DE algorithms on numerical test
functions (Karaboga and Akay, 2009). Hybrid models that combine
ABC algorithms with ANNs have been developed recently (Kar-
aboga et al., 2007; Kisi et al., 2012). The ABC algorithm has been
found to apply in many fields, e.g. HVAC systems (Zhang et al.,
2013), reservoir optimum problems (Hossain and El-shafie, 2013)
and protein structure optimization (Li et al., 2015). Another
swarm-based optimization method ACO was derived from the
food searching behavior of ants (Dorigo et al., 1996). Similar to the
ABC algorithm, it is a meta-heuristic technique available to solve
non-linear optimization problems with high dimensionality and
inequality constraints. Coupling ACO algorithms with feed-forward
neural network training has proven to be successful (Li and Chung,
2005; Shelokar et al., 2007; Socha and Blum, 2007). The potential
to apply ACO to the field of river flow forecasting is clear, e.g., see
its application in water resource problems (Maier et al., 2003; Jalali
et al., 2006; Kumar and Reddy, 2006).

Optimization of neural networks has always been an open
research. It is imperative to solve the disadvantages of traditional
learning algorithms, such as poor generalization, slow conver-
gence speed and easily plunging into local optima. The main
objective of this paper is therefore to incorporate population-
based optimization algorithms (i.e. DE, ABC and ACO) into a HNN
model and compare their optimization ability, stability and relia-
bility, and thereby determine the most adaptive optimization
algorithm for the river flow forecasting problem.

The rest of this paper is structured in the following manner. A
description of the HNN model for downstream river flow forecast-
ing is presented in Section 2. In Section 3, a brief review of the three
population-based optimization algorithms is provided. Section 4
introduces the case study site, while Section 5 summaries the
computational results and comparisons of different optimization
algorithms. Finally, the conclusion is reported in Section 6.
2. Hybrid neural network (HNN) model

The ANN is an efficient data-driven model for real-time fore-
casting. For a typical three-layer feed-forward ANN, the nodes in
the input layer (input data introduced to the network) are linked
with a predetermined activation function to those in the hidden
layer, and then to the nodes in the output layer with a similar
operation. An objective function with premise parameters (to be
adjusted) is defined by comparing the difference between com-
puted and target outputs. The fitness value of the objective func-
tion as well as associated parameters has to be adapted in the
calibration process using optimization techniques. The optimal
parameters are, therefore, determined corresponding to the most
approximate computed outputs. Usually tan-sigmoid and linear
functions are adopted as the activation functions to capture the
relation of nodes between two layers. Nonetheless, they have no
physical meanings and render the ANN a real 'black-box' model,
and therefore, are unsuitable for the forecasting of river flows, due
to the nonlinearity, non-stationary and seasonal behavior of river
flows. It is essential to describe the hydrological processes through
an adequate nonlinear and fuzzy model.

In the HNN model, the framework of the traditional ANN with
three layers is maintained and, yet, activation functions with
special significance are introduced. A conceptual function with
fuzzy pattern-recognition idea from the input layer to the hidden
layer is defined as follows

Qi ¼
1

PC
l ¼ 1

Pk
j ¼ 1

wji Qin
j �Mi

� �� �2
Pk
j ¼ 1

wji Qin
j �Ml

� �� �2
ð1Þ

wherein Qi (i¼1, 2, …, s) are nodes in the hidden layer and Qin
j

(j¼1, 2, …, k) denote nodes in the input layer. The parameter wji

stands for weight parameter from the input layer to the hidden
layer. A model vector is defined as M ¼ ½Mi� ¼ ½Ml� in the hidden
layer. The corresponding parameter C refers to the number of
elements in the model vector. Note that C is the number of nodes
in the hidden layer as well (i.e. C¼s). Based on this activation
function, the nodes in the hidden layers are elaborated by classi-
fying the inputs into a number of categories. A higher value of C
implies that there will be more categories in the hidden layer,
which therefore represents a higher degree of nonlinearity of the
model. In this paper, C¼11 and M¼[1.0, 0.9, …, 0.1, 0] are adopted
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to obtain fuzzified nodes in the hidden layer. The largest mem-
bership value 1.0 represents the “wet” model in wet season and
the smallest value 0 represents the “dry” model in dry season,
respectively. Thus seasonal effects and fuzzy features are accen-
tuated using the membership function.

