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Abstract

In Cloud Computing model, users are charged according to the usage of

resources and desired Quality of Service (QoS). Multi-objective task schedul-

ing problem based on desired QoS is an NP-Complete problem. Due to the

NP-Complete nature of task scheduling problems and huge search space pre-

sented by large scale problem instances, many of the existing solution algo-

rithms cannot effectively obtain global optimum solutions. In this paper, a

chaotic symbiotic organisms search (CMSOS) algorithm is proposed to solve

multi-objective large scale task scheduling optimization problem on IaaS cloud

computing environment. Chaotic optimization strategy is employed to generate

initial ecosystem(population), and random sequence based components of the

phases of SOS are replaced with chaotic sequence to ensure diversity among

organisms for global convergence. In addition, chaotic local search strategy is

applied to Pareto Fronts generated by SOS algorithms to avoid entrapment in

local optima. The performance of the proposed CMSOS algorithm is evaluated

on CloudSim simulator toolkit, using both standard workload traces and syn-
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thesized workloads for larger problem instances of up to 5000. Moreover, the

performance of the proposed CMSOS algorithm was found to be competitive

with the existing with the existing multi-objective task scheduling optimiza-

tion algorithms. The CMSOS algorithm obtained significant improved optimal

trade-offs between execution time (makespan) and financial cost (cost) with no

computational overhead. Therefore, the proposed algorithms have potentials to

improve the performance of QoS delivery.

Keywords:

Symbiotic Organisms Search, Metaheuristics Algorithms, Optimization,

NP-Complete, Multi-Objective Task Scheduling, Cloud Computing

1. Introduction

To meet up with the increasing computational demand of large scale ap-

plications, Cloud Computing is witnessing high rate deployment of large scale

applications in recent times, because Cloud provides elastic and flexible com-

pute resources which can be leased on pay-per-use model (Foster et al., 2008).5

Large scale applications consist of huge number of tasks which are executed

on Infrastructure-as-a-Service clouds. Cloud Computing services are offered in

form of Software as a Service (SaaS), Platform as a Service (PaaS), and Infras-

tructure as a Service (IaaS). SaaS service model delivers applications to end

users via Internet and these applications are accessed using client applications10

like web browsers. SaaS is usually used for service applications like web-mail,

and document editing applications. PaaS provides application developers with

environment for development, testing and hosting of their applications.

Moreover, IaaS provides access to flexible and scalable computing resources

for large scale application deployment. With IaaS model, virtualized com-15

pute resources called virtual machines (VMs) with pre-configured CPU, storage,

memory, and bandwidth are leased to users by paying for what they use only.

Various VM instances are available to the users at different prices to serve their

various application needs, this gives users the freedom to control compute re-

2
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source at their disposal. IaaS provides three inherent benefits to users. First,20

users lease resource on demand, and charged based on pay-per-usage similar to

basic utilities like electricity, gas, and water. This enables users to shrink or ex-

pand their resource subscription base on the needs of their application. Second,

IaaS Cloud provides direct resource provisioning which improve the performance

of user applications. Third, users can demand for leased resources any time and25

any where according to the desired level of service. However, determining the

adequate number of resources to execute a set of large scale task on IaaS Cloud

is still an open problem (Thakur and Goraya, 2017; Wu et al., 2015; Zeng et al.,

2015).

Due to the practical applications and challenges of executing large scale ap-30

plications, task scheduling of applications on the large scale have become an

emerging research in cloud computing and have attracted significant attention

of researchers in recent times (Ferdaus et al., 2017). Various heuristics have

been applied to solve task scheduling problems which generate optimal solu-

tions for small size problems (Chen et al., 2013; Ming and Li, 2012; Mao et al.,35

2014; Patel et al., 2015). However, the quality of solutions produced by these

techniques degrades woefully as the problem size and number of variables to be

optimized increases. Also, these heuristic methods do not have provisions and

support for meeting various QoS requirements (Hayyolalam and Kazem, 2018;

Vakili and Navimipour, 2017; Ghazouani and Slimani, 2017). In contrast, many40

cloud users requires certain QoS satisfaction especially for scientific and busi-

ness domain applications. In recent times, attempts have been made to address

task scheduling problems using metaheuristic algorithms like genetic algorithms

(GA), particle swarm optimization (PSO), and ant colony optimization (ACO)

to address this problem (Hameed et al., 2014; Wu et al., 2015; Singh and Chana,45

2016). Utilizing metaheuristic algorithms for solving task scheduling problems

in Cloud have shown promising improvements in achieving efficiency, by reduc-

ing the solution search space. However, metaheuristic algorithms incur high

computational time and in some cases return local optimum solution especially

when dealing with large solution space, also, these techniques may suffer from50

3
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premature convergence and imbalance between local and global search (Tsai and

Rodrigues, 2014; Guzek et al., 2015; Kalra and Singh, 2015; Zhan et al., 2015;

Xue et al., 2016; Meena et al., 2016). These limitations result to sub-optimal

task schedule solutions which affects the performance of service provision in

terms of meeting the desired QoS objectives. Furthermore, most of the existing55

works fail to capture the essential features of cloud computing like heterogeneity,

elasticity, and dynamism of computing resources there by fail to fulfill user QoS

needs. Hence, there is need for metaheuristic based optimization algorithms

that can efficiently cope with large search space when scheduling large scale

applications. Hence, there is scope for further development of task scheduling60

solutions for further improved solutions. Therefore, this paper presents Chaotic

Multi-Objective Symbiotic Organisms Search (CMSOS) based task scheduling

algorithms for large scale task scheduling optimization on IaaS cloud.

Symbiotic Organisms Search (SOS) algorithm is a recently introduced meta-

heuristic algorithm in Cheng and Prayogo (2014) and has gathered considerable65

interest of researchers from natural computing. SOS was originally proposed

to handle continuous benchmark and engineering problems, which was shown

to have a robust performance and has faster convergence speed when com-

pared with GA (Deb et al., 2002), PSO (Kennedy, 2011), Differential Evolution

(DE) (Qin et al., 2009), Bees Algorithm (BA) (Pham et al., 2011), and Particle70

Bee Algorithm (PBA) (Cheng and Lien, 2012) which are the traditional meta-

heuristic algorithms. SOS have proven to be efficient for optimizing complex

multidimensional search space while handling multi-objective and constrained

optimization problems. Active researches on SOS since its introduction includes

hybridization, discrete optimization problems, constrained and multi-objective75

optimization. Hybridization intends to combine the strengths of SOS like global

search ability and rapid optimization, with other related techniques to address

some of the issues with SOS performance, like entrapment in local optima.

SOS metaheuristic optimization algorithm is based on the interaction be-

tween paired of organisms for survival in an ecosystem, it shares some common80

features with most of the nature inspired algorithms. The candidate solutions

4
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are represented by population of organisms, and mutualism, commensalism and

parasitism operators to direct the search process by candidate solutions. SOS

requires the settings of population size and stopping criterion before the search

process starts, in the course of search process selection mechanism is used to85

keep better solutions. SOS does not require algorithm specific parameters un-

like PSO that needs inertia weight, social and cognitive factors or GA that

used crossover and mutation. Moreover, inadequate turning of these algorithm

specific parameters could lead to non-optimal solutions. SOS optimization algo-

rithm have been recently found to be successful in solving various optimization90

problems in a variety of domains like economic dispatch (Dosoglu et al., 2016;

Secui, 2016; Guvenc et al., 2016; Sonmez et al., 2016; Tiwari and Pandit, 2016),

power optimization (Banerjee and Chattopadhyay, 2017; Duman, 2016; Zamani

et al., 2017; Banerjee and Chattopadhyay, 2016), construction project schedul-

ing (Tran et al., 2016; Cheng et al., 2015), task scheduling (Abdullahi et al.,95

2016; Abdullahi and Ngadi, 2016; Abdullahi et al., 2017), design optimization

of engineering structures (Tejani et al., 2016; Panda and Pani, 2016; Prayogo

et al., 2017; Nama et al., 2016), transportation (Eki et al., 2015; Vincent et al.,

2017), energy optimization (Kanimozhi et al., 2016), wireless communication

(Dib, 2016), and machine learning (Nanda and Jonwal, 2017; Wu et al., 2016).100

The standard SOS algorithm was proposed to solve unconstrained continuous

optimization problems while task scheduling problem is a discrete optimization

problem.

Our earlier works (Abdullahi et al., 2016; Abdullahi and Ngadi, 2016) consid-

ers only single objective task scheduling optimization problems while this paper105

considers multi-objective task scheduling optimization problem in addition to

the following contributions:

• Pareto based multi-objective SOS algorithm

• Chaotic based ecosystem (population) initialization to improve population

diversity and global convergence.110

• Replacement of random sequence components of the original SOS with

5
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chaotic sequence to ensure global convergence.

• Chaotic Local Search to avoid entrapment of Pareto Front in local optima.

• Performance evaluation of the proposed algorithm against recent multi-

objective algorithms.115

The structure of the remaining parts of the paper are follows: Review of

related work on existing multi-objective task scheduling techniques are discussed

in Section 2. Section 3 presents the definition of task scheduling problem along

with multi-objective task scheduling formulation. The original SOS algorithm is

presented in Section 4. Section 5 describes the concept of chaotic optimization120

strategy along with chaotic local search technique. The detailed description of

the proposed algorithm is presented in Section 6, performance evaluation and

analysis of the obtained results are presented in Section 7. Finally, conclusion

and suggestions for possible future research are presented in Section 8.

2. Related work125

Task scheduling optimization approaches either focused on single objective or

multi-objective. The single objective task scheduling optimization approaches,

only try to optimize either makespan or cost (Hu et al., 2018; Abdullahi et al.,

2016; Abdullahi and Ngadi, 2016; Latiff et al., 2016; Li et al., 2016; Nirmala and

Bhanu, 2016; Zhong et al., 2016; Meena et al., 2016; Liu et al., 2016; Tawfeek130

et al., 2015; Li et al., 2015; Zuo et al., 2014; Rodriguez and Buyya, 2014; Netjinda

et al., 2014). However, because of the rapid development of Cloud, several QoS

objectives needs to be considered which makes task scheduling a multi-objective

optimization problem. The complexity of the multi-objective task optimization

formulation arise from the fact that users and providers have different optimiza-135

tion goals. Users are mainly concerned with minimizing makespan and cost,

whereas providers want to maximize resource utilization and energy consump-

tion while meeting user QoS requirements. In this situation, task scheduling

have to be solved as a multi-objective optimization problem trying to optimize

6
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many and yet conflicting objectives, where it is not possible to obtain optimal140

solution with regards to all objectives. Therefore, a good trade-offs between the

objectives need to be obtained.

Multi-objective task scheduling optimization challenge is an important con-

sideration because of its direct effect on both cloud service providers and con-

sumers (Zhan et al., 2015). In cloud computing platform, task scheduling algo-145

rithms must optimize financial cost of leasing compute resources in addition to

execution time (makespan) and other QoS metrics. Generally, cloud providers

offer heterogeneous set of resources (VM instances) at various prices with var-

ied performance. In this way, task scheduling problem needs to be formulated

as a multi-objective optimization problem that intend to optimize conflicting150

objectives such as maksepan and financial cost of task execution. With multi-

objective formulation, there is no single solution which is optimal with respect to

all objectives, but a set of trade-off solutions called Pareto front (Tao et al., 2014;

Elhabyan et al., 2018). Multi-objective task scheduling optimization problems

are usually solved using aggregation, hierarchical, Pareto, and coevolutionary155

multi-swarm approaches. The aggregation (weighted) approach is the common

method for solving multi-objective task scheduling problems. The approach as-

sign weights to multiple objectives and sum up the objectives to form single

objective function. For instance, Delavar and Aryan (2014) proposed GA based

task scheduling algorithm to optimize makespan, reliability, and load balanc-160

ing of applications by putting into consideration the heterogeneous character-

istics of compute resources. Also, Shen et al. (2016) developed GA algorithm

for adaptive scheduling of tasks considering energy consumption and makespan

performance. Casas et al. (2016) proposed GA based task scheduling technique

for optimizing makespan and cost. Zuo et al. (2015) proposed ACO based task165

scheduling algorithm to optimize budget and deadline constrained task schedul-

ing problems, the proposed approach simultaneously makespan and cost within

a given budget and deadline. However, the results of different objectives is

dependent on the values of the assigned weights which may not adequately rep-

resent the decision of the user. Moreover, the approach produce only solution170

7
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which is not adequate for multi-objective decision problems.

The hierarchical approaches optimize task scheduling objectives in a sequen-

tial order, the optimization ordering of the objectives are determined based on

their importance and solution to the objectives are alternately sought based on

their ordering. For instance, the approach proposed by Teng et al. (2007) used175

sorting strategy, the objective functions are optimized in sequential order. The

optimization of an objective is continuously carried until no further improve-

ment is possible, then next objective is optimized while meeting the constraints

of the previous optimized objectives. Similar approach was used by Zhang et al.

(2014) to optimize makespan and cost. However, these approaches are time180

consuming especially when there are several objectives with constraints, since it

requires several iteration of optimization process. Moreover, the importance of

the objectives is dependent on the problem, and performance of the approach

may be significantly affected by the ranking of the objectives.

To overcome the drawbacks of both aggregation and hierarchical approaches,185

Pareto-based optimization approaches have been put forth for addressing multi-

objective task scheduling problems (Hu et al., 2018; Midya et al., 2018; Tao et al.,

2014; Durillo et al., 2014). Pareto approaches finds several optimal trade-off so-

lutions for the objectives for the optimization problem. The concept of Pareto

dominance is applied to assign fitness to individuals. The Pareto approach does190

not require transforming multiple objectives into single objective formulation,

and generate several trade-off solutions in a single run. Tao et al. (2014) presents

a hybrid GA algorithms to obtain Pareto optimal solutions for makespan and

energy consumption. Pareto optimal trade-offs between makespan, cost, and

energy consumption was solved using list scheduling heuristics and hybrid PSO195

respectively (Fard et al., 2014; Yassa et al., 2013). Similarly, Verma and Kaushal

(2017) presents PSO based multi-objective task scheduling algorithm to ob-

tain optimal trade-offs between makespan, cost, and energy consumption while

meeting deadline and budget constraints respectively. Xu et al. (2014) put

forth multi-objective GA for workflow task scheduling problem to simultane-200

ously minimize makespan and cost while considering the priorities of the tasks.

8
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Moreover, Zhang et al. (2017) proposed multi-objective GA algorithm to obtain

Pareto optimal trade-offs between energy consumption, and reliability for dead-

line constrained task scheduling problems. However, with Pareto task scheduling

approaches, it is difficult to select appropriate individual for the next generation205

since Pareto dominance is a partial order (Zhan et al., 2013). Therefore, the

solutions obtained may not cover the entire Pareto Front (PF) if the selection

operator fails to keep adequate diversity. Thus, developing multi-objective task

scheduling that effectively assign fitness to individuals while keeping solution to

efficiently estimate the entire PF remains challenging research.210

3. Multi-objective task scheduling problem

Task scheduling problem considered in this paper is to minimize makespan

and financial cost (cost) for executing large scale tasks on IaaS cloud computing

environment. In this section, the IaaS cloud data center model, task execution

model and task scheduling problem formulation which form the bases of the215

proposed algorithm is introduced.

3.1. IaaS cloud model

An IaaS cloud data center provides computing resources to users through

virtual machines, an active virtual machine is called an instance. IaaS providers

usually provide various instance series types with wide range of instance types

consisting of different combinations of CPU, memory and bandwidth. In this

study, the CPU capacities are used to determine the estimated execution time of

tasks. It is assumed that IaaS provider offers relatively infinite pool of instances

which is described by a set I = {I1, I2, I3, . . .}. The instances are categorised

into series based on the computing needs of the users, for instance, Amazon EC2

currently offer three instance series which are compute intensive, memory inten-

sive and storage intensive instances. The set V = {V1, V2, V3, . . . , Vs, . . . , VS}

describes the type of series offered by an IaaS provider, each series type Vs con-

sists of instance types Vs = {v1s , v2s , v3s , . . . , vks , . . . , vKs }. IaaS providers describe
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the CPU capacities different instance types by compute unit (CU). The com-

pute unit of an instance type vks is denoted as pks which is defined in million

floating point operations per second (MFLOPS), cost per time unit is denoted

as cks , and other features of an instance type include storage space and mem-

ory capacity. The task model considered is a collection of independent tasks

t = {ti|i = 1, 2, 3, ..., n}, there is not precedence constraint between the indi-

vidual tasks. The goal of a task scheduler is to assign given tasks to instance

types to optimize one or more objectives, thus, the aim of this study is to min-

imize makespan and cost under deadline constraint for task execution on IaaS

cloud infrastructure. It is assumed each instance type have sufficient memory

and storage to execute the collection of tasks. The execution time e(ti, v
k
s ) of a

task ti on an instance type vks is determined as the ratio of task length si to its

compute unit pks as in Equation 1.

e(ti, v
k
s ) =

si
pks

(1)

The existing IaaS providers charge users for leased instance per-unit time and

pricing strategies differs from providers. For instance, Amazon EC2 charge

user per-hour for a leased instance and fractional hours are rounded to full220

hour (https://aws.amazon.com/ec2/pricing/) while Microsoft Azure charge per-

minute for an instance usage (https://azure.microsoft.com/en-us/pricing/details/virtual-

machines/linux/). Due to the different pricing strategies by various IaaS providers,

the proposed algorithms are based on a generic pricing model IaaS cloud service

provision. Suppose a set P = {P1, P2, P3, . . . , Pt, . . . , Pr} describes the price225

models for IaaS cloud service provision, then a function bill(Pt, Vs, v
k
s ) is de-

fined to compute the lease cost of using an instance type vks of instance series

type Vs using the pricing model Pt. Thus, based the definition of pool of in-

stances, instance series types , instance types and pricing options, IaaS service

provision is represented as C = (V, Vs, P ).230
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3.2. Multi-objective task Scheduling formulation

Given a set of independent tasks t = {ti|i = 1, 2, 3, ..., n} and an IaaS cloud

C = (V, Vs, P ), the problem is to produce one or more task schedule S with min-

imum makespan and cost such that the value of the makespan doe not exceed

imposed deadline. Task schedule S = (I,M,makespan, cost) is defined in terms

of a set of leased instances, tasks to instance mapping, makespan, and cost of

execution. The set I = {I1, I2, I3, . . . , In} is the set of leased instance informa-

tion for each task, where Ii is a three turple: Ii =< vks (ti), S(ti, v
k
s ), F (ti, v

k
s ) >,

where vks (ti) is an instance type leased to execute task ti ∈ t with the lease

start time S(ti, v
k
s ) and lease finish time F (ti, v

k
s ). For each m(ti, v

k
s ) ∈ A is

a four tuple: m(ti, v
k
s ) =< ti, v

k
s (ti), Sti , Fti >, where ti ∈ T is a task to be

executed on an instance type vks ∈ I with at a starting execution time Sti and

finishing execution time Fti . The values of makespan and cost are obtained

using Equations 2 and 3.

makespan = max{Fti : ti ∈ T} (2)

cost =

n∑
i=1

cks × dF (ti, v
k
s )− S(ti, v

k
s )e (3)

In this study, only one instance series and one pricing option are considered for

the studied problem, the instance series type is compute intensive. Considering

multiple instance types in a single schedule could be studied in our future work.

The objectives of the task scheduling problem (t, C) in Equation 4.

minimize f = (makespan, cost)T (4)

4. Framework of symbiotic organisms search algorithm

In SOS algorithm, potential solutions are represented by a population of

organisms which evolved through successive iterations. Each organism repre-

sents a solution for an optimization problem. Initially, the potential solutions235

are randomly generated and subsequently the solutions are refined by mutu-

alism, commensalism, and parasitism models of SOS. Mutualism is a kind of
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relationship between two different species of organisms where both organisms

benefit from the interaction. A classic example of mutualism association is an

interaction between bees and flowers. Bees collect nectar from flower for the240

production of honey and nectar collection process by Bees enable the trans-

fer of pollen grains which aid pollination. Therefore, the involved organisms

in the interaction mutually benefits from the relationship. In commensalism

relationship, one organism benefits from the interaction while the other is not

harmed. A relationship between remora fish and sharks is a typical example of245

commensalism association. Remora fish rides on shark for food and shark nei-

ther benefits nor harmed form the relationship. In parasitism relationship, one

organism initiates a relationship which benefits itself while the other organism is

harmed. An example of parasitic association is a relationship between anophe-

les mosquito and human host. An anopheles mosquito transmits plasmodium250

parasite to human host which could cause the death of human host if his/her

system cannot fight against the parasite.

In the SOS algorithm evolution, fitter organisms are allowed to proceed to the

next generation of potential solution while the unfitted organisms are discarded.

The population of organisms are created in a two d-dimensional search space,

and the positions of each organism is changed based on the models of the three

phases(mutualism, commensalism, and parasitism) of the SOS. Suppose the

position of an ith organism in the solution search space is represented as in

Equation 5.

Xi = (Xi1, Xi2, Xi3, ..., Xid) (5)

where Xip ∈ [Lp, Up], p ∈ [1, d], and Lp and Up are the lower and upper bounds

of the pth dimension of the search space. At each iteration, the positions of

the organisms are updated according to the three phases of the organism as255

explained in the following subsections.

4.1. Mutualism phase

Suppose Xi is the ith member of the ecosystem. In this phase, a design

vector Xj is randomly selected from the swarm of organisms to interact with

12



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

another design Xi(i 6= j) for mutual benefit. The essence of the interaction is

to improve extent of survival of both Xi and Xj in the ecosystem. The new

candidate solutions for Xi and Xj are obtained according to Equations 6 and

7, and the quality of these candidate solution are influenced by Mutual Vector

and Benefit Factors. MV is the mutual relationship vector between Xi and Xj

as defined in Equation 8. Xbest represents the organism with best fitness value.

β1 and β2 represents the benefit factors between organism Xi and Xj . In a mu-

tual relationship, an organism might benefit heavily or lightly while interacting

with a mutual partner. Therefore, β1 and β2 are stochastically obtained are

either 1 or 2. The values 1 and 2 denotes light and heavy benefits respectively.

The organism with best fitness value so far is represented by Xbest. By Xbest

interacting with Xi and Xj respectively, the balance between exploitation and

exploration in the search procedure will be maintained to a certain extent. The

new candidate solutions replaced the old ones if their fitness values are better

than those of the old ones. In this case, X∗i and X∗j replace Xi and Xj respec-

tively in the next generation of ecosystem. Otherwise, X∗i and X∗j are discarded

while Xi and Xj survives to the next generation of the ecosystem. This scenario

is captured by Equations 9 and 10.

X∗i = Xi + U(0, 1) ∗ (Xbest −MV ∗ β1) (6)

X∗j = Xj + U(0, 1) ∗ (Xbest −MV ∗ β2) (7)

MV =
1

2
(Xi +Xj) (8)

where U(0, 1) is a vector of uniformly distributed random numbers between

0 and 1; i = 1, 2, 3, ..., ecosize; j ∈ {1, 2, 3, ..., ecosize|j 6= i}; ecosize is the

number of organisms in the search space.

Xi =

 X∗i if f(X∗i ) > f(Xi)

Xi if f(X∗i ) ≤ f(Xi)
(9)
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Xj =

 X∗j if f(X∗j ) > f(Xj)

Xj if f(X∗j ) ≤ f(Xj)
(10)

where f(.) denotes the fitness evaluation function.

4.2. Commensalism phase

In commensalism phase, an ith member of the ecosystem randomly selects an

organism Xj for interaction with Xi(i 6= j). In this case, Xi intends to benefit

from Xj , and Xj neither gain or loss from the interaction. The interaction with

Xj and Xbest tries to improve the quality of fitness of design vector Xi and

increase the exploitation ability of the algorithm respectively. The interaction

is mathematically modeled by Equation 11. Xbest represents the organism with

best fitness value similar to that of mutualism phase. Xi is updated to X∗i as

computed in Equation 11, if the fitness value f(X∗i ) is better that of f(Xi). The

relationship for updating Xi is given by Equation 12.

X∗i = Xi + U(−1, 1) ∗ (Xbest −Xj) (11)

where U(−1, 1) is a vector of uniformly distributed random numbers between

−1 and 1. i = 1, 2, 3, ..., ecosize; j ∈ {1, 2, 3, ..., ecosize|j 6= i}; ecosize is the

number of organisms in the search space.

Xi =

 X∗i if f(X∗i ) > f(Xi)

Xi if f(X∗i ) ≤ f(Xi)
(12)

4.3. Parasitism phase260

In parasitism phase, an artificial parasite called parasite vector is created by

cloning an ith organism Xi and modify it using randomly generated number.

Then, Xj is randomly selected from ecosystem, and fitness values of parasite

vector and Xj are computed. If the parasite vector is fitter than Xj , then Xj is

replaced by the parasite vector, otherwise Xj survives to the next generation of

ecosystem and parasite vector is discarded. Xj is updated according to relation

in Equation 13. This phase of the increase the exploitation and exploration
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of the algorithm by randomly removing the inactive solution and introducing

the active ones. Consequently, premature convergence could be avoided and

convergence rate could be improved.

Xj =

 PV if f(PV ) > f(Xj)

Xj if f(PV ) ≤ f(Xj)
(13)

where PV denotes the parasite vector.

5. Chaotic maps

Chaos is a deterministic process which is usually found in dynamic and non-

linear systems, and has high sensitivity to initial conditions and parameters

(Kasahara and Yonezawa, 1996). It is characterized by randomness, ergodic-

ity, irregularity and an apparently unpredictable. Chaotic sequences have been

employed in stochastic optimization techniques to provide population diversity

in search space to ensure global convergence and avoidance of local optima

entrapment (Wu et al., 2013). Recently, relatively better results have been

obtained by applying chaotic sequence rather than random sequence based op-

timization techniques to various real-word optimization problems (Wu et al.,

2013; Le Hoang, 2014; Abdollahzade et al., 2015; Adarsh et al., 2016; Suresh

and Lal, 2017). Overview of chaotic maps commonly applied to optimization

problems can be found in Gandomi and Yang (2014). Logistic chaotic model is

employed to improve the population diversity and reduce the convergence time

of the proposed algorithms because of its success in solving various optimization

problems (Shayeghi and Ghasemi, 2014; Rajagopalan et al., 2015; Secui, 2016).

The logistic chaotic model has relative uniform behaviour and has no cyclic phe-

nomenon in the course of iteration as well as better chaotic distribution features

(Wu et al., 2013). The logistic model given as Equation 14 (Alatas, 2010).

yn+1 = λ× yn(1− yn) n = 0, 1, 2, 3, ... (14)

where {yn}n=1,2,3,... represents the sets of numbers generated with logistic chaotic

map; λ ∈ [0, 4] is the control parameter of logistic equation; yn ∈ (0, 1) is the

nth chaotic number and y0 ∈ (0, 1) and y0 /∈ {0.0, 0.25, 0.5, 0.75, 1.0}.265
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Algorithm 1 Symbiotic Organisms Search Algorithm (Cheng and Prayogo,

2014)

Input: Set ecosize, create population of organisms Xi, i = 1, 2, 3, ..., ecosize,

initialize Xi, Set stopping criteria.

Output: Optimal schedule

1: Identify the best organism Xbest

2: while stopping criterion is not met do

3: for i = 1 to ecosize do

4: Mutualism Phase

5: MV =
Xi+Xj

2 . (j 6= i)

6: X∗i = Xi + U(0, 1) ∗ (Xbest −MV ∗ β1) . (β1, β2) : benefit factors

7: X∗j = Xj + U(0, 1) ∗ (Xbest −MV ∗ β2)

8: if F (X∗i ) < F (Xi) then

9: Xi = X∗i

10: end if

11: if F (X∗j ) < F (Xj) then This could be

12: Xj = X∗j

13: end if

14: Commensalism Phase

15: X∗i = Xi + U(−1, 1) ∗ (Xbest −Xj)

16: if F (X∗i ) < F (Xi) then

17: Xi = X∗i

18: end if

19: Parasitism Phase

20: Create parasite vector

21: if F (parasite vector) < F (Xj) then

22: Xj = parasitevector

23: end if

24: Identify the best organism Xbest

25: end for

26: end while
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5.1. Chaotic local search

The Chaotic Local Search (CLS) strategy have been used to enable global

best individuals to jump out of likely local optima. Thus, CLS is performed on

all solutions in the archive to avoid local Pareto Fronts. For each solution Ai in

the archive A, new feasible solution Ei is generated using logistic chaotic model.

First, Ai is assigned to Ei(ei,1, ei,1, ei,1, ..., ei,D) and Ei is mapped into initial

vector X0 = (x01, x
0
2, x

0
3, ..., x

0
D) in the range [0, 1] using Equation 15. Then,

the chaotic sequence variable Xj by the iteration of logistic chaotic model as

described in Section 5. Thereafter, the new solution Ei obtained by scaling

the chaotic variable Xj into the original search space according to Equation 16.

Later, the objectives of the new solution Ei is evaluated and Ei is added to set

Q. The procedure of CLS is presented as Algorithm 2.

x0j =
ei,j − emin,j

emax,j − emin,j
; j = 1, 2, 3, ..., D (15)

where emin,j and emax,j are the minimum and maximum bounds of jth dimen-

sion respectively.

ei,j = emin,j + (emax,j − emin,j)× xj ; j = 1, 2, 3, ..., D (16)

6. Multi-objective symbiotic organisms search for task scheduling op-

timization algorithm

The original SOS algorithm was proposed for solving single objective contin-270

uous optimization problem, but multi-objective task scheduling problem consid-

ered in this paper is a discrete optimization problem, it is virtