
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331157794

An efficient symbiotic organisms search algorithm with chaotic optimization

strategy for multi-objective task scheduling problems in cloud computing

environment

Article · February 2019

DOI: 10.1016/j.jnca.2019.02.005

CITATIONS

49
READS

217

5 authors, including:

Some of the authors of this publication are also working on these related projects:

PROMOTING LOCAL CONTENT SOFTWARE PRODUCTS THROUGH AGILE PROCESS MODELS View project

Grid Computing View project

Mohammed Abdullahi

Ahmadu Bello University

39 PUBLICATIONS 639 CITATIONS

SEE PROFILE

Md Asri Ngadi

Universiti Teknologi Malaysia

117 PUBLICATIONS 1,360 CITATIONS

SEE PROFILE

Salihu Dishing

Ahmadu Bello University

7 PUBLICATIONS 100 CITATIONS

SEE PROFILE

Shafi’i Muhammad Abdulhamid

Federal University of Technology Minna

108 PUBLICATIONS 1,461 CITATIONS

SEE PROFILE

All content following this page was uploaded by Shafi’i Muhammad Abdulhamid on 17 February 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/331157794_An_efficient_symbiotic_organisms_search_algorithm_with_chaotic_optimization_strategy_for_multi-objective_task_scheduling_problems_in_cloud_computing_environment?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/331157794_An_efficient_symbiotic_organisms_search_algorithm_with_chaotic_optimization_strategy_for_multi-objective_task_scheduling_problems_in_cloud_computing_environment?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/PROMOTING-LOCAL-CONTENT-SOFTWARE-PRODUCTS-THROUGH-AGILE-PROCESS-MODELS-2?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Grid-Computing-17?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed-Abdullahi?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed-Abdullahi?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ahmadu-Bello-University?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammed-Abdullahi?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Md-Ngadi?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Md-Ngadi?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universiti-Teknologi-Malaysia?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Md-Ngadi?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salihu-Dishing?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salihu-Dishing?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ahmadu-Bello-University?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salihu-Dishing?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shafii-Abdulhamid?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shafii-Abdulhamid?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Federal-University-of-Technology-Minna?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shafii-Abdulhamid?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shafii-Abdulhamid?enrichId=rgreq-ef14de5fe7ded40804d4267311adb55b-XXX&enrichSource=Y292ZXJQYWdlOzMzMTE1Nzc5NDtBUzo3MjczMzQ2Njc2OTQwODZAMTU1MDQyMTUwNjgwMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Accepted Manuscript

An efficient symbiotic organisms search algorithm with chaotic optimization strategy
for multi-objective task scheduling problems in cloud computing environment

Mohammed Abdullahi, Md Asri Ngadi, Salihu Idi Dishing, Shafi'i Muhammad
Abdulhamid, Barroon Isma'eel Ahmad

PII: S1084-8045(19)30049-9

DOI: https://doi.org/10.1016/j.jnca.2019.02.005

Reference: YJNCA 2309

To appear in: Journal of Network and Computer Applications

Received Date: 9 July 2018

Revised Date: 4 January 2019

Accepted Date: 5 February 2019

Please cite this article as: Abdullahi, M., Ngadi, M.A., Dishing, S.I., Abdulhamid, Shafi'.Muhammad.,
Ahmad, Barroon.Isma'., An efficient symbiotic organisms search algorithm with chaotic optimization
strategy for multi-objective task scheduling problems in cloud computing environment, Journal of
Network and Computer Applications (2019), doi: https://doi.org/10.1016/j.jnca.2019.02.005.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jnca.2019.02.005
https://doi.org/10.1016/j.jnca.2019.02.005

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

An efficient symbiotic organisms search algorithm with
chaotic optimization strategy for multi-objective task
scheduling problems in cloud computing environment

Mohammed Abdullahia,∗, Md Asri Ngadic, Salihu Idi Dishinga,c, Shafi’i
Muhammad Abdulhamidb, Barroon Isma’eel Ahmada

aDepartment of Computer Science, Ahmadu Bello University Zaria, Nigeria
bDepartment of Cyber Security Science, Federal University of Technology Minna, Nigeria
cDepartment of Computer Science, Faculty of Computing, Universiti Teknologi Malaysia,

81310 Johor Bahru, Malaysia

Abstract

In Cloud Computing model, users are charged according to the usage of

resources and desired Quality of Service (QoS). Multi-objective task schedul-

ing problem based on desired QoS is an NP-Complete problem. Due to the

NP-Complete nature of task scheduling problems and huge search space pre-

sented by large scale problem instances, many of the existing solution algo-

rithms cannot effectively obtain global optimum solutions. In this paper, a

chaotic symbiotic organisms search (CMSOS) algorithm is proposed to solve

multi-objective large scale task scheduling optimization problem on IaaS cloud

computing environment. Chaotic optimization strategy is employed to generate

initial ecosystem(population), and random sequence based components of the

phases of SOS are replaced with chaotic sequence to ensure diversity among

organisms for global convergence. In addition, chaotic local search strategy is

applied to Pareto Fronts generated by SOS algorithms to avoid entrapment in

local optima. The performance of the proposed CMSOS algorithm is evaluated

on CloudSim simulator toolkit, using both standard workload traces and syn-

∗Corresponding author
Email addresses: abdullahilwafu@abu.edu.ng (Mohammed Abdullahi),

dr.asri@utm.my (Md Asri Ngadi), sidishing@abu.edu.ng (Salihu Idi Dishing),
shafii.abdulhamid@futminna.edu.ng (Shafi’i Muhammad Abdulhamid),
sidishing@abu.edu.ng (Barroon Isma’eel Ahmad)

Preprint submitted to Journal of LATEX Templates February 5, 2019

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

thesized workloads for larger problem instances of up to 5000. Moreover, the

performance of the proposed CMSOS algorithm was found to be competitive

with the existing with the existing multi-objective task scheduling optimiza-

tion algorithms. The CMSOS algorithm obtained significant improved optimal

trade-offs between execution time (makespan) and financial cost (cost) with no

computational overhead. Therefore, the proposed algorithms have potentials to

improve the performance of QoS delivery.

Keywords:

Symbiotic Organisms Search, Metaheuristics Algorithms, Optimization,

NP-Complete, Multi-Objective Task Scheduling, Cloud Computing

1. Introduction

To meet up with the increasing computational demand of large scale ap-

plications, Cloud Computing is witnessing high rate deployment of large scale

applications in recent times, because Cloud provides elastic and flexible com-

pute resources which can be leased on pay-per-use model (Foster et al., 2008).5

Large scale applications consist of huge number of tasks which are executed

on Infrastructure-as-a-Service clouds. Cloud Computing services are offered in

form of Software as a Service (SaaS), Platform as a Service (PaaS), and Infras-

tructure as a Service (IaaS). SaaS service model delivers applications to end

users via Internet and these applications are accessed using client applications10

like web browsers. SaaS is usually used for service applications like web-mail,

and document editing applications. PaaS provides application developers with

environment for development, testing and hosting of their applications.

Moreover, IaaS provides access to flexible and scalable computing resources

for large scale application deployment. With IaaS model, virtualized com-15

pute resources called virtual machines (VMs) with pre-configured CPU, storage,

memory, and bandwidth are leased to users by paying for what they use only.

Various VM instances are available to the users at different prices to serve their

various application needs, this gives users the freedom to control compute re-

2

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

source at their disposal. IaaS provides three inherent benefits to users. First,20

users lease resource on demand, and charged based on pay-per-usage similar to

basic utilities like electricity, gas, and water. This enables users to shrink or ex-

pand their resource subscription base on the needs of their application. Second,

IaaS Cloud provides direct resource provisioning which improve the performance

of user applications. Third, users can demand for leased resources any time and25

any where according to the desired level of service. However, determining the

adequate number of resources to execute a set of large scale task on IaaS Cloud

is still an open problem (Thakur and Goraya, 2017; Wu et al., 2015; Zeng et al.,

2015).

Due to the practical applications and challenges of executing large scale ap-30

plications, task scheduling of applications on the large scale have become an

emerging research in cloud computing and have attracted significant attention

of researchers in recent times (Ferdaus et al., 2017). Various heuristics have

been applied to solve task scheduling problems which generate optimal solu-

tions for small size problems (Chen et al., 2013; Ming and Li, 2012; Mao et al.,35

2014; Patel et al., 2015). However, the quality of solutions produced by these

techniques degrades woefully as the problem size and number of variables to be

optimized increases. Also, these heuristic methods do not have provisions and

support for meeting various QoS requirements (Hayyolalam and Kazem, 2018;

Vakili and Navimipour, 2017; Ghazouani and Slimani, 2017). In contrast, many40

cloud users requires certain QoS satisfaction especially for scientific and busi-

ness domain applications. In recent times, attempts have been made to address

task scheduling problems using metaheuristic algorithms like genetic algorithms

(GA), particle swarm optimization (PSO), and ant colony optimization (ACO)

to address this problem (Hameed et al., 2014; Wu et al., 2015; Singh and Chana,45

2016). Utilizing metaheuristic algorithms for solving task scheduling problems

in Cloud have shown promising improvements in achieving efficiency, by reduc-

ing the solution search space. However, metaheuristic algorithms incur high

computational time and in some cases return local optimum solution especially

when dealing with large solution space, also, these techniques may suffer from50

3

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

premature convergence and imbalance between local and global search (Tsai and

Rodrigues, 2014; Guzek et al., 2015; Kalra and Singh, 2015; Zhan et al., 2015;

Xue et al., 2016; Meena et al., 2016). These limitations result to sub-optimal

task schedule solutions which affects the performance of service provision in

terms of meeting the desired QoS objectives. Furthermore, most of the existing55

works fail to capture the essential features of cloud computing like heterogeneity,

elasticity, and dynamism of computing resources there by fail to fulfill user QoS

needs. Hence, there is need for metaheuristic based optimization algorithms

that can efficiently cope with large search space when scheduling large scale

applications. Hence, there is scope for further development of task scheduling60

solutions for further improved solutions. Therefore, this paper presents Chaotic

Multi-Objective Symbiotic Organisms Search (CMSOS) based task scheduling

algorithms for large scale task scheduling optimization on IaaS cloud.

Symbiotic Organisms Search (SOS) algorithm is a recently introduced meta-

heuristic algorithm in Cheng and Prayogo (2014) and has gathered considerable65

interest of researchers from natural computing. SOS was originally proposed

to handle continuous benchmark and engineering problems, which was shown

to have a robust performance and has faster convergence speed when com-

pared with GA (Deb et al., 2002), PSO (Kennedy, 2011), Differential Evolution

(DE) (Qin et al., 2009), Bees Algorithm (BA) (Pham et al., 2011), and Particle70

Bee Algorithm (PBA) (Cheng and Lien, 2012) which are the traditional meta-

heuristic algorithms. SOS have proven to be efficient for optimizing complex

multidimensional search space while handling multi-objective and constrained

optimization problems. Active researches on SOS since its introduction includes

hybridization, discrete optimization problems, constrained and multi-objective75

optimization. Hybridization intends to combine the strengths of SOS like global

search ability and rapid optimization, with other related techniques to address

some of the issues with SOS performance, like entrapment in local optima.

SOS metaheuristic optimization algorithm is based on the interaction be-

tween paired of organisms for survival in an ecosystem, it shares some common80

features with most of the nature inspired algorithms. The candidate solutions

4

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

are represented by population of organisms, and mutualism, commensalism and

parasitism operators to direct the search process by candidate solutions. SOS

requires the settings of population size and stopping criterion before the search

process starts, in the course of search process selection mechanism is used to85

keep better solutions. SOS does not require algorithm specific parameters un-

like PSO that needs inertia weight, social and cognitive factors or GA that

used crossover and mutation. Moreover, inadequate turning of these algorithm

specific parameters could lead to non-optimal solutions. SOS optimization algo-

rithm have been recently found to be successful in solving various optimization90

problems in a variety of domains like economic dispatch (Dosoglu et al., 2016;

Secui, 2016; Guvenc et al., 2016; Sonmez et al., 2016; Tiwari and Pandit, 2016),

power optimization (Banerjee and Chattopadhyay, 2017; Duman, 2016; Zamani

et al., 2017; Banerjee and Chattopadhyay, 2016), construction project schedul-

ing (Tran et al., 2016; Cheng et al., 2015), task scheduling (Abdullahi et al.,95

2016; Abdullahi and Ngadi, 2016; Abdullahi et al., 2017), design optimization

of engineering structures (Tejani et al., 2016; Panda and Pani, 2016; Prayogo

et al., 2017; Nama et al., 2016), transportation (Eki et al., 2015; Vincent et al.,

2017), energy optimization (Kanimozhi et al., 2016), wireless communication

(Dib, 2016), and machine learning (Nanda and Jonwal, 2017; Wu et al., 2016).100

The standard SOS algorithm was proposed to solve unconstrained continuous

optimization problems while task scheduling problem is a discrete optimization

problem.

Our earlier works (Abdullahi et al., 2016; Abdullahi and Ngadi, 2016) consid-

ers only single objective task scheduling optimization problems while this paper105

considers multi-objective task scheduling optimization problem in addition to

the following contributions:

• Pareto based multi-objective SOS algorithm

• Chaotic based ecosystem (population) initialization to improve population

diversity and global convergence.110

• Replacement of random sequence components of the original SOS with

5

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

chaotic sequence to ensure global convergence.

• Chaotic Local Search to avoid entrapment of Pareto Front in local optima.

• Performance evaluation of the proposed algorithm against recent multi-

objective algorithms.115

The structure of the remaining parts of the paper are follows: Review of

related work on existing multi-objective task scheduling techniques are discussed

in Section 2. Section 3 presents the definition of task scheduling problem along

with multi-objective task scheduling formulation. The original SOS algorithm is

presented in Section 4. Section 5 describes the concept of chaotic optimization120

strategy along with chaotic local search technique. The detailed description of

the proposed algorithm is presented in Section 6, performance evaluation and

analysis of the obtained results are presented in Section 7. Finally, conclusion

and suggestions for possible future research are presented in Section 8.

2. Related work125

Task scheduling optimization approaches either focused on single objective or

multi-objective. The single objective task scheduling optimization approaches,

only try to optimize either makespan or cost (Hu et al., 2018; Abdullahi et al.,

2016; Abdullahi and Ngadi, 2016; Latiff et al., 2016; Li et al., 2016; Nirmala and

Bhanu, 2016; Zhong et al., 2016; Meena et al., 2016; Liu et al., 2016; Tawfeek130

et al., 2015; Li et al., 2015; Zuo et al., 2014; Rodriguez and Buyya, 2014; Netjinda

et al., 2014). However, because of the rapid development of Cloud, several QoS

objectives needs to be considered which makes task scheduling a multi-objective

optimization problem. The complexity of the multi-objective task optimization

formulation arise from the fact that users and providers have different optimiza-135

tion goals. Users are mainly concerned with minimizing makespan and cost,

whereas providers want to maximize resource utilization and energy consump-

tion while meeting user QoS requirements. In this situation, task scheduling

have to be solved as a multi-objective optimization problem trying to optimize

6

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

many and yet conflicting objectives, where it is not possible to obtain optimal140

solution with regards to all objectives. Therefore, a good trade-offs between the

objectives need to be obtained.

Multi-objective task scheduling optimization challenge is an important con-

sideration because of its direct effect on both cloud service providers and con-

sumers (Zhan et al., 2015). In cloud computing platform, task scheduling algo-145

rithms must optimize financial cost of leasing compute resources in addition to

execution time (makespan) and other QoS metrics. Generally, cloud providers

offer heterogeneous set of resources (VM instances) at various prices with var-

ied performance. In this way, task scheduling problem needs to be formulated

as a multi-objective optimization problem that intend to optimize conflicting150

objectives such as maksepan and financial cost of task execution. With multi-

objective formulation, there is no single solution which is optimal with respect to

all objectives, but a set of trade-off solutions called Pareto front (Tao et al., 2014;

Elhabyan et al., 2018). Multi-objective task scheduling optimization problems

are usually solved using aggregation, hierarchical, Pareto, and coevolutionary155

multi-swarm approaches. The aggregation (weighted) approach is the common

method for solving multi-objective task scheduling problems. The approach as-

sign weights to multiple objectives and sum up the objectives to form single

objective function. For instance, Delavar and Aryan (2014) proposed GA based

task scheduling algorithm to optimize makespan, reliability, and load balanc-160

ing of applications by putting into consideration the heterogeneous character-

istics of compute resources. Also, Shen et al. (2016) developed GA algorithm

for adaptive scheduling of tasks considering energy consumption and makespan

performance. Casas et al. (2016) proposed GA based task scheduling technique

for optimizing makespan and cost. Zuo et al. (2015) proposed ACO based task165

scheduling algorithm to optimize budget and deadline constrained task schedul-

ing problems, the proposed approach simultaneously makespan and cost within

a given budget and deadline. However, the results of different objectives is

dependent on the values of the assigned weights which may not adequately rep-

resent the decision of the user. Moreover, the approach produce only solution170

7

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

which is not adequate for multi-objective decision problems.

The hierarchical approaches optimize task scheduling objectives in a sequen-

tial order, the optimization ordering of the objectives are determined based on

their importance and solution to the objectives are alternately sought based on

their ordering. For instance, the approach proposed by Teng et al. (2007) used175

sorting strategy, the objective functions are optimized in sequential order. The

optimization of an objective is continuously carried until no further improve-

ment is possible, then next objective is optimized while meeting the constraints

of the previous optimized objectives. Similar approach was used by Zhang et al.

(2014) to optimize makespan and cost. However, these approaches are time180

consuming especially when there are several objectives with constraints, since it

requires several iteration of optimization process. Moreover, the importance of

the objectives is dependent on the problem, and performance of the approach

may be significantly affected by the ranking of the objectives.

To overcome the drawbacks of both aggregation and hierarchical approaches,185

Pareto-based optimization approaches have been put forth for addressing multi-

objective task scheduling problems (Hu et al., 2018; Midya et al., 2018; Tao et al.,

2014; Durillo et al., 2014). Pareto approaches finds several optimal trade-off so-

lutions for the objectives for the optimization problem. The concept of Pareto

dominance is applied to assign fitness to individuals. The Pareto approach does190

not require transforming multiple objectives into single objective formulation,

and generate several trade-off solutions in a single run. Tao et al. (2014) presents

a hybrid GA algorithms to obtain Pareto optimal solutions for makespan and

energy consumption. Pareto optimal trade-offs between makespan, cost, and

energy consumption was solved using list scheduling heuristics and hybrid PSO195

respectively (Fard et al., 2014; Yassa et al., 2013). Similarly, Verma and Kaushal

(2017) presents PSO based multi-objective task scheduling algorithm to ob-

tain optimal trade-offs between makespan, cost, and energy consumption while

meeting deadline and budget constraints respectively. Xu et al. (2014) put

forth multi-objective GA for workflow task scheduling problem to simultane-200

ously minimize makespan and cost while considering the priorities of the tasks.

8

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Moreover, Zhang et al. (2017) proposed multi-objective GA algorithm to obtain

Pareto optimal trade-offs between energy consumption, and reliability for dead-

line constrained task scheduling problems. However, with Pareto task scheduling

approaches, it is difficult to select appropriate individual for the next generation205

since Pareto dominance is a partial order (Zhan et al., 2013). Therefore, the

solutions obtained may not cover the entire Pareto Front (PF) if the selection

operator fails to keep adequate diversity. Thus, developing multi-objective task

scheduling that effectively assign fitness to individuals while keeping solution to

efficiently estimate the entire PF remains challenging research.210

3. Multi-objective task scheduling problem

Task scheduling problem considered in this paper is to minimize makespan

and financial cost (cost) for executing large scale tasks on IaaS cloud computing

environment. In this section, the IaaS cloud data center model, task execution

model and task scheduling problem formulation which form the bases of the215

proposed algorithm is introduced.

3.1. IaaS cloud model

An IaaS cloud data center provides computing resources to users through

virtual machines, an active virtual machine is called an instance. IaaS providers

usually provide various instance series types with wide range of instance types

consisting of different combinations of CPU, memory and bandwidth. In this

study, the CPU capacities are used to determine the estimated execution time of

tasks. It is assumed that IaaS provider offers relatively infinite pool of instances

which is described by a set I = {I1, I2, I3, . . .}. The instances are categorised

into series based on the computing needs of the users, for instance, Amazon EC2

currently offer three instance series which are compute intensive, memory inten-

sive and storage intensive instances. The set V = {V1, V2, V3, . . . , Vs, . . . , VS}

describes the type of series offered by an IaaS provider, each series type Vs con-

sists of instance types Vs = {v1s , v2s , v3s , . . . , vks , . . . , vKs }. IaaS providers describe

9

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

the CPU capacities different instance types by compute unit (CU). The com-

pute unit of an instance type vks is denoted as pks which is defined in million

floating point operations per second (MFLOPS), cost per time unit is denoted

as cks , and other features of an instance type include storage space and mem-

ory capacity. The task model considered is a collection of independent tasks

t = {ti|i = 1, 2, 3, ..., n}, there is not precedence constraint between the indi-

vidual tasks. The goal of a task scheduler is to assign given tasks to instance

types to optimize one or more objectives, thus, the aim of this study is to min-

imize makespan and cost under deadline constraint for task execution on IaaS

cloud infrastructure. It is assumed each instance type have sufficient memory

and storage to execute the collection of tasks. The execution time e(ti, v
k
s) of a

task ti on an instance type vks is determined as the ratio of task length si to its

compute unit pks as in Equation 1.

e(ti, v
k
s) =

si
pks

(1)

The existing IaaS providers charge users for leased instance per-unit time and

pricing strategies differs from providers. For instance, Amazon EC2 charge

user per-hour for a leased instance and fractional hours are rounded to full220

hour (https://aws.amazon.com/ec2/pricing/) while Microsoft Azure charge per-

minute for an instance usage (https://azure.microsoft.com/en-us/pricing/details/virtual-

machines/linux/). Due to the different pricing strategies by various IaaS providers,

the proposed algorithms are based on a generic pricing model IaaS cloud service

provision. Suppose a set P = {P1, P2, P3, . . . , Pt, . . . , Pr} describes the price225

models for IaaS cloud service provision, then a function bill(Pt, Vs, v
k
s) is de-

fined to compute the lease cost of using an instance type vks of instance series

type Vs using the pricing model Pt. Thus, based the definition of pool of in-

stances, instance series types , instance types and pricing options, IaaS service

provision is represented as C = (V, Vs, P).230

10

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

3.2. Multi-objective task Scheduling formulation

Given a set of independent tasks t = {ti|i = 1, 2, 3, ..., n} and an IaaS cloud

C = (V, Vs, P), the problem is to produce one or more task schedule S with min-

imum makespan and cost such that the value of the makespan doe not exceed

imposed deadline. Task schedule S = (I,M,makespan, cost) is defined in terms

of a set of leased instances, tasks to instance mapping, makespan, and cost of

execution. The set I = {I1, I2, I3, . . . , In} is the set of leased instance informa-

tion for each task, where Ii is a three turple: Ii =< vks (ti), S(ti, v
k
s), F (ti, v

k
s) >,

where vks (ti) is an instance type leased to execute task ti ∈ t with the lease

start time S(ti, v
k
s) and lease finish time F (ti, v

k
s). For each m(ti, v

k
s) ∈ A is

a four tuple: m(ti, v
k
s) =< ti, v

k
s (ti), Sti , Fti >, where ti ∈ T is a task to be

executed on an instance type vks ∈ I with at a starting execution time Sti and

finishing execution time Fti . The values of makespan and cost are obtained

using Equations 2 and 3.

makespan = max{Fti : ti ∈ T} (2)

cost =

n∑
i=1

cks × dF (ti, v
k
s)− S(ti, v

k
s)e (3)

In this study, only one instance series and one pricing option are considered for

the studied problem, the instance series type is compute intensive. Considering

multiple instance types in a single schedule could be studied in our future work.

The objectives of the task scheduling problem (t, C) in Equation 4.

minimize f = (makespan, cost)T (4)

4. Framework of symbiotic organisms search algorithm

In SOS algorithm, potential solutions are represented by a population of

organisms which evolved through successive iterations. Each organism repre-

sents a solution for an optimization problem. Initially, the potential solutions235

are randomly generated and subsequently the solutions are refined by mutu-

alism, commensalism, and parasitism models of SOS. Mutualism is a kind of

11

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

relationship between two different species of organisms where both organisms

benefit from the interaction. A classic example of mutualism association is an

interaction between bees and flowers. Bees collect nectar from flower for the240

production of honey and nectar collection process by Bees enable the trans-

fer of pollen grains which aid pollination. Therefore, the involved organisms

in the interaction mutually benefits from the relationship. In commensalism

relationship, one organism benefits from the interaction while the other is not

harmed. A relationship between remora fish and sharks is a typical example of245

commensalism association. Remora fish rides on shark for food and shark nei-

ther benefits nor harmed form the relationship. In parasitism relationship, one

organism initiates a relationship which benefits itself while the other organism is

harmed. An example of parasitic association is a relationship between anophe-

les mosquito and human host. An anopheles mosquito transmits plasmodium250

parasite to human host which could cause the death of human host if his/her

system cannot fight against the parasite.

In the SOS algorithm evolution, fitter organisms are allowed to proceed to the

next generation of potential solution while the unfitted organisms are discarded.

The population of organisms are created in a two d-dimensional search space,

and the positions of each organism is changed based on the models of the three

phases(mutualism, commensalism, and parasitism) of the SOS. Suppose the

position of an ith organism in the solution search space is represented as in

Equation 5.

Xi = (Xi1, Xi2, Xi3, ..., Xid) (5)

where Xip ∈ [Lp, Up], p ∈ [1, d], and Lp and Up are the lower and upper bounds

of the pth dimension of the search space. At each iteration, the positions of

the organisms are updated according to the three phases of the organism as255

explained in the following subsections.

4.1. Mutualism phase

Suppose Xi is the ith member of the ecosystem. In this phase, a design

vector Xj is randomly selected from the swarm of organisms to interact with

12

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

another design Xi(i 6= j) for mutual benefit. The essence of the interaction is

to improve extent of survival of both Xi and Xj in the ecosystem. The new

candidate solutions for Xi and Xj are obtained according to Equations 6 and

7, and the quality of these candidate solution are influenced by Mutual Vector

and Benefit Factors. MV is the mutual relationship vector between Xi and Xj

as defined in Equation 8. Xbest represents the organism with best fitness value.

β1 and β2 represents the benefit factors between organism Xi and Xj . In a mu-

tual relationship, an organism might benefit heavily or lightly while interacting

with a mutual partner. Therefore, β1 and β2 are stochastically obtained are

either 1 or 2. The values 1 and 2 denotes light and heavy benefits respectively.

The organism with best fitness value so far is represented by Xbest. By Xbest

interacting with Xi and Xj respectively, the balance between exploitation and

exploration in the search procedure will be maintained to a certain extent. The

new candidate solutions replaced the old ones if their fitness values are better

than those of the old ones. In this case, X∗i and X∗j replace Xi and Xj respec-

tively in the next generation of ecosystem. Otherwise, X∗i and X∗j are discarded

while Xi and Xj survives to the next generation of the ecosystem. This scenario

is captured by Equations 9 and 10.

X∗i = Xi + U(0, 1) ∗ (Xbest −MV ∗ β1) (6)

X∗j = Xj + U(0, 1) ∗ (Xbest −MV ∗ β2) (7)

MV =
1

2
(Xi +Xj) (8)

where U(0, 1) is a vector of uniformly distributed random numbers between

0 and 1; i = 1, 2, 3, ..., ecosize; j ∈ {1, 2, 3, ..., ecosize|j 6= i}; ecosize is the

number of organisms in the search space.

Xi =

 X∗i if f(X∗i) > f(Xi)

Xi if f(X∗i) ≤ f(Xi)
(9)

13

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Xj =

 X∗j if f(X∗j) > f(Xj)

Xj if f(X∗j) ≤ f(Xj)
(10)

where f(.) denotes the fitness evaluation function.

4.2. Commensalism phase

In commensalism phase, an ith member of the ecosystem randomly selects an

organism Xj for interaction with Xi(i 6= j). In this case, Xi intends to benefit

from Xj , and Xj neither gain or loss from the interaction. The interaction with

Xj and Xbest tries to improve the quality of fitness of design vector Xi and

increase the exploitation ability of the algorithm respectively. The interaction

is mathematically modeled by Equation 11. Xbest represents the organism with

best fitness value similar to that of mutualism phase. Xi is updated to X∗i as

computed in Equation 11, if the fitness value f(X∗i) is better that of f(Xi). The

relationship for updating Xi is given by Equation 12.

X∗i = Xi + U(−1, 1) ∗ (Xbest −Xj) (11)

where U(−1, 1) is a vector of uniformly distributed random numbers between

−1 and 1. i = 1, 2, 3, ..., ecosize; j ∈ {1, 2, 3, ..., ecosize|j 6= i}; ecosize is the

number of organisms in the search space.

Xi =

 X∗i if f(X∗i) > f(Xi)

Xi if f(X∗i) ≤ f(Xi)
(12)

4.3. Parasitism phase260

In parasitism phase, an artificial parasite called parasite vector is created by

cloning an ith organism Xi and modify it using randomly generated number.

Then, Xj is randomly selected from ecosystem, and fitness values of parasite

vector and Xj are computed. If the parasite vector is fitter than Xj , then Xj is

replaced by the parasite vector, otherwise Xj survives to the next generation of

ecosystem and parasite vector is discarded. Xj is updated according to relation

in Equation 13. This phase of the increase the exploitation and exploration

14

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

of the algorithm by randomly removing the inactive solution and introducing

the active ones. Consequently, premature convergence could be avoided and

convergence rate could be improved.

Xj =

 PV if f(PV) > f(Xj)

Xj if f(PV) ≤ f(Xj)
(13)

where PV denotes the parasite vector.

5. Chaotic maps

Chaos is a deterministic process which is usually found in dynamic and non-

linear systems, and has high sensitivity to initial conditions and parameters

(Kasahara and Yonezawa, 1996). It is characterized by randomness, ergodic-

ity, irregularity and an apparently unpredictable. Chaotic sequences have been

employed in stochastic optimization techniques to provide population diversity

in search space to ensure global convergence and avoidance of local optima

entrapment (Wu et al., 2013). Recently, relatively better results have been

obtained by applying chaotic sequence rather than random sequence based op-

timization techniques to various real-word optimization problems (Wu et al.,

2013; Le Hoang, 2014; Abdollahzade et al., 2015; Adarsh et al., 2016; Suresh

and Lal, 2017). Overview of chaotic maps commonly applied to optimization

problems can be found in Gandomi and Yang (2014). Logistic chaotic model is

employed to improve the population diversity and reduce the convergence time

of the proposed algorithms because of its success in solving various optimization

problems (Shayeghi and Ghasemi, 2014; Rajagopalan et al., 2015; Secui, 2016).

The logistic chaotic model has relative uniform behaviour and has no cyclic phe-

nomenon in the course of iteration as well as better chaotic distribution features

(Wu et al., 2013). The logistic model given as Equation 14 (Alatas, 2010).

yn+1 = λ× yn(1− yn) n = 0, 1, 2, 3, ... (14)

where {yn}n=1,2,3,... represents the sets of numbers generated with logistic chaotic

map; λ ∈ [0, 4] is the control parameter of logistic equation; yn ∈ (0, 1) is the

nth chaotic number and y0 ∈ (0, 1) and y0 /∈ {0.0, 0.25, 0.5, 0.75, 1.0}.265

15

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Algorithm 1 Symbiotic Organisms Search Algorithm (Cheng and Prayogo,

2014)

Input: Set ecosize, create population of organisms Xi, i = 1, 2, 3, ..., ecosize,

initialize Xi, Set stopping criteria.

Output: Optimal schedule

1: Identify the best organism Xbest

2: while stopping criterion is not met do

3: for i = 1 to ecosize do

4: Mutualism Phase

5: MV =
Xi+Xj

2 . (j 6= i)

6: X∗i = Xi + U(0, 1) ∗ (Xbest −MV ∗ β1) . (β1, β2) : benefit factors

7: X∗j = Xj + U(0, 1) ∗ (Xbest −MV ∗ β2)

8: if F (X∗i) < F (Xi) then

9: Xi = X∗i

10: end if

11: if F (X∗j) < F (Xj) then This could be

12: Xj = X∗j

13: end if

14: Commensalism Phase

15: X∗i = Xi + U(−1, 1) ∗ (Xbest −Xj)

16: if F (X∗i) < F (Xi) then

17: Xi = X∗i

18: end if

19: Parasitism Phase

20: Create parasite vector

21: if F (parasite vector) < F (Xj) then

22: Xj = parasitevector

23: end if

24: Identify the best organism Xbest

25: end for

26: end while

16

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

5.1. Chaotic local search

The Chaotic Local Search (CLS) strategy have been used to enable global

best individuals to jump out of likely local optima. Thus, CLS is performed on

all solutions in the archive to avoid local Pareto Fronts. For each solution Ai in

the archive A, new feasible solution Ei is generated using logistic chaotic model.

First, Ai is assigned to Ei(ei,1, ei,1, ei,1, ..., ei,D) and Ei is mapped into initial

vector X0 = (x01, x
0
2, x

0
3, ..., x

0
D) in the range [0, 1] using Equation 15. Then,

the chaotic sequence variable Xj by the iteration of logistic chaotic model as

described in Section 5. Thereafter, the new solution Ei obtained by scaling

the chaotic variable Xj into the original search space according to Equation 16.

Later, the objectives of the new solution Ei is evaluated and Ei is added to set

Q. The procedure of CLS is presented as Algorithm 2.

x0j =
ei,j − emin,j

emax,j − emin,j
; j = 1, 2, 3, ..., D (15)

where emin,j and emax,j are the minimum and maximum bounds of jth dimen-

sion respectively.

ei,j = emin,j + (emax,j − emin,j)× xj ; j = 1, 2, 3, ..., D (16)

6. Multi-objective symbiotic organisms search for task scheduling op-

timization algorithm

The original SOS algorithm was proposed for solving single objective contin-270

uous optimization problem, but multi-objective task scheduling problem consid-

ered in this paper is a discrete optimization problem, it is virtually impossible to

apply SOS algorithm directly for task scheduling problem on IaaS cloud. Thus,

new set of search operators based on the task scheduling problem features are de-

signed which include organism encoding scheme presented in Section 6.1, organ-275

ism decoding scheme scheme presented in Section 6.3, ecosystem initialization

using chaotic logistic sequence presented in Section 6.2 to improve ecosystem

17

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Algorithm 2 Chaotic Local Search

Input: An archived individuals A

Output: Locally optimized archived individuals E

1: for each Ai ∈ A do

2: Let Ei ← Ai . Ei = (ei,j |j = 1, 2, 3, ..., D) D is the dimension of the

problem.

3: Scale ei,j into the range [0, 1] according to Equation 15 to obtain initial

vector X0

4: Generate a chaotic sequence variableX by the iteration of logistic chaotic

model using Equation 14.

5: Obtain the locally optimized solution Ei by scaling the chaotic variable

X into the original search space according to Equation 16.

6: Evaluate all the objectives of Ei

7: end for

8: si∗ ←
⌈
xi∗
⌉

9: return X∗i

18

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

diversity. The random number components of mutualism, and commensalism

operators are replaced with chaotic sequences to improve the global convergence

of CMSOS algorithm, the mutualism, commensalism, and parasitism operators280

are described in Subsections 6.4.1, 6.4.2, and 6.4.3 respectively.

6.1. Organism encoding

In the proposed algorithm, the population structure of the organisms is rep-

resented as the set of instance types, each organism is an individual in the

population that represents a part of the search space. Each coordinate (each285

field) in an organism coordinate system is a instance types in the IaaS cloud.

In d-dimensional solution search space, a search population of n organisms is

denoted as X = {X1, X2, X3, ..., Xn}. The position of the ith organism is de-

noted as Xi = {xi1, xi2, xi3, ..., xid}. To define the solution representation for

the problem, each organism represents a complete task schedule, thus the di-290

mension of an organism is same as the number of tasks. The real values are used

to represent alternative instance type to be selected. The coordinate system for

determining the position of an organism in the solution search space is depen-

dent on the dimension of the organism. As an illustration, an organism depicted

in Figure 1 represents a schedule with 7 tasks. The organism is a 7-dimensional295

one and its position on the search space is defined by coordinates 1 through 7.

The range of movement of the organisms is determined by the number of

available instances to execute the tasks. Therefore, the value of the coordinates

will be from one to number of available instances. Since the fitness computation

for the selected VM is based on discrete values, the nearest integer value of each

coordinate in an organism’s position corresponds to an instance type to execute

the task defined by that specific coordinate. The nearest integer can be obtained

using Equation 17. In this manner, the organisms’s position encodes a task to

instance type mapping. Looking at the example in Figure 1, three instances are

in the resource pool so each coordinate takes a value in the range of 0 to 3. The

value 0.7 of coordinate 1 indicates that task 1 is assigned to instance type 2.

The value 2.8 of coordinate 2 indicates that task 2 is assigned to instance type

19

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

3. The remaining coordinates follow the same logic.

dxie (17)

where xi is the value of coordinate number i.

Figure 1: Organism encoding and corresponding task to VM mapping

6.2. Ecosystem initialization

In the standard SOS algorithm, uniformly generated random numbers are

used to initialize the ecosystem (population) and as a source of randomness in300

updating the positions of the organisms. Recently, usage of chaotic maps as

a source of randomness in optimization theory and various fields have gained

wide attention instead of the usual random process. The logistic chaos model

described in Section 5 is used for generation of chaotic sequence.

6.3. Organism decoding305

Corresponding to encoding method, the decoding of an individual organ-

ism into a task schedule is presented as Algorithm 4. At the start, the set of

instances for executing the submitted tasks and set of task to instance type

mappings are initialized to empty sets. Then, the algorithm loops through ev-

ery organism’s coordinates contained in vector s to determine task to instance310

type assignment related to the current organism’s coordinate and sets I and M

20

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Algorithm 3 Individual Organism Encoding

Output: An individual X = (x, s) . x = {x1, x2, x3, ..., xn}; n is the number

of tasks to be scheduled.

1: Initialize a vector y0 . y = {y1, y2, y3, ..., yn}; yi ∈ (0, 1)

2: Generate chaotic sequence y using iteration of logistic chaotic model in

Equation 14

3: Transform the chaotic sequence into the range of parameters of task schedul-

ing model according to: xi = xmax + (xmax − xmin)× yi; i = 1, 2, 3, ..., n

4: Transform the organism coordinates into task schedules using Equa-

tion 17: si = dxie; i = 1, 2, 3, ..., n

are filled accordingly. This is achieved by using the organism encoding strategy

explained earlier, that is a coordinate i represents task ti and its value si indi-

cate the code of instance type. At this point, the leased instance type vjs(ti) to

execute task ti, the starting lease time S(ti, v
j
s) and finishing lease time F (ti, v

j
s)315

of instance type vjs(ti) are obtained as the elements of the tuple Ii. Then, the

algorithm compute the start time Sti and finish time Fti of task ti.

The start time Sti is the available time of instance that task ti is assigned,

which is the ready time S(ti, v
si
s) of the instance type with index si. The finish

time Fti of task ti is computed according to the total running time and start time320

of a task, this is obtained by summing e(i, si) and Sti . At this point, the three

tuples of task to VM mapping have been computed. Then algorithm update

the time to finish execution of task ti assigned to a VM with index si. The

finishing time Fsi is obtained by summing the processing time e(ti, v
si
s) of task

ti and the start time vsis of an instance with index si. After all the coordinates325

have been processed by the algorithm, instances to be leased are contained in

I and their start and stop times as well which are used to compute the cost of

execution according to Equation 3. In addition, task to instance assignments

are contained in M with their start and finish times and these information are

be used to compute makespan using Equation 2. At this point, the feasible330

schedule an organism is obtained along with the fitness values of the objectives.

21

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

6.4. Organism position update for task scheduling

The candidate solutions are represented by ecosystem (population) of or-

ganisms, while mutualism, commensalism, and parasitism operators to direct335

the search process by candidate solutions. Each organism is represented by a

coordinate system in the search space, and organisms keep update of global best

position Xbest which is determined based on the fitness function of the problem

at hand. The fitter organisms are allowed to proceed to the next generation

of potential solution while the unfitted organisms are discarded. The fitter or-340

ganisms are those with good solution while the unfitted organisms holds bad

solution. The positions of the organisms are then update towards the Xbest

locations using mutualism, commensalism and parasitism phases respectively.

The rate of movement of organisms towards the Xbest locations are moderated

by chaotic random sequence to improve global search ability of the organisms.345

The SOS operators are continuously applied on the population of organisms

which represents candidate solutions until the stopping criterion are reached.

The mutualism, commensalism, and parasitism operators are described in the

following subsections 6.4.1, 6.4.2, and 6.4.3 respectively.

6.4.1. Mutualism operator350

Suppose Xi is the ith member of the ecosystem, a design vector Xj is

randomly selected from the ecosystem to interact with another design vector

Xi(i 6= j) for mutual benefit, MV defines the mutual relationship character-

istics as Equation. 18. The essence of the interaction is to improve extent of

survival of both Xi and Xj in the ecosystem. The new candidate solutions for

Xi and Xj are obtained according to Equations. 19 and 20 respectively. The

new candidate solutions replaced the old ones if their fitness values are better

than those of the old ones. In this case, X∗i and X∗j replace Xi and Xj respec-

tively in the next generation of ecosystem. Otherwise, X∗i and X∗j are discarded

while Xi and Xj survives to the next generation of the ecosystem. This scenario

22

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Algorithm 4 Individual Organism Decoding

Input: An individual X = (x, s).

Output: S = (I,M,makespan, cost), I : the set of leased instances; M is the

set of task to instance mappings;

1: Empty sets Ik; k = 1, 2, 3, ...,m

2: Empty sets Mk; l = 1, 2, 3, ...,m

3: Initialize makespan← 0

4: Initialize cost← 0

5: for si ∈ s; i = 1, 2, 3, ..., n do

6: Let j ← si

7: Obtain a tuple Ii ←< vjs(ti), S(ti, v
j
s), F (ti, v

j
s) >

8: Put Ii into set I

9: Assign the starting time of task ti as Sti ← F (ti, v
j
s); F (ti, v

j
s) is the

finishing time of instance type vjs

10: Compute estimated execution time of task ti on instance type vjs as

e(ti, v
j
s) according to Equation 1

11: Assign the finishing time of task ti as Fi ← e(i, j) + Sti

12: Obtain a tuple m(ti, v
j
s)←< ti, v

j
s(ti), Sti , Fti >

13: Put m(ti, v
j
s) into set M

14: Update the finishing time of instance type vjs as F (ti, v
j
s) ← e(i, j) +

S(ti, v
j
s) ; S(ti, v

j
s) is the starting time of instance vjs

15: end for

16: Compute makespan according to Equation 2.

17: Compute cost according to Equation 3.

18: S = (I,M,makespan, cost)

23

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

is captured by Equations. 21 and 23.

MV ← Xi +Xj

2
(18)

X∗i ← Xi + y1 ∗ (Xbest −MV ∗ β1) (19)

X∗j ← Xj + y2 ∗ (Xbest −MV ∗ β2) (20)

Xi =

 X∗i if f(X∗i) > f(Xi)

Xi if f(X∗i) ≤ f(Xi)
(21)

si =

 dX∗i e if f(X∗i) > f(Xi)

dXie if f(X∗i) ≤ f(Xi)
(22)

Xj =

 X∗j if f(X∗j) > f(Xj); s
j∗ ←

⌈
xj∗
⌉

Xj if f(X∗j) ≤ f(Xj)
(23)

sj =

⌈
X∗j
⌉

if f(X∗j) > f(Xj)

dXje if f(X∗j) ≤ f(Xj)
(24)

where f(.) denotes the fitness evaluation function; y1 and y2 are vectors of

chaotic sequence generated using chaotic logistic model as described in Section 5;

si and sj are the instance type index as defined in Equations 22 and 24

that execute a given task, i = 1, 2, 3, ..., ecosize; j ∈ {1, 2, 3, ..., ecosize|j 6= i};

ecosize is the number of organisms in the search space. β1 and β2 denote the355

benefit factors.

6.4.2. Commensalism operator

In commensalism phase, an ith member of the ecosystem randomly selects an

organism Xj for interaction with Xi(i 6= j). In this case, Xi intends to benefit

from Xj , and Xj neither gain or loss from the interaction. The interaction with

Xj and Xbest tries to improve the quality of fitness of design vector Xi and

increase the exploitation ability of the algorithm respectively. The interaction

24

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

is modelled by Equation 25. Xbest represents the organism with best fitness

value similar to that of mutualism phase. Xi is updated to X∗i as computed in

Equation 25, if the fitness value f(X∗i) is better that of f(Xi). The relationship

for updating Xi is given by Equation 26.

X∗i ← Xi + y1 ∗ (Xbest −Xj) (25)

Xi =

 X∗i if f(X∗i) > f(Xi); s
i∗ ←

⌈
xi∗
⌉

Xi if f(X∗i) ≤ f(Xi)
(26)

si =

 dX∗i e if f(X∗i) > f(Xi)

dXie if f(X∗i) ≤ f(Xi)
(27)

where y1 is a vector of chaotic sequence generated using chaotic logistic model

as described in Section 5; i = 1, 2, 3, ..., ecosize; j ∈ {1, 2, 3, ..., ecosize|j 6= i};

ecosize is the number of organisms in the search space, si is the instance type360

index as defined in Equation 27 that executes a given task.

6.4.3. Parasitism operator

In parasitism phase, an artificial parasite called parasite vector is created by

cloning the current organism Xi denoted as Xi(cloned) and mutate the randomly

selected kth dimension of organism Xi(cloned) according to Equation 28. Then,365

Xj is randomly selected from ecosystem, and fitness values of parasite vector

and Xj are computed. If the parasite vector is fitter than Xj , then Xj is

replaced by the parasite vector, otherwise Xj survives to the next generation

of ecosystem and parasite vector is discarded. Xj is updated according relation

in Equation 29. This phase of the the search procedure to jump out of local370

optima by randomly removing the inactive solution and introducing the active

ones.

xik ← xmax + (xmax − xmin)× y1 (28)

25

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Xj =

 Xi(cloned) if f(Xi(cloned)) > f(Xj)

Xj if f(Xi(cloned)) ≤ f(Xj)
(29)

sj =

⌈
xi(cloned)

⌉
if f(Xi(cloned)) > f(Xj)⌈

xj
⌉

if f(Xi(cloned)) ≤ f(Xj)
(30)

where y1 is a vector of chaotic sequence generated according to Equation 14;

Xi(cloned) denotes the parasite vector; xmax and xmin are the minimum and

maximum values of the solution range respectively.375

6.5. Archive update

The effectiveness of the mechanisms for selecting the non-dominated feasible

complete solutions that are contained in the archive facilitates the generation

of good Pareto Fronts (PFs). In the course of optimization process, the size of

archive is fixed since the generation of non-dominated feasible complete solutions380

grows fast. The archive maintains a set of feasible complete solutions, the

capacity of the archive is fixed as ecosize and number of current solution in

the archive is is denoted as e. A new feasible complete solution is added to the

archive, if the content of archive is not filled to its capacity. Otherwise, a new

feasible complete solution is added to the archive if it dominates a solution in the385

archive, in which case the new feasible complete solution replaces the solution it

dominates. To avoid local PFs, Chaotic Local Search (CLS) is performed on each

solution in archive to obtain new solutions, the CLS is described in Section 5.1.

The current solutions in the archive and new generated solutions are combined

to obtain 2 × e solutions. Then, non-dominated solutions are determined, if390

the number of non-dominated solutions are not more than the size of archive,

then all the non-dominated solutions are added as the current content of the

archive and the current size is set as e. Otherwise, fast non-dominated sorting

and crowding distance are performed the combined solutions, the first e less

crowded solutions are chosen to be added as the current content of the archive395

and e is set as ecosize. The selection procedure based on non-dominated sorting

and crowding distance as depicted in Figure 2.

26

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

6.6. Current ecosystem update

After each generation, the current organisms are combined with the advanced

organisms form combined ecosystem. The combined ecosystem is obviously400

larger than the ecosize. Thus, the following techniques are used to select the

ecosystem with the size ecosize for the next generation. First, organisms in the

combined ecosystem is ranked into non-dominated sets (F1, F2, F3, F4, ...) using

fast non-dominated sorting. The non-dominated organisms belonging to set R1

are selected first for addition into the current. If the size of F1 is smaller than the405

ecosize, the rest number of organisms are selected from the non-dominated sets

in the order (F2, F3, F4, ...). The procedure continues until the capacity of the

ecosize is filled. Suppose Fj is the last set of non-dominated solutions beyond

which no other set can be taken and total size of the sets F1, F2, F3, ..., Fj is more

than the ecosize. The optimal ecosystem of ecosize is selected using crowding410

distance and selection of solutions are based on descending order of distance.

Overview of the procedure is depicted in Figure 2.

Current
ecosystem

New
ecosystem

X(t)

X(new)

Combined
ecosystem

...

F1

F2

F3

F4

F5

Fn

F4

F1

F2

F3

F1

F2

F3

F1

F2

F3

F1

F2

F3

F1

F2

F3

Non-dominated sorting

Crowding distance

F4

Reject

Reject

X(t+1)

Ecosystem
for next
generation

Figure 2: Procedure of ecosystem selection for next generation

27

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

6.7. Implementation of the proposed algorithm

The proposed CMSOS algorithm for large task scheduling optimization prob-

lem in IaaS cloud computing environment is presented as Algorithm 5.415

Ecosystem generation evolves each ecosystem using mutualism, commensal-

ism, and parasitism operators. The generation of new organisms in mutualism,

commensalism, and parasitism operators are described in Section 6.4.1, 6.4.2,

and 6.4.3 respectively. Algorithm 6 describes the procedure of ecosystem evo-

lution.420

6.8. Complexity Analysis

The time complexity of each phases (Mutualism, Commensalism, and Par-

asititsm) is O(n), where n is the number of tasks. For a given n tasks, the

time complexity of each evaluation of an organism is O(n). Therefore, the total

time complexity of the ecosystem evolution is O(egn), where e is the number425

of organisms in the ecosystem, and g is the number of generations. Besides

the ecosystem evolution, the chaotic local search (CLS) is performed on evolved

organisms, the CLS procedure has a time complexity of O(e). Most of all, the

total time complexity of the proposed algorithm is O(egn+e). Hence, the dom-

inant time-consuming part of the proposed algorithm is the ecosystem evolution430

which has the time complexity of O(egn).

7. Performance evaluation and results analysis

This section describes the experimental design, performance evaluation, and

result analysis of the proposed algorithms.

7.1. Experimental Design435

The proposed algorithm was implemented using CloudSim 3.0.3 (Calheiros

et al., 2011) simulation toolkit for IaaS cloud environment. The choice of

CloudSim simulation toolkit is informed by its support for simulating cloud

computing scenarios which supports modeling and simulation of large scale com-

puting environments. CloudSim provides support for modeling data centers,440

28

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Algorithm 5 Multi-objective Symbiotic Organisms Search for Task Scheduling

Optimization

Input: CMSOS settings: ecosize N , maximum number of generations gmax.

Output: Optimal solutions.

1: Step 1 Initialization: Set g = 0; Initialize y0 for generation of Lo-

gistic chaotic sequence {yn|n=1,2,3,...}; Generate initial ecosystem X(g) =

{X(g)
i|i=1,2,3,...,ecosize} using Algorithm 3;

2: Step 2 Generation:

3: Step 2.1: Decode organisms in X(0) using Algorithm 4 and evaluate the

fitness of each organisms in X(0);

4: Step 2.2: Perform non-dominated sorting on individual organisms as de-

scribed in Section 6.6; Randomly select any organism in rank R1 as the

best organism Xbest; Select non-dominated feasible organisms into external

archive, and set the capacity of external archive to ecosize.

5: Step 2.3 Ecosystem Evolution:

6: for g = 1 to gmax do

7: Step 2.3.1: Use Algorithm 6 to generate new ecosystem X
(g)
com.

8: Step 2.3.2: Perform non-dominated sorting on X
(g)
com ecosystem as de-

scribed in Section 6.6.

9: Step 2.3.3 Archive Update: For each feasible individual organism

X ′ in ecosystem X
(g)
com, replace an organism X∗ in the archive with the

organism X ′ in ecosystem X
(g)
com, if X ′ dominates X∗; Perform Chaotic

Local Search (CLS) on current archive as described in Section 5.1.

10: Step 2.3.4 Current ecosystem selection: Perform non-dominated

sorting and crowding distance on ecosystem X
(g)
com as described in Sec-

tion 6.6. Then, select top ecosize organisms into X
(g+1)
com as the current

ecosystem.

11: end for

12: Step 3: Output the content of archive as the optimal solutions.

29

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Algorithm 6 Ecosystem Evolution

Input: ecosystem X(g) = {X(g)
i|i=1,2,3,...,ecosize}, maximum number of genera-

tions gmax.

Output: Eevol ecosystem.

1: Em ← ∅; Ec ← ∅; El ← ∅; Ecom ← ∅; set g = 0.

2: Step 1 Initialization: Decode the organisms in X(g) using Algorithm 4

and evaluate the fitness of each individual organism; Then, perform non-

dominated sorting on X(g) as described in Section 6.6; Randomly select any

organism in rank R1 as the best organism X
(g)
best in X(g);

3: for i = 1 to N do

4: Mutualism Phase: Randomly select an organism X
(g)
j from the

current generation of organisms to interact with current organism X
(g)
i ,

j ∈ {1, 2, 3, ..., N} and j 6= i; Initialize the benefit factors β1 and β2, let

β1 and β2 be assigned a randomly selected number 1 or 2; Compute the

mutual vector MV using Equation 18; Update the values of the chaotic

sequence yin and yjn using Equation 14; Modify organisms X
(g)
i and X

(g)
j

using Equations 19 and 20 respectively to obtain X
(g)
i(new) and X

(g)
j(new);

Em = Em ∪X(g)
i(new) ∪X

(g)
j(new).

5: Commensalism Phase: Randomly select an organism X
(g)
j from the

current generation of organisms to interact with current organism X
(g)
i ,

j ∈ {1, 2, 3, ..., N} and j 6= i; Update the values of the chaotic sequence

yin using Equation 14; Modify organisms X
(g)
i using Equation 26 to obtain

X
(g)
i(new); Ec = Ec ∪X(g)

i(new).

6: Parasitism Phase: Clone the current organism X
(g)
i as X

(g)
i(cloned); Mu-

tate a randomly selected kth dimension of X
(g)
i(cloned) according to Equa-

tion 28; Randomly select an organism X
(g)
j from the current generation of

organisms; Decode X
(g)
i(cloned) and X

(g)
j organisms using Algorithm 4; Evalu-

ate the fitness of X
(g)
i(cloned) and X

(g)
j as F (X

(g)
i(cloned)) and F (X

(g)
j); Update

X
(g)
j for next generation of organisms according to Equations 29 and 30;

Ep = Ep ∪X(g)
j(new).

7: end for

8: Eevol = Em ∪ Ec ∪ Ep

9: return Eevol
30

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

physical machine hosts, VMs, cloud service brokers, and scheduling systems.

In the experiment, an IaaS cloud provider with a single data center, 2 hosts,

and 20 VMs of different configurations (Rodriguez and Buyya, 2014; Li et al.,

2016). The configurations of the data center and the hosts are presented in

Table 1. The VM configurations are based on the current Amazon EC2 offer-445

ings (https://aws.amazon.com/ec2/pricing/) as presented in Table 2. The VM

processing capacity of VMs in MFLOPS based on the work of Ostermann et al.

(2009). The workload parameters for tasks are presented in Table 3.

Table 1: Experimental Settings

Cloud Entity Parameter Value

Datacenter Number 1

Host

Number 2

RAM 2048000 MB

Storage 1000000 MB

Bandwidth 1000000000 Mb/s

Operating System Linux

Architecture x86

VMM Xen

VM
Number 20

Bandwidth 0.1 GB/s

The Parallel Workloads Archive, whose data is the focus of this paper, is a

repository of such logs; it is accessible at URL www. cs.huji.ac.il/labs/parallel/workload/.450

The archived logs (see Table 4) contain accounting data about the jobs that ex-

ecuted on parallel supercomputers, clusters, and grids, which is necessary in

order to evaluate schedulers for such systems. These logs have been used in

many hundreds of research papers since the archive was started in 1999.

Both standard parallel workload traces and synthetic workloads are used to455

evaluate the performance of the proposed algorithms. It is assumed that tasks

are independent that is no precedence constraints between tasks, and execution

31

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 2: Configurations and Types of VMs

Name vCPU Processing

capacity

(MFLOPS)

Memory (GiB) SSD Stor-

age (GB)

Cost per hour ($)

c3.large 2 8 800 3.75 2 × 16 0.105

c3.xlarge 4 17 600 7.5 2 × 40 0.210

c3.2xlarge 8 35 200 15 2 × 80 0.420

c3.4xlarge 16 70 400 30 2 × 160 0.840

c3.8xlarge 32 140 800 60 2 × 320 1.680

Table 3: Workload Settings

Parameter Value

Length [5000, 50 000] MFLOPS

File size [10, 100] GB

Memory [10, 100] GB

of tasks are non-preemptive. The parallel workloads used for evaluation are

NASA Ames iPSC/860 and HPC2N; the workloads are accessible through the

URL http://www.cs.huji.ac.il/labs/parallel/workload/. NASA Ames iPSC/860460

and HPC2N set log are some of the popular standard formatted workloads

for evaluating the performance of distributed systems (Feitelson et al., 2014;

Wang et al., 2016; Alla et al., 2017). The information about the log are shown

in Table 4. The synthetic workloads are generated using normal and uniform

distribution. Uniform distribution depicts more medium size tasks, and fewer465

small and large size tasks. Uniform distribution depicts an equal number of

large, medium, and small size tasks. The larger instances will enable us to

gain insight into the scalability of performance of the algorithms with large

problem sizes. Besides the standard workload traces, the synthetic workloads

are generated using normal and uniform distribution respectively. Normally470

distributed workloads distribution depicts medium size tasks, and fewer small

32

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

and large size tasks. Uniformly distributed workloads depicts equal number of

large, medium, and small size tasks.

Table 4: Logs in the Parallel Workloads

Log Period Months PEs1 Users Jobs Util.2 File3

NASA iPSC 10/93-12/93 3 128 69 42,264 0.47 NASA-iPSC-1993-3.swf

HPC2N 07/02-01/06 42 240 258 527,371 0.70 HPC2N-2002-2.swf

1 was nodes or CPUs in old logs, today it typically represents cores.

2 is the system utilization, i.e. the fraction of the resources that were allocated to jobs. It is not com-

puted for SHARCNET because this is a grid system, and the constituent clusters became available

at different times.

3 File names include a version number, as most logs were re-converted to swf when errors were found

or new considerations were introduced.

7.1.1. Performance Metrics

This study used makespan, cost (financial cost), Hypervolume, and Percent-475

age change as performance metrics to evaluate the proposed algorithms against

similar task scheduling algorithms in the literature. Makespan is the latest fin-

ish time of VMs, minimal makespan implies that users pay moderate cost for

their task execution since cloud service offering is based on per-use-model and

users are charged per unit time of VM usage usually per-hour. Cost is the cost480

of leasing VMs from IaaS cloud providers.

Makespan also referred to as total execution time is the latest finish time

of all the VMs used in executing the collection of tasks as defined in Equa-

tion 31(Netjinda et al., 2014).

makespan = max{vmtime
j ; j = 1, 2, 3, ...,m} (31)

where m is the number of VMs; vmtime
j is the total execution time of VM j.485

Cost is the sum of the product of VM cost by its makespan rounded to the

33

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

closest integer as define in Equation 32 Zheng and Sakellariou (2013).

cost =

m∑
j=1

dvmtime
j evmcost

j (32)

where m is the number of VMs; vmtime
j is the total execution time of VM j;

vmcost
j is the financial cost for leasing VM j per unit time.

Hypervolume (HV) indicator (Zhu et al., 2016; Zhang et al., 2017) is the490

most popular performance metric for this sake. HV is obtained by computing

the volume of the objective function space between the obtained non-dominated

solutions and a reference point, by providing an insight between the convergence

and diversity of the solution sets. HV is obtained as a union of all the found

hypercubes according to Equation 33. To obtain the HV values, each algorithm495

is run on all the workload instances for 30 independent runs and solutions ob-

tained by each algorithm for the 30 runs are merged to form a reference set, then,

non-dominated solutions are selected to the reference set to form true Pareto

Front (PF) and results dominated by true PF are discarded (Zitzler et al., 2003).

Then, the makespan and cost are normalized, a reference point (1.1, 1.1) is used500

to compute the values of HV (Ishibuchi et al., 2010; Zhu et al., 2016).

HV = volume

(|R|⋃
j=1

vj

)
(33)

The percentage change for each proposed algorithm is computed with respect

to the compared algorithms from the literature as in Equation 34. This provides

an insight on the extent of the performance of the proposed algorithm against

the existing algorithms in the literature (Vincent et al., 2017).505

gap(%) =
(Zprop − Zlit)

Zlit
(34)

where Zprop is the solution obtained by the proposed algorithm and Zlit is the

solution obtained one the algorithm are reported in the literature. A negative

indicates that proposed algorithm is better.

34

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

The results of the proposed MSOS algorithm are compared with EMS-C

(Zhu et al., 2016), ECMSMOO (Yao et al., 2016), and BOGA (Zhang et al.,510

2017) multi-objective task scheduling algorithms using the same workload trace

(Table 1) and on the same test bed (Tables 2 and 3). The compared algorithms

are chosen so as to compare the proposed techniques against the recent tech-

niques in the area. Besides, the goal of compared algorithms are identical to

the goal of the proposed techniques. For fair comparison, the stopping condi-515

tion for compared algorithms and proposed are taken to be same. Each of the

algorithms are used for solving the workload instances over 30 independent runs

(Zhu et al., 2016).

Table 5: Parameter Settings for Compared Algorithms

Algorithm Parameter Value

EMS-C
Crossover rate Pc 1.0

Mutation rate Pm 1/n

BOGA

Crossover rate Pc 0.5

Mutation rate Pm 0.5

ECMSMOO

Social learning factor c1 2

Personal learning factor c2 2

Variable inertia weight ω 0.9-0.4

7.2. Results Analysis and Discussion

Section 7.2.1 presents the results analysis and discussion of CMSOS algo-520

rithm.

7.2.1. Comparison of CMSOS results with compared algorithms

This section begin with discussion on the benefit of using chaotic optimiza-

tion strategy within the proposed algorithm. The proposed algorithm with

(denoted as CMSOS) and without (denoted as MSOS) chaotic optimization525

strategy. To ensure a fair comparison between the CMSOS and MSOS, the

initial ecosystem (population), number of generations, stopping criteria and

35

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

hardware resources are same for the workload instances. Both algorithms (CM-

SOS and MSOS) are run for 30 runs over all workload instances. Thereafter,

the performance of the proposed CMSOS is assessed by comparing it against530

other algorithms. To ensure a fair comparison, the parameter values and the

termination condition of EMS-C, ECMSMOO, and BOGA are fixed same as

CMSOS.

The non-dominated solutions for workloads instances of 5000 sizes are pre-

sented in Figure 3a to Figure 4b. As it can be observed from the figures, CMSOS535

performs remarkably better than EMS-C, ECMSMOO, and BOGA algorithms.

The remarkable performance of CMSOS algorithm is attributed to the global

convergence of underlying MSOS algorithm, the incorporation of chaotic op-

timization strategy into MSOS ensures diversity among the organisms which

further enables the algorithm to achieve better convergence and effectively han-540

dle large search space.

The Hypervolume improvements for CMSOS algorithm over the compared

algorithms are given in Figure 5a to Figure 6b. From the figures, it can be ob-

served that CMSOS algorithm have a significant Hypervolume improvement over

the EMS-C, ECMSMOO, and BOGA algorithms for all the workload instances.545

CMSOS obtain performance improvement over EMS-C ranging 8.72% to 19.55%

across the workloads, while the performance improvement over ECMSMOO is

between 11.51% to 23.70%. Moreover, the percentage improvement over BOGA

is between 9.52% to 28.72%. Besides, CMSOS showed noticeable improvement

of 5.43% to 14.41% over the MSOS without the incorporation of chaotic se-550

quence which showcased the effectiveness of chaotic optimization strategy.

Furthermore, the computational time (in seconds) taken by CMSOS to ob-

tain the best result is compared with EMS-C, ECMSMOO, and BOGA for all

the tested workload instances. Table 6 shows the computational times (in sec-555

onds) of CMSOS compared to EMS-C, ECMSMOO, and BOGA. It is clear

from Table 6 that the computational time of CMSOS is lower that of EMS-C,

ECMSMOO, and BOGA for all the tested workload instances. The reported

36

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 500 1000 1500 2000 2500

0
50

10
0

15
0

20
0

25
0

Makespan

C
os

t (
$)

●

●

●

CMSOS
MSOS
EMS−C
ECMSMOO
BOGA

(a) NASA

●
●●
●

●

●
●

●●●
●

●●
●●●●

●

●

●●
●

●●
●●●●

●

●

●

●

●

●

●

●

●
●

●

●

0 500 1000 1500 2000 2500

0
10

0
20

0
30

0
40

0
50

0

Makespan

C
os

t (
$)

●

●

●

CMSOS
MSOS
EMS−C
ECMSMOO
BOGA

(b) HSPC2N

Figure 3: Obtained non-dominated solutions by CMSOS for Real Parallel Workloads

37

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●●●●

●

●

●
●●

●

●
●●

●
●

●

●
●●●

0 1000 2000 3000 4000 5000

0
15

0
30

0
60

0
75

0
10

00

Makespan

C
os

t (
$)

●

●

●

CMSOS
MSOS
EMS−C
ECMSMOO
BOGA

(a) Random

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●●●●

●

●

●
●●

●

●
●●

●
●

●

●
●●●

0 1000 2000 3000 4000 5000

0
15

0
30

0
60

0
75

0
10

00

Makespan

C
os

t (
$)

●

●

●

CMSOS
MSOS
EMS−C
ECMSMOO
BOGA

(b) Uniform

Figure 4: Obtained non-dominated solutions by CMSOS for Synthetic Workloads

38

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

1000 2000 3000 4000 5000

H
V

 im
pr

ov
em

en
t o

f
C

C
−

C
M

SO
S

(%
)

0

5

10

15

20 CMSOS
EMS−C
ECMSMOO
BOGA

Number of Tasks

(a) NASA

1000 2000 3000 4000 5000

H
V

 im
pr

ov
em

en
t o

f
C

C
−

C
M

SO
S

(%
)

0

5

10

15

20

25 CMSOS
EMS−C
ECMSMOO
BOGA

Number of Tasks

(b) HSPC2N

Figure 5: Convergence and Diversity Performance of CMSOS on Real Parallel Workloads

39

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

1000 2000 3000 4000 5000

H
V

 im
pr

ov
em

en
t o

f
C

C
−

C
M

SO
S

(%
)

0

5

10

15

20

25
CMSOS
EMS−C
ECMSMOO
BOGA

Number of Tasks

(a) Random

1000 2000 3000 4000 5000

H
V

 im
pr

ov
em

en
t o

f
C

C
−

C
M

SO
S

(%
)

0

5

10

15

20
CMSOS
EMS−C
ECMSMOO
BOGA

Number of Tasks

(b) Uniform

Figure 6: Convergence and Diversity Performance of CMSOS on Synthetic Workloads

40

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

results reveal that the proposed CMSOS produces better quality solutions with

lower computational time as compared to other algorithms. This proves that560

CMSOS is an effective and efficient solution method for solving large scale task

scheduling optimization problems.

Table 6: Running times of CC-CMSOS algorithm and compared algorithms

Instances EMS-C ECMSMOO BOGA CMSOS CC-CMSOS

HPC2N

1000 14.50 17.95 18.17 13.03 0.31

2000 36.34 36.72 37.01 35.35 1.48

3000 58.65 59.31 59.89 56.53 2.82

4000 72.86 73.66 73.74 70.10 5.12

5000 85.06 87.22 91.46 84.85 8.03

NASA

1000 14.21 22.78 23.53 12.32 0.44

2000 29.51 38.97 41.99 28.14 1.26

3000 48.13 48.62 49.80 42.49 5.02

4000 61.00 67.91 68.34 51.52 6.38

5000 75.25 77.08 90.83 73.50 7.08

Uniform

1000 18.41 18.53 25.41 7.81 0.74

2000 31.57 33.08 36.98 30.20 2.37

3000 38.44 39.29 44.23 38.00 3.85

4000 53.96 67.25 71.81 44.91 5.14

5000 75.13 92.84 96.18 72.77 9.72

Random

1000 12.27 12.87 20.81 6.80 1.06

2000 30.52 43.44 60.84 21.16 2.72

3000 70.80 72.44 78.54 66.70 3.39

4000 86.70 91.37 93.69 81.88 6.14

5000 97.65 104.66 110.41 96.26 8.35

The results showed that CMSOS algorithm gain better convergence and so-

lution diversity, thus leading to global solution. Better convergence is derived

from global convergence of MSOS algorithm. The principal feature that ensures565

41

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

global convergence in both CMSOS and MSOS algorithms is introduction of

chaotic maps for generating initial solutions and replacement of random number

components of the SOS algorithm which increases diversity among organisms

which represents candidate solutions. Another reason for better global con-

vergence of the CMSOS algorithm is the commensalism association exhibited570

by organisms which encourages elitism among organisms. The commensalism

mechanism and chaotic sequence strategy improves local search and global con-

vergence of the proposed algorithm. The application of chaotic local search

strategy on Pareto Front tried to avoid possible entrapment in local optima.

Furthermore, the archive maintenance when the archive is filled to capacity575

and ecosystem selection using non-dominated sorting and crowding distance im-

proves the coverage of the Pareto optimal front in the course of the optimization

process. Overall, the above revealing results justifies the benefit of incorporat-

ing chaotic optimization strategy within the proposed algorithm. So, the use of

chaotic optimization strategy can efficiently enhance the search performance to580

obtain better solutions for all tested workload instances.

8. Conclusion and future work

In this paper, a multi-objective symbiotic organisms search algorithm with

a chaotic optimization strategy for addressing task scheduling problem is pro-

posed. The experimental results of both the standard and synthetic workload585

instances indicates the appropriateness of the proposed algorithm for producing

task schedules. The proposed algorithm consistently produced task schedules

with better makespan and cost with respect to the compared algorithms, for all

the workload instances studied. Chaotic optimization was employed to generate

initial ecosystem (population) for effective ecosystem diversity to ensure better590

global convergence. Moreover, new operators for the phases of SOS were de-

signed to further ensure global solutions for task scheduling problem. Finally,

chaotic local search was hybridized with the proposed algorithm to empower

CMSOS with the exploitative ability to complement the explorative power of

42

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

underlining SOS algorithm. The proposed algorithm can be extended to han-595

dle other QoS requirements like reliability and security for very large workload

instances.

Acknowledgement

This work is supported by UTM/RUG/15H99 RMC Universiti Teknologi

Malaysia.600

References

Abdollahzade M, Miranian A, Hassani H, Iranmanesh H. A new hybrid en-

hanced local linear neuro-fuzzy model based on the optimized singular spec-

trum analysis and its application for nonlinear and chaotic time series fore-

casting. Information Sciences 2015;295:107–25.605

Abdullahi M, Ngadi MA. Hybrid symbiotic organisms search optimization al-

gorithm for scheduling of tasks on cloud computing environment. PloS one

2016;11(6):e0158229.

Abdullahi M, Ngadi MA, Dishing SI. Chaotic symbiotic organisms search for

task scheduling optimization on cloud computing environment. In: Student610

Project Conference (ICT-ISPC), 2017 6th ICT International. IEEE; 2017. p.

1–4.

Abdullahi M, Ngadi MA, et al. Symbiotic organism search optimization based

task scheduling in cloud computing environment. Future Generation Com-

puter Systems 2016;56:640–50.615

Adarsh B, Raghunathan T, Jayabarathi T, Yang XS. Economic dispatch using

chaotic bat algorithm. Energy 2016;96:666–75.

Alatas B. Chaotic bee colony algorithms for global numerical optimization.

Expert Systems with Applications 2010;37(8):5682–7.

43

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Alla HB, Alla SB, Ezzati A, Mouhsen A. A novel architecture with dynamic620

queues based on fuzzy logic and particle swarm optimization algorithm for

task scheduling in cloud computing. In: Advances in Ubiquitous Networking

2. Springer; 2017. p. 205–17.

Banerjee S, Chattopadhyay S. Optimization of three-dimensional turbo code

using novel symbiotic organism search algorithm. In: India Conference (IN-625

DICON), 2016 IEEE Annual. IEEE; 2016. p. 1–6.

Banerjee S, Chattopadhyay S. Power optimization of three dimensional turbo

code using a novel modified symbiotic organism search (msos) algorithm.

Wireless Personal Communications 2017;92(3):941–68.

Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. CloudSim:630

a toolkit for modeling and simulation of cloud computing environments and

evaluation of resource provisioning algorithms. Software: Practice and Expe-

rience 2011;41(1):23–50.

Casas I, Taheri J, Ranjan R, Wang L, Zomaya AY. Ga-eti: An enhanced

genetic algorithm for the scheduling of scientific workflows in cloud envi-635

ronments. Journal of Computational Science 2016;doi:http://doi.org/10.

1016/j.jocs.2016.08.007.

Chen H, Wang F, Helian N, Akanmu G. User-priority guided min-min schedul-

ing algorithm for load balancing in cloud computing. In: Parallel Comput-

ing Technologies (PARCOMPTECH), 2013 National Conference on. Banga-640

lore,India: IEEE; 2013. p. 1–8.

Cheng MY, Lien LC. Hybrid artificial intelligence–based pba for benchmark

functions and facility layout design optimization. Journal of Computing in

Civil Engineering 2012;26(5):612–24.

Cheng MY, Prayogo D. Symbiotic organisms search: a new metaheuristic opti-645

mization algorithm. Computers & Structures 2014;139:98–112.

44

http://dx.doi.org/http://doi.org/10.1016/j.jocs.2016.08.007
http://dx.doi.org/http://doi.org/10.1016/j.jocs.2016.08.007
http://dx.doi.org/http://doi.org/10.1016/j.jocs.2016.08.007

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Cheng MY, Prayogo D, Tran DH. Optimizing multiple-resources leveling in

multiple projects using discrete symbiotic organisms search. Journal of Com-

puting in Civil Engineering 2015;30(3):04015036.

Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective650

genetic algorithm: Nsga ii. IEEE transactions on evolutionary computation

2002;6(2):182–97.

Delavar AG, Aryan Y. Hsga: a hybrid heuristic algorithm for workflow schedul-

ing in cloud systems. Cluster computing 2014;17(1):129–37.

Dib NI. Design of linear antenna arrays with low side lobes level using symbiotic655

organisms search. Progress In Electromagnetics Research B 2016;68:55–71.

Dosoglu MK, Guvenc U, Duman S, Sonmez Y, Kahraman HT. Symbiotic organ-

isms search optimization algorithm for economic/emission dispatch problem

in power systems. Neural Computing and Applications 2016;:1–17.

Duman S. Symbiotic organisms search algorithm for optimal power flow problem660

based on valve-point effect and prohibited zones. Neural Computing and

Applications 2016;:1–15.

Durillo JJ, Nae V, Prodan R. Multi-objective energy-efficient workflow

scheduling using list-based heuristics. Future Generation Computer Systems

2014;36:221–36.665

Eki R, Vincent FY, Budi S, Redi AP. Symbiotic organism search (sos) for

solving the capacitated vehicle routing problem. World Academy of Science,

Engineering and Technology, International Journal of Mechanical, Aerospace,

Industrial, Mechatronic and Manufacturing Engineering 2015;9(5):850–4.

Elhabyan R, Shi W, St-Hilaire M. A pareto optimization-based approach to670

clustering and routing in wireless sensor networks. Journal of Network and

Computer Applications 2018;114:57–69.

45

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Fard HM, Prodan R, Fahringer T. Multi-objective list scheduling of workflow

applications in distributed computing infrastructures. Journal of Parallel and

Distributed Computing 2014;74(3):2152–65.675

Feitelson DG, Tsafrir D, Krakov D. Experience with using the parallel workloads

archive. Journal of Parallel and Distributed Computing 2014;74(10):2967–82.

Ferdaus MH, Murshed M, Calheiros RN, Buyya R. An algorithm for network

and data-aware placement of multi-tier applications in cloud data centers.

Journal of Network and Computer Applications 2017;98:65–83.680

Foster I, Zhao Y, Raicu I, Lu S. Cloud computing and grid computing 360-degree

compared. In: 2008 Grid Computing Environments Workshop. Austin, Texas:

Ieee; 2008. p. 1–10.

Gandomi AH, Yang XS. Chaotic bat algorithm. Journal of Computational

Science 2014;5(2):224–32.685

Ghazouani S, Slimani Y. A survey on cloud service description. Journal of

Network and Computer Applications 2017;91:61–74.

Guvenc U, Duman S, Dosoglu MK, Kahraman HT, Sonmez Y, Yılmaz C. Ap-

plication of symbiotic organisms search algorithm to solve various economic

load dispatch problems. In: INnovations in Intelligent SysTems and Applica-690

tions (INISTA), 2016 International Symposium on. Sinaia, Romania: IEEE;

2016. p. 1–7.

Guzek M, Bouvry P, Talbi EG. A survey of evolutionary computation for

resource management of processing in cloud computing [review article]. IEEE

Computational Intelligence Magazine 2015;10(2):53–67.695

Hameed A, Khoshkbarforoushha A, Ranjan R, Jayaraman PP, Kolodziej J,

Balaji P, Zeadally S, Malluhi QM, Tziritas N, Vishnu A, et al. A survey

and taxonomy on energy efficient resource allocation techniques for cloud

computing systems. Computing 2014;:1–24.

46

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Hayyolalam V, Kazem AAP. A systematic literature review on qos-aware service700

composition and selection in cloud environment. Journal of Network and

Computer Applications 2018;.

Hu H, Li Z, Hu H, Chen J, Ge J, Li C, Chang V. Multi-objective scheduling

for scientific workflow in multicloud environment. Journal of Network and

Computer Applications 2018;114:108–22.705

Ishibuchi H, Hitotsuyanagi Y, Tsukamoto N, Nojima Y. Many-objective test

problems to visually examine the behavior of multiobjective evolution in a

decision space. In: International Conference on Parallel Problem Solving

from Nature. Kraków, Poland: Springer; 2010. p. 91–100.

Kalra M, Singh S. A review of metaheuristic scheduling techniques in cloud710

computing. Egyptian Informatics Journal 2015;16(3):275–95.

Kanimozhi G, Rajathy R, Kumar H. Minimizing energy of point charges on a

sphere using symbiotic organisms search algorithm. International Journal on

Electrical Engineering and Informatics 2016;8(1):29.

Kasahara Y, Yonezawa Y. The properties of complex evolution in chaos gen-715

eration process. In: Evolutionary Computation, 1996., Proceedings of IEEE

International Conference on. Nagoya University, JAPAN: IEEE; 1996. p. 874–

9.

Kennedy J. Particle swarm optimization. In: Encyclopedia of machine learning.

Springer; 2011. p. 760–6.720

Latiff MSA, Madni SHH, Abdullahi M, et al. Fault tolerance aware scheduling

technique for cloud computing environment using dynamic clustering algo-

rithm. Neural Computing and Applications 2016;:1–15.

Le Hoang S. Optimizing municipal solid waste collection using chaotic particle

swarm optimization in gis based environments: a case study at danang city,725

vietnam. Expert systems with applications 2014;41(18):8062–74.

47

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Li X, Xu J, Yang Y. A chaotic particle swarm optimization-based heuristic for

market-oriented task-level scheduling in cloud workflow systems. Computa-

tional intelligence and neuroscience 2015;2015:81.

Li Z, Ge J, Yang H, Huang L, Hu H, Hu H, Luo B. A security and cost aware730

scheduling algorithm for heterogeneous tasks of scientific workflow in clouds.

Future Generation Computer Systems 2016;65:140–52.

Liu L, Zhang M, Buyya R, Fan Q. Deadline-constrained coevolutionary genetic

algorithm for scientific workflow scheduling in cloud computing. Concurrency

and Computation: Practice and Experience 2016;29(5).735

Mao Y, Chen X, Li X. Max–min task scheduling algorithm for load balance in

cloud computing. In: Proceedings of International Conference on Computer

Science and Information Technology. Kunming, China: Springer; 2014. p.

457–65.

Meena J, Kumar M, Vardhan M. Cost effective genetic algorithm for workflow740

scheduling in cloud under deadline constraint. IEEE Access 2016;4:5065–82.

Midya S, Roy A, Majumder K, Phadikar S. Multi-objective optimization tech-

nique for resource allocation and task scheduling in vehicular cloud architec-

ture: A hybrid adaptive nature inspired approach. Journal of Network and

Computer Applications 2018;103:58–84.745

Ming G, Li H. An improved algorithm based on max-min for cloud task schedul-

ing. In: Recent Advances in Computer Science and Information Engineering.

Springer; 2012. p. 217–23.

Nama S, Saha A, Ghosh S. Improved symbiotic organisms search algorithm

for solving unconstrained function optimization. Decision Science Letters750

2016;5(3):361–80.

Nanda SJ, Jonwal N. Robust nonlinear channel equalization using wnn trained

by symbiotic organism search algorithm. Applied Soft Computing 2017;.

48

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Netjinda N, Sirinaovakul B, Achalakul T. Cost optimal scheduling in iaas for

dependent workload with particle swarm optimization. The Journal of Su-755

percomputing 2014;68(3):1579–603.

Nirmala SJ, Bhanu SMS. Catfish-pso based scheduling of scientific workflows

in iaas cloud. Computing 2016;98(11):1091–109.

Ostermann S, Iosup A, Yigitbasi N, Prodan R, Fahringer T, Epema D. A per-

formance analysis of ec2 cloud computing services for scientific computing. In:760

International Conference on Cloud Computing. Munich, Germany: Springer;

2009. p. 115–31.

Panda A, Pani S. A symbiotic organisms search algorithm with adaptive penalty

function to solve multi-objective constrained optimization problems. Applied

Soft Computing 2016;46:344–60.765

Patel G, Mehta R, Bhoi U. Enhanced load balanced min-min algorithm for

static meta task scheduling in cloud computing. Procedia Computer Science

2015;57:545–53.

Pham D, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M. The bees

algorithm–a novel tool for complex optimisation. In: Intelligent Production770

Machines and Systems-2nd I* PROMS Virtual International Conference (3-14

July 2006). 2011. .

Prayogo D, Cheng MY, Prayogo H. A novel implementation of nature-inspired

optimization for civil engineering: A comparative study of symbiotic organ-

isms search. Civil Engineering Dimension 2017;19(1):36–43.775

Qin AK, Huang VL, Suganthan PN. Differential evolution algorithm with strat-

egy adaptation for global numerical optimization. IEEE transactions on Evo-

lutionary Computation 2009;13(2):398–417.

Rajagopalan A, Sengoden V, Govindasamy R. Solving economic load dispatch

problems using chaotic self-adaptive differential harmony search algorithm.780

International Transactions on Electrical Energy Systems 2015;25(5):845–58.

49

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Rodriguez MA, Buyya R. Deadline based resource provisioningand scheduling

algorithm for scientific workflows on clouds. IEEE Transactions on Cloud

Computing 2014;2(2):222–35.

Secui DC. A modified symbiotic organisms search algorithm for large scale785

economic dispatch problem with valve-point effects. Energy 2016;113:366–84.

Shayeghi H, Ghasemi A. A modified artificial bee colony based on chaos theory

for solving non-convex emission/economic dispatch. Energy Conversion and

Management 2014;79:344–54.

Shen Y, Bao Z, Qin X, Shen J. Adaptive task scheduling strategy in cloud:790

when energy consumption meets performance guarantee. World Wide Web

2016;:1–19.

Singh S, Chana I. A survey on resource scheduling in cloud computing: Issues

and challenges. Journal of Grid Computing 2016;14(2):217–64.

Sonmez Y, Kahraman HT, Dosoglu MK, Guvenc U, Duman S. Symbiotic organ-795

isms search algorithm for dynamic economic dispatch with valve-point effects.

Journal of Experimental & Theoretical Artificial Intelligence 2016;:1–21.

Suresh S, Lal S. Multilevel thresholding based on chaotic darwinian particle

swarm optimization for segmentation of satellite images. Applied Soft Com-

puting 2017;55:503–22.800

Tao F, Feng Y, Zhang L, Liao T. Clps-ga: A case library and pareto solution-

based hybrid genetic algorithm for energy-aware cloud service scheduling.

Applied Soft Computing 2014;19:264–79.

Tawfeek MA, El-Sisi A, Keshk A, Torkey FA. Cloud task scheduling based on

ant colony optimization. Int Arab J Inf Technol 2015;12(2):129–37.805

Tejani GG, Savsani VJ, Patel VK. Adaptive symbiotic organisms search (sos)

algorithm for structural design optimization. Journal of Computational De-

sign and Engineering 2016;3(3):226–49.

50

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Teng S, Lee LH, Chew EP. Multi-objective ordinal optimization for simulation

optimization problems. Automatica 2007;43(11):1884–95.810

Thakur A, Goraya MS. A taxonomic survey on load balancing in cloud. Journal

of Network and Computer Applications 2017;.

Tiwari A, Pandit M. Bid based economic load dispatch using symbiotic organ-

isms search algorithm. In: Engineering and Technology (ICETECH), 2016

IEEE International Conference on. Tamil Nadu, India: IEEE; 2016. p. 1073–8.815

Tran DH, Cheng MY, Prayogo D. A novel multiple objective symbiotic or-

ganisms search (mosos) for time–cost–labor utilization tradeoff problem.

Knowledge-Based Systems 2016;94:132–45.

Tsai CW, Rodrigues JJ. Metaheuristic scheduling for cloud: A survey. IEEE

Systems Journal 2014;8(1):279–91.820

Vakili A, Navimipour NJ. Comprehensive and systematic review of the service

composition mechanisms in the cloud environments. Journal of Network and

Computer Applications 2017;81:24–36.

Verma A, Kaushal S. A hybrid multi-objective particle swarm optimization for

scientific workflow scheduling. Parallel Computing 2017;62:1–19.825

Vincent FY, Redi AP, Yang CL, Ruskartina E, Santosa B. Symbiotic organism

search and two solution representations for solving the capacitated vehicle

routing problem. Applied Soft Computing 2017;52:657–72.

Wang B, Song Y, Sun Y, Liu J. Managing deadline-constrained bag-of-tasks

jobs on hybrid clouds with closest deadline first scheduling. KSII Transactions830

on Internet & Information Systems 2016;10(7).

Wu F, Wu Q, Tan Y. Workflow scheduling in cloud: a survey. The Journal of

Supercomputing 2015;71(9):3373–418.

51

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Wu H, Zhou Y, Luo Q, Basset MA. Training feedforward neural networks

using symbiotic organisms search algorithm. Computational Intelligence and835

Neuroscience 2016;2016.

Wu Q, Law R, Wu E, Lin J. A hybrid-forecasting model reducing gaussian noise

based on the gaussian support vector regression machine and chaotic particle

swarm optimization. Information Sciences 2013;238:96–110.

Xu Y, Li K, Hu J, Li K. A genetic algorithm for task scheduling on heteroge-840

neous computing systems using multiple priority queues. Information Sciences

2014;270:255–87.

Xue B, Zhang M, Browne W, Yao X. A survey on evolutionary computation

approaches to feature selection 2016;20(4):606 –26.

Yao G, Ding Y, Jin Y, Hao K. Endocrine-based coevolutionary multi-swarm845

for multi-objective workflow scheduling in a cloud system. Soft Computing

2016;:1–14.

Yassa S, Chelouah R, Kadima H, Granado B. Multi-objective approach for

energy-aware workflow scheduling in cloud computing environments. The

Scientific World Journal 2013;2013.850

Zamani MKM, Musirin I, Suliman SI. Symbiotic organisms search technique

for svc installation in voltage control. Indonesian Journal of Electrical Engi-

neering and Computer Science 2017;6(2):318–29.

Zeng L, Veeravalli B, Zomaya AY. An integrated task computation and data

management scheduling strategy for workflow applications in cloud environ-855

ments. Journal of Network and Computer Applications 2015;50:39–48.

Zhan ZH, Li J, Cao J, Zhang J, Chung HSH, Shi YH. Multiple populations

for multiple objectives: A coevolutionary technique for solving multiobjective

optimization problems. IEEE Transactions on Cybernetics 2013;43(2):445–63.

52

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Zhan ZH, Liu XF, Gong YJ, Zhang J, Chung HSH, Li Y. Cloud computing860

resource scheduling and a survey of its evolutionary approaches. ACM Com-

puting Surveys (CSUR) 2015;47(4):63.

Zhang F, Cao J, Li K, Khan SU, Hwang K. Multi-objective scheduling of many

tasks in cloud platforms. Future Generation Computer Systems 2014;37:309–

20.865

Zhang L, Li K, Li C, Li K. Bi-objective workflow scheduling of the energy

consumption and reliability in heterogeneous computing systems. Information

Sciences 2017;379:241–56.

Zheng W, Sakellariou R. Budget-deadline constrained workflow planning for

admission control. Journal of grid computing 2013;11(4):633–51.870

Zhong Z, Chen K, Zhai X, Zhou S. Virtual machine-based task scheduling algo-

rithm in a cloud computing environment. Tsinghua Science and Technology

2016;21(6):660–7.

Zhu Z, Zhang G, Li M, Liu X. Evolutionary multi-objective workflow schedul-

ing in cloud. IEEE Transactions on Parallel and Distributed Systems875

2016;27(5):1344–57.

Zitzler E, Thiele L, Laumanns M, Fonseca CM, Da Fonseca VG. Performance

assessment of multiobjective optimizers: An analysis and review. IEEE Trans-

actions on evolutionary computation 2003;7(2):117–32.

Zuo L, Shu L, Dong S, Zhu C, Hara T. A multi-objective optimization scheduling880

method based on the ant colony algorithm in cloud computing. IEEE Access

2015;3:2687–99.

Zuo X, Zhang G, Tan W. Self-adaptive learning pso-based deadline constrained

task scheduling for hybrid iaas cloud. IEEE Transactions on Automation

Science and Engineering 2014;11(2):564–73.885

53

M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

Abdullahi Mohammed received his PhD in Computer Science
from Universiti Teknologi Malaysia. He received his M.Sc. degree
in Computer Science from Ahmadu Bello University, Zaria Nigeria
and B.Tech degree in Mathematics with Computer from Federal
University of Technology, Minna Nigeria. He is a lecturer in
Ahmadu Bello University, Zaria Nigeria. His research interests
include algorithm design for distributed systems, big data analytics,
machine learning, and and large scale optimization using nature

inspired algorithms. He is a member of IEEE and ACM.

 Md Asri Bin Ngadi received PhD in Computer Science from Aston
University, Birmingham UK and B.Sc in Computer Science from
Universiti Teknologi Malaysia. His research interests is related to
Wireless Computer, Cloud Computing, and Network Security.
Currently he is appointed as Associate Professor at Universiti
Teknologi Malaysia and a member of IEEE and ACM.

Salihu Idi Dishing is a PhD research student at the Faculty of
Computing, Universiti Teknologi Malaysia (UTM), in Malaysia. He
holds an MSc degree from the Robert Gordon University (RGU),
Aberdeen, United Kingdom, and a BSc in Mathematics with Computer
science from Ahmadu Bello University (ABU), Zaria, Nigeria, where
he is a faculty member with the department of Computer Science, in
Faculty of Physical Sciences. His research interests include:
Distributed (Cloud, Grid, and Fog) systems modeling and simulation,

Nature-inspired algorithms, and Machine Learning.

Shafi’i Muhammad ABDULHAMID received his PhD in
Computer Science from Universiti Teknologi Malaysia. He received
his M.Sc. degree in Computer Science from Bayero University Kano,
Nigeria and B.Tech. degree in Mathematics/Computer Science from
the Federal University of Technology Minna, Nigeria. His current
research interest is scheduling in Grid and Cloud Computing. He is a
member of IEEE and a member of Nigerian Computer Society
(NCS).

 Barroon Isma'eel Ahmad obtained his BSc. from Usmanu
Danfodiyo University Sokoto and MSc. From Ahmadu Bello
University Zaria both in Computer Science in Nigeria, his PhD from
International Islamic University Malaysia in Information
Technology. He is currently working with Department of Computer
Science at Ahmadu Bello University Zaria, Nigeria. His research
interests are in Health Informatics, Mobile and Pervasive
Computing, Embedded Systems, and eLearning. He is a member of

IEEE, ACM, AIS, IACSIT, NCS, and AITP.

View publication statsView publication stats

https://www.researchgate.net/publication/331157794