The ensuing task is to compute the nodes in the output layer
which are represented by storage reservoirs, that receive flows
from upstream river reaches. The process is akin to that the nodes
in the output layer acquire their values from nodes in the hidden
layer. By using the continuity equation, the downstream river
flows is computed as follows

∂Sh
∂T

¼
Xs
i ¼ 1

wihQi�Qh ð2Þ

where S corresponds to water storage, Q is water discharge and T is
time. Meanwhile, i (1, 2, …, s) refer to the reservoirs in the hidden
layer and h (1, 2, …, r) refer to the reservoirs in the output layer.
The fraction of water from a reservoir in the hidden layer entering
into a reservoir in the output layer is denoted by wih. The con-
tinuity equation is employed to model the process of upstream
water flowing towards downstream sections.

By discretizing Eq. (2), the water storage S in the output layer at
time TþΔT is expressed in the following equation:

ShðTþΔTÞ ¼ ShðTÞ þ
Xs
i ¼ 1

wihQiðTÞ �QhðTÞ

 !
�ΔT ð3Þ

The parameter ΔT is the time step, representing the time of
flows from the hidden layer to the output layer. After having
introduced the following two parameters

PhðTÞ ¼
Xs
i ¼ 1

wihQiðTÞ �ΔT ð4Þ

λhðTÞ ¼ 1�QhðTÞ �ΔT
ShðTÞ þPhðTÞ

ð5Þ

Eq. (3) is simplified as follows

ShðTþΔTÞ ¼ λhðTÞ � ðShðTÞ þPhðTÞÞ ð6Þ
where λh is regarded as a recession coefficient and assumed to be
independent of time (Yang et al., 1998). The computation of water
storage is facilitated by a recession coefficient, which represents
the storage capability of the reservoir. The initial water storage
Sh ðT ¼ 0Þ of each reservoir is prescribed before the computation,
and the storage at any given time can be computed from the initial
one in every time step. Thus, the storage becomes viable once the
initial storage and time step are determined. Considering the
nonlinear relation between the discharge and the storage of the
reservoirs, the discharge in the output layer is evaluated by the
following equation:

Qout
hðTþΔTÞ ¼

1
1þexp �ðShðTþΔTÞ þPhðTþΔTÞÞ

� � ð7Þ

This nonlinear function is represented by an empirical
expression (Yang et al., 1998), revealing the nonlinear feature of
the reservoir. It is noted that the water storage is a time-varying
parameter, indicating that the current discharge would be affected
by the previous storage. This incorporates the physical phenom-
enon of flow in a river basin in which larger storage in the wet
season will result in higher discharge. Assuming flows from the
hidden layer reach reservoirs in the output layer with time step
ΔT, the storage of the reservoirs is computed from Eq. (6) and the
eventual discharge becomes the output.

The implementation of the HNN model is accomplished by
integrating the fuzzy pattern-recognition and continuity equation
into the neural network. The superiority to traditional ANNs is
attributed to the consideration of the fuzzy behavior of river flows
as well as the storage capability of observed river stations. To
conduct the forecasting, three kinds of parameters are necessarily
determined: weight parameters wji and wih; recession coefficients
λh and initial storages ShðT ¼ 0Þ for the reservoirs in the output layer.
In this study, there is only one desired output, that is, the reservoir
in the output layer (h¼1). The corresponding set of optimization
parameters is w11;…;wks;w11;…;ws1; λ; SðT ¼ 0Þ

� �
. The training of

the HNN model is characterized as a process of searching the
optimal combination of parameters in their solution spaces.
3. Population-based optimization algorithms

3.1. Differential evolution algorithm

The DE algorithm conducts mutation, crossover and selection
operations based on the differences of randomly sampled pairs of
solutions in the population. Mutation operation acts as a search
mechanism while the crossover operator recombines the parent
vector with the mutated one. Afterwards, all solutions have an
equal chance of being selected as parent. The strategies are
described as follows.

Firstly, define a population of D dimensional parameter vec-
tors, with NP population size. Each individual (target vector) for
generation G is then represented as Xi,G (i¼1, 2, …, NP) and Xi;G

¼ fxi1;G; xi2;G;…; xiD;Gg constitutes all parameters to be optimized.
Donor vector in the next generation Vi,Gþ1 is generated from
three randomly selected vectors Xr1,G, Xr2,G and Xr3,G as follows

Vi;Gþ1 ¼ Xr1;GþFðXr2;G�Xr3;GÞ ð8Þ

in which F acts as a mutation factor which is a random number
uniformly distributed within the range [0, 2]. The randomly
selected indexes r1, r2, r3 ϵ {1, 2, …, NP} must be different from
one another and from the running index i as well.

The crossover operation defines a trial vector Ui;Gþ1 ¼ fui1; Gþ
1;ui2;Gþ1;…;uiD;Gþ1g as follows

uij;Gþ1 ¼
vij;Gþ1 if randijrCR or j¼ Irand
xij;G if randij4CR and ja Irand

(
ð9Þ

where j¼1, 2, …, D; CR is a crossover constant in the range of [0,
1]; randij is a random number within 0 and 1; and Irand is a random
index from [1, 2, …, D], ensuring that at least one element in the
trial vector is obtained from Vi;G. The change of the diversity of the
population is controlled by the CR value.

The selection operation chooses the vector in the next gen-
eration by the following equation for a minimizing problem

Xi;Gþ1 ¼
Ui;Gþ1 if f ðUi;Gþ1Þr f ðXi;GÞ
Xi;G otherwise

(
ð10Þ

in which the objective function associated with Xi;G is denoted as
f ðXi;GÞ. In other words, when comparing the target vector with the
trial vector, a lower function yielding value is admitted to the
succeeding generation. In general, DE algorithm is a comparatively
simple algorithm because only three control parameters (i.e. NP, F
and CR) are required to be prescribed.

3.2. Artificial bee colony

The ABC algorithm draws its inspiration from the foraging
behavior of honey bee swarms. A possible solution of the opti-
mization problem is viewed as a food source for the artificial bees.
In the foraging process, bees interact with each other aiming to
maximize the nectar amount of the food source. The distribution
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and duties of grouped employed, onlooker and scout bees have
been described in detail (Karaboga and Akay, 2009).

In this scheme, a population of food source position
{X1,X2, …,XNP} is initialized randomly. NP denotes the number of
population, and refers to the number of food sources as well. Each
food source Xi ¼ fxi1; xi2;…; xiDg is a D-dimensional vector, con-
taining D variables for the optimal problem. During the employed
bees’ phase, a neighbor solution vij is generated from an original
one xij by the following equation

vij ¼ xijþrandð�1;1Þ � ðxij�xkjÞ ð11Þ

where the subscript j ϵ [1, D] are randomly chosen indexes and k ϵ
[1, NP] is a random neighbor index which should be different from
i. After evaluating the new neighbor and original solution by the
fitness value of the optimal problem, the better solution will be
kept in the population. Employed bees will then transmit the
information concerned with the source to the onlooker bees. The
onlooker bees employ a roulette-wheel like selection depending
on a probability value as follows

pi ¼
f ðXiÞPNP

k ¼ 1 f ðXkÞ
ð12Þ

where f ðXiÞ is the fitness value of the solution Xi. The probability
value pi is proportional to the fitness value for a selected solution.
If pi is larger than a random number drawn for each solution
within the range [0, 1], the onlooker bees will make a local search
as in Eq. (11) to find a neighbor solution. During the employed and
onlooker bees' phases, when the nectar of a food source being
exploited is exhausted, the source will be abandoned. That is, if the
original solution is kept and not replaced by a new neighbor one
for exceeding a prescribed number of cycles, namely Limit, it is
postulated to be an exhausted one and has to be replaced by a new
random solution. The scout bees determine a new food source by
the following expression:

xij ¼ xmin
j þrandð0;1Þ � ðxmax

j �xmin
j Þ ð13Þ

in which, xmin
j and xmax

j are the minimum and maximum value of
the corresponding solution, respectively. Similarly, the new solu-
tion will be evaluated and compared with the existing one. The
solution with a “rich source” (minimum fitness value) will be
selected as the optimal one. There are two control parameters in
an ABC algorithm: NP and Limit.

3.3. Ant colony optimization

The ACO algorithm simulates ants' behavior in which their
fundamental objectives are to find the shortest path between food
source and their nest. There is a hypothetical chemical substance
named pheromone laid by other ants in their trails, which works
as a communication mechanism. The ants will choose paths inde-
pendently according to the pheromone intensity. For a specific
solution component, if its pheromone value is higher, it is more
likely to be selected. The pheromone value will be reinforced if the
corresponding solution component belongs to the best solution.
The following discussion outlines the basic concept of the ACO
algorithm.
Table 1
Pheromone table for each parameter in ACO algorithm.

xj(j¼1, 2,…, D)

Tag 1 2 … N

Solution component aj1 aj2 … ajN
Pheromone intensity τj1 τj2 … τjN
Given that there are D parameters to be optimized in the search
space. Each parameter's definition space is split into a set of dis-
crete points. As shown in Table 1, for parameter xj (j¼1, 2, …, D)
within a range of [aj1, ajN], there are totally N discrete points when
the feasible range is uniformly divided into N�1 shares. Each
point corresponds to a candidate value of the parameter, namely
solution component ajk (k¼1, 2, …, N). Suppose an ant i (i¼1, 2, …,
NP) is on its path to search D parameters, it can only choose a value
for each parameter among the candidate points and record the
corresponding tag. In the meantime, the pheromone intensity is
needed for each candidate point, represented by τjk for tag k.
When an ant reaches the parameter xj, each solution component
has the following probability to be selected

pjk ¼
τjkP

1rmrN
τjm

ð14Þ

With probability value larger than a random value within the
range [0, 1], the corresponding point ajk will be selected for this
parameter. After the ant finishes its tour and all parameters are
selected as Xi¼{x1, x2,…, xD}, it will return to its nest and update
the pheromone intensity according to the following equations:

τjkðiþ1Þ ¼ ρτjkðiÞþΔτjk ð15Þ

Δτjk ¼
Q=f ðXiÞ if ajk is selected as xj and belongs to Xi

0 else

�
ð16Þ

The first term in the right hand side of Eq. (15) reflects an
evaporation process in which ρ ϵ [0, 1] is the coefficient of pher-
omone duration. The second term indicates the reinforcement in
which Δτjk is the amount of pheromone retained in the solution
component being a part of Xi. The reinforcement value Δτjk¼0 if
component ajk is not within the best solution. In particular, the
pheromone constant Q in Eq. (16) is an user-defined parameter
which is the same for all ants, and f (Xi) is the fitness value asso-
ciated with Xi. The parameters of the ACO algorithm to be pre-
scribed are respectively NP, N, ρ and Q.

This paper employs population-based algorithm to deal with
the non-differentiable, combinatorial and multi-dimensional
optimization problem for the HNN model. Given that the num-
ber of parameters is D (D¼ k� sþs� 1þ1þ1), i.e. the sum of the
number of wji, wih, λ and SðT ¼ 0Þ, this set of parameters is repre-
sented by a vector Xi. As outlined in Fig. 1, the steps for optimizing
parameters, when taking the DE algorithm as an example, are as
follows: (1) randomly generate a population {X1, X2, …,XNP} within
their interval [xmin

j ; xmax
j ]; (2) define an objective function of the

HNN model and set the running generation G¼1; (3) train the
HNN model with current updated parameters and obtain the
corresponding fitness value of the objective function; (4) apply the
mutation and crossover processes to construct donor and trial
vectors, and finally select one vector with a minimum fitness value
from the trial and target vectors; (5) reset G¼Gþ1; (6) if G4MI
(max iteration), the stopping criterion is satisfied and output the
optimal set of parameters; or go to step (3) and (4) for the next
generation. In particular, for step (4), the configuration of the ABC
and ACO algorithms is demonstrated in Fig. 1 as well. The ABC
algorithm undergoes the employed, onlooker and scout bees'
phases orderly. As for the case of the ACO algorithm, firstly set i¼1
and initialize equal pheromone intensity; release ant Xi, and let it
select a candidate value for all D parameters; update the pher-
omone intensity and reset i¼ iþ1; if io¼NP, release the suc-
ceeding ant and begin its tour, otherwise all ants have finished the
search. All these three techniques show an easy realization in the
process of optimizing parameters of the HNN model.



Fig. 1. Framework for optimizing parameters by (a) DE (b) ABC (c) ACO algorithm.

Fig. 2. Locations of four observed river stations along Yellow River in Altamaha
River basin.
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4. Study case and data preparation

The study area for the present study is the Altamaha River
basin, situated on the Atlantic coast in the U.S. state of Georgia.
The Yellow River flows southward in the basin, as a tributary of the
Ocmulgee River. The locations of four river stations along the
Yellow River in the watershed are shown in Fig. 2. Daily river
discharge and precipitation data is taken from these four hydro-
logical stations. The simplified letters Q and P refer to discharge
and precipitation, respectively. In addition, Table 2 provides the
identity (ID), name, location and elevation of each station.

The input variable selection is critical to the performance of
neural networks (Hu et al., 2015a, 2015b; Xiong et al., 2015). For a
river system, the simulation of target outflows with appropriate
upstream inputs is desirable to avoid flooding on the downstream
site during the rainy season. Apart from upstream river flows, areal
precipitation over a river basin has been pronounced as a powerful
influence on river flows as well (Jiang et al., 2007; Jena et al., 2014;
Rezaeianzadeh et al., 2014). The objective of this study is to fore-
cast daily discharge in station 02208000, i.e. Q1, based on dis-
charges from three upstream stations (Q2, Q3 and Q4) and the
areal precipitation AP. The time step ΔT is recognized as 1 day
since the travel time of flow from station 02207335 to 02208000 is
roughly 16 h. Therefore, the HNN model provides a one-day-ahead
forecast for the flow in station 02208000. It is a one-step-head
forecasting for this river basin. Since multi-step-ahead forecasting
is important as well for this comparative study (Taieb et al., 2012;
Xiong et al., 2013; Bao et al., 2014b, 2014a), we will compare the
optimization algorithms from the perspective of multi-step-ahead
forecasting in another study case in the future.

The areal precipitation over the river basin is computed by the
Thiessen polygon method, details of which can be found in Sen
(1998). In this study case, the weight factors taken up by each
polygon of the basin are 0.218, 0.296, 0.141 and 0.345, respect-
ively, for the four observed stations from 02207120 to 02208000.
Thus areal precipitation is computed as a weighted precipitation of
these four stations. As a smoothly averaged precipitation over the
river basin, areal precipitation is adopted as an effective input
variable to compute downstream river flow.

Daily dataset of four years spanned from 2010 to 2013 is col-
lected as an example (from the USGS website http://waterdata.
usgs.gov/ga/nwis/rt). It is important to note that the discharge and
precipitation time series are characterized by high nonlinearity,
non-stationary and seasonal behavior. In order to examine the
generalization and forecasting ability of the model, the data are
separated into training, validation and testing sets. The data for the
training period are from 1st January 2010 to 31st December 2011,
taking roughly 50% of all data. Data in the year 2012 are set aside
for validation to ensure that the network does not over-fit the
training data. It is carried out by strictly terminating the training at
the point where the error in the validation set begins to rise. The
remaining data are utilized to gauge the forecasting performance
in the testing period.

http://waterdata.usgs.gov/ga/nwis/rt
http://waterdata.usgs.gov/ga/nwis/rt


Table 3
Training and testing performances of various algorithms in terms of RMSE, NSCE
and ACC.

Algorithm Training Testing

RMSE(m3/s) NSEC ACC RMSE(m3/s) NSEC ACC

DE 2.5534 0.9812 0.7627 8.1500 0.8294 0.7937
ABC 3.0827 0.9727 0.7279 9.0319 0.7905 0.7905
ACO 2.8174 0.9772 0.7658 8.8573 0.7985 0.7853
PSO 2.8306 0.9769 0.7139 8.1502 0.8294 0.8150

Table 2
Stations' ID, name, location and elevation along Yellow River.

Station ID Station name Latitude Longitude Elevation (above NGVD29)

02207120 Yellow River at GA 124, near Lithonia 33°46022″N 84°03030″W 222.504 m
02207220 Yellow River at Pleasant Hill road, near Lithonia 33°44001″N 84°03043″W 213.735 m
02207335 Yellow River at Gees Mill road 33°40001″N 83°56017″W 192.368 m
02208000 Yellow River at Rocky Plains road 33°29059.5″N 83°53003″W 164.592 m
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5. Results and discussion

A complete assessment of model performances is performed
employing three evaluation measures. These include: the root
mean square error (RMSE), the Nash–Sutcliffe efficiency coefficient
(NSEC) and the accuracy (ACC). They are formulated as follows:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i ¼ 1

ðQi�Q̂ iÞ2
vuut ð17Þ

NSEC ¼ 1�
XN
i ¼ 1

ðQi�Q̂ iÞ2=
XN
i ¼ 1

ðQi�Q Þ2 ð18Þ

ACC¼ 1� 1
N

XN
i ¼ 1

Qi�Q̂ i




 



Qi

ð19Þ

in which Qi and Q̂ i are respectively observed and computed dis-
charges, Q is the averaged observed data, and N is the number of
observations. The RMSE is an absolute error measure and a lower
value indicates better performance while NSEC and ACC values of
1 suggest perfect fits.

In the following, the generalization and forecasting perfor-
mances of the HNN model are investigated by contrasting different
optimization algorithms. Section 5.2 then gives a detailed analysis
on the convergence speed and the ability of parameter optimiza-
tion. Finally, the stability of each algorithm is discussed since the
control parameters are of great concern. All three algorithms are
implemented in Matlab on an x64-based PC processor.

5.1. Comparison of forecasting performances

For completeness' sake, the PSO algorithm is included as a
benchmark case for the comparison of forecasting performances.
Table 3 provides the training and testing performances of various
algorithms in terms of RMSE, NSEC and ACC. The DE algorithm
outperforms its counterparts in both training and testing period
with respect to RMSE and NSEC values. The high value of NSEC
(0.8294) in the testing period suggests that DE algorithm can be
well combined with the HNN model for the forecasting. Although
obtaining a lower ACC value than the PSO in the testing stage, the
DE algorithm displays excellent performances of generalization
and forecasting. It is apparent that the HNN model is fully trained
to provide sufficiently accurate forecasting by the DE algorithm.
The advantage of the DE over the ABC algorithm is relatively
evident, as there is a 9.76% reduction in RMSE value and 4.92%
increase in NSEC value in the testing period. When compared with
the PSO algorithm, ABC does not show superiority in this study
case. Comparison of performances between DE and ACO implies
that the ACO algorithm can be recommended as an effective
method as well. It has comparable performances with the PSO
algorithm, particularly for the RMSE and ACC values in the training
period. For the perspective of various algorithms, the HNN model
superbly captures the input–output mapping when optimized
with population-based optimization algorithms. To obtain the
above results, parameters used are: MI¼500, NP¼550, F¼0.4 and
CR¼1.0 in the DE algorithm; MI¼2000, NP¼440 and Limit¼214 in
the ABC algorithm; MI¼500, NP¼780, N¼45, ρ¼0.3 and Q¼1.0 in
the ACO algorithm.

The scatter plots of observed and computed discharges by these
four algorithms are presented in Fig. 3. The HNN model exhibits
good matches between the observed and computed data series in
the testing period. The plots of intensively distributed dots along
the ideal line within 0–50 m3/s suggest that the low river flows are
mostly well forecasted. This is because the frequent occurrences of
low values allow a better generalization of the trained model. The
performance of the ABC algorithm is not as good comparing to the
DE, ACO and PSO with the evidence of five apparent dots over-
forecasting with a range of 113–226 m3/s. The result is consistent
with the high RMSE value of 9.0319 m3/s in Table 3. The
improvement of performances for the DE over ACO algorithm is
not obvious from the scatter plots.

The capability of capturing extreme values is critical to evaluate
the performance of the HNN model. Fig. 4 presents the time series
of observed and computed discharges by the DE algorithm and
marks five observed extreme points. The quantitative values are
provided in Table 4, along with other algorithms. Whilst the peak
value (extreme point 2) is over-forecasted by all four algorithms,
the DE algorithm produces relatively closer result. It performs well
at extreme point 3 although the forecasted one is slightly under-
estimated. The ACO algorithm gives the most approximate values
for point 4 and 5. The relative mean errors between the computed
and observed extreme values by all four algorithms do not vary
significantly. Accordingly, all four algorithms show equal perfor-
mance on capturing extreme values. They have operators provid-
ing variable step size and diversity, thus can perform the pertur-
bation of the proposed HNN model.

The mean, variance and mean with 95% confident interval by
these four algorithms are provided in Table 5. This statistical
analysis is necessary to check the significance of the differences.
The mean value attained by the PSO algorithm is closer to the
observed one as compared with the others. These four algorithms
obtain higher variance values than the observations, which indi-
cate that the computed results are widely distributed. The most
approximated value to the observations is obtained by the DE
algorithm (16.3556 m3/s) for the mean with 95% confident inter-
val, however, slight discrepancy is observed when compared with
other algorithms. Thus the forecasting performances by these four
optimization algorithms are comparable.

The Diebold–Mariano (DM) test is employed to assess the sta-
tistical significance of the comparison of the results. It is used to
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Fig. 3. Observed and computed discharges of various algorithms in the testing period.
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Fig. 4. Observed and computed discharges by DE algorithm and marked extreme
points for observed discharges.

Table 4
Observed and computed extreme values of various algorithms.

Algorithm Extreme
point 1
(m3/s)

Extreme
point 2
(m3/s)

Extreme
point 3
(m3/s)

Extreme
point 4
(m3/s)

Extreme
point 5
(m3/s)

Relative
mean
error

Observed 89.4811 156.8751 69.6593 49.8376 124.0276
DE 66.4992 219.9800 68.8210 64.1180 117.3200 0.2024
ABC 75.2180 223.3100 67.5240 69.5910 132.1700 0.2151
ACO 54.3910 224.1600 71.0100 61.9400 125.1600 0.2184
PSO 71.8230 223.7800 62.4530 64.5090 115.9200 0.2174

Table 5
Statistical analysis of various algorithms in the testing period.

Algorithm Mean (m3/s) Variance (m6/s2) Mean of 95% confident interval
(m3/s)

Observed 18.6845 389.4509 18.5668
DE 19.2846 453.6750 16.3556
ABC 19.6943 512.7502 16.1543
ACO 18.8421 433.9878 16.0703
PSO 18.5927 441.1913 15.8193

Table 6
DM test for the forecasting accuracy between each pair of algorithms.

Algorithms DE ABC ACO PSO

DE �1.0389 �1.4719 �0.0005
ABC 1.0389 0.1905 1.2904
ACO 1.4719 �0.1905 1.1300
PSO 0.0005 �1.2904 �1.1300
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compare the accuracy of two forecasts, by computing the DM
statistics on the base of the loss differential defined as the differ-
ence of the squared forecast errors (Diebold and Mariano, 1995;
Harvey et al., 1997; Rech, 2002). Under the null hypothesis of
equal forecasting accuracy, the asymptotical distribution of DM is
standard normal. Suppose that the significance level of the test is
0.05, the null hypothesis of no difference will be rejected if the
computed DM statistic falls outside the range of �1.96 to 1.96.
Table 6 provides the DM statistics between each pair of algorithms.
Observation revealed that all the DM statistics are within the
range of [�1.96, 1.96], which give all the algorithm equal chance of
forecast. This supports the reliability of the comparative study of
optimization algorithms. The DM statistics between DE and the
other three algorithms are �1.0389, �1.4719 and �0.0005 respe-
ctively, and these negative values reveal a preference with regard
to the DE algorithm. Inversely, the positive DM statistics between
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Table 7
Running time and values of recession coefficient and initial storage of various
algorithms.

Algorithm Max iteration
(MI)

Running time
(h)

Parameters

Recession coeffi-
cient λ

Initial storage
S(T¼0)

DE 500 3.1 0.3609 0.1327
ABC 2000 29.4 0.3032 0.0532
ACO 500 4.4 0.3864 0.1365
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ABC and the other three algorithms indicate lower accuracy. The
PSO and DE algorithms show almost equal accuracy, as indicated
by the low DM statistic (0.0005). These results are consistent with
the above discussions on forecasting performances.

5.2. Convergence and determination of optimal parameters

Here, the convergence speed of population-based optimization
algorithms is investigated. The training error as a function of running
iteration is illustrated in Fig. 5. The training error decreases rapidly
when the number of iterations is less than 200 and remains approxi-
mately constant when the number of iterations approaches 500 times
for DE and ACO algorithms. That is, these two algorithms can achieve
convergence with 500 time runs. In contrast, the ABC algorithm
reaches the minimum training error after running 2000 iterations. The
minimum training errors produced by these three algorithms are suf-
ficiently small, however, indicating that the precision is satisfactory.
These three algorithms have a powerful global search ability to prevent
the optimization from the premature convergence. As shown in
Table 7, the running times for each algorithm are 3.1, 29.4 and 4.4 h,
respectively. The ABC algorithm displays slow convergence speed, and
thereby, is time consuming. This is mainly due to the localization of the
method itself, in which two phases with equally large population of
bees are assigned in the searching process.

As mentioned above, there are D parameters to be identified,
including weight parameters, the recession coefficient and the
initial storage. Fig. 6 plots the weight parameters from the input
to the hidden layer and vice versa by these three algorithms.
The x axis in Fig. 6(a) represents a set of weight param-
eters w11;w21;w31;w41;w12; ::;w4;11

� �
consisting of 44 parame-

ters while that in Fig. 6(b) represents a set of weight para-
meters w11;w21;w31;…;w11;1

� �
consisting of 11 parameters. The y

axis in Fig. 6 represents the value with respect to each weight
parameter. Although without much regulation, some weight para-
meters produced by different algorithms are quite close to one
another in Fig. 6(a). The ABC algorithm displays a worse perfor-
mance than the other two because quite a number of parameters
are not well searched and distributed around the maximum and
minimum attainable values. This may be explained by the fact that
the best solution discovered by the ABC algorithm is not always
held in the population and it might be replaced with a random
solution by scout bees. Therefore, the contribution of the best
solution may not represent the production of trial solutions as
with the DE and ACO algorithms. In view of those from the hidden
to the output layer in Fig. 6(b), the DE algorithm does not show
superiority. In particular, for the last five parameters, these three
algorithms present competitive capability of optimizing parame-
ters. In addition, as indicated in Table 7, the ABC algorithm obtains
quite different values for the recession coefficient and initial sto-
rage while the DE and ACO algorithms tend to attain reliable
values. Thereby, the DE and ACO algorithms have the feature of
rapid convergence on global optima and high precision in
searching parameters of the HNN model. They are consistently
better than the ABC algorithm in time and derivation efficiency.

5.3. Stability of optimization algorithms

A comprehensive comparative study on the stability of these
three algorithms is further carried out. The parameter of popu-
lation size NP poses a great impact on the performance of
population-based optimization algorithms. A large NP can endow
the algorithms with powerful ability of exploring more possible
solutions, although computationally intensive. Fig. 7 presents the
verification of stability of NP in terms of RMSE of various algo-
rithms. The DE algorithm has an adaptive relation between NP and
RMSE, where the RMSE value gradually decreases with increasing
NP. The choice of NP assures the stability of the DE algorithm. This
is most likely due to donor and trial vectors which provide
diversity of population and thus weaken the dependency of the
performance on population size. The ABC and ACO algorithms
could not reveal such consistency, as NP significantly affects the
RMSE value. Nevertheless, the variation of RMSE with NP is within
a reasonable range.

Mutation factor and crossover constant are two other specific
parameters of the DE algorithm, and their influences on the RMSE
value are demonstrated in Fig. 8. The results of Fig. 8(a) are
obtained with fixed CR¼1.0 while those for Fig. 8(b) are obtained
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with fixed F¼0.4. The best RMSE value is attained when F and CR
are recognized as 0.4 and 1.0, respectively. However, the plots of
RMSE versus F and CR are quite different. As F increases from 0 to
2, RMSE first drops to a minimum value and then begins to
increase. This implies that RMSE is sensitive to F for the DE algo-
rithm. As a basic requirement, the chosen F should be able to
provide a diversity of mutated vectors. With respect to CR, RMSE
decreases sharply from 0 to 0.1, and fluctuates within a narrow
range when CR increases. The DE algorithm presents a certain
degree of stability and reliability in terms of CR within the interval
between [0.1, 1.0].
Limit is an inclusive control parameter for the ABC algorithm,
which governs the number of scout bees' exploitation. As illu-
strated in Fig. 9, the value of Limit is recommended to be smaller
than the number of food source NP since a too high value of Limit
will lead to an ineffective scout bees’ phase. A too small Limit value
which indicates that employed and onlooker bees do not work is
not appreciated as well. In an ABC searching process, both explo-
ration by scout bees and exploitation by employed and onlooker
bees must be efficiently carried out (Karaboga, 2005). In this
simulation, the ABC algorithm presents stability in terms of Limit
in the interval of [80, 320]. A slight advantage of the ABC over the
other two algorithms is that there is only one control parameter in
addition to NP.

Fig. 10 presents the sensitivities of RMSE value to the number of
solution components N, pheromone duration coefficient ρ and
pheromone constant Q respectively for the ACO algorithm. The
precision of finding the optimal solution is low and the best
solution may not be obtained if N is small and the amount of
available solutions is insufficient. On the contrary, a larger value of
N does not definitely ensure better searching results even though
there are more solution components to be selected. As displayed in
Fig. 10(a) when ρ¼0.3 and Q¼1.0, the RMSE value strongly
depends on N with irregular fluctuations. Generally N can be
enacted to be less than 100 when the parameters are in the
interval between [0, 1]. The fixed parameters given in Fig. 10(b) are
N¼45 and Q¼1.0 whilst those in Fig. 10(c) are N¼45 and ρ¼0.3.
The ACO algorithm exhibits stability regarding ρ and Q, apart from
infeasible cases both on the boundary value 0. An appreciable
value of ρ enables the ant to effectively forget the fallacious
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solution component and explore a new one. The value of Q is
associated with the fitness value, and a range of [0.1, 1] is sug-
gested to assure the stability of the ACO algorithm in this study.
However, these values for the control parameters vary with the
dimensions of the problem or with other specific characteristics.
The recommended values of these parameters may not be appli-
cable in other studies.
6. Conclusions

In this work, the performances of three population-based
optimization algorithms (i.e. DE, ABC and ACO algorithms) for
evolving a HNN model are compared. The purpose is to determine
a relatively reliable and stable optimization algorithm for down-
stream river forecasting. For completeness' sake, the PSO algo-
rithm is included as a benchmark case for the comparison of
forecasting performances. The HNN model is triggered for the
forecasting, by integrating fuzzy pattern-recognition and a con-
tinuity equation into the neural network. Upstream river flows and
areal precipitation over the entire river basin are adopted as input
variables in the Altamaha river basin in Georgia. The capability of
capturing extreme values as well as three statistical indicators
(RMSE, NSEC and ACC) are employed to evaluate the forecasting
performance. The DM test is examined to compare the forecasting
accuracy between each pair of algorithms. The ability of parameter
optimization and stability of each algorithm in terms of its control
parameters are investigated. Results indicate that the DE algorithm
presents the best performance on the generalization and fore-
casting for the HNN model, which is quite comparable to the PSO
algorithm. The ACO is a feasible algorithm yielding satisfactory
forecasting results as well. The ABC algorithm does not exhibit a
comparable efficiency, with slow convergence and time con-
sumption. The ACO is found to give a consistent parameter opti-
mization of the HNN model just as the DE algorithm, particularly
in terms of the recession coefficient and initial storage. The DE
algorithm performs reliably well when the population size NP
varies while the performances of the ABC and ACO are sensitive to
NP. Regarding swarm-based heuristic algorithms, the stability of
the ABC is similar to the ACO with the advantage of employing
fewer control parameters. In summary, the DE and ACO algorithms
are well adapted to the optimization problem for the HNN model.
They can be efficiently used for solving nonlinear and non-
differentiable optimization problems in multi-dimensional space.
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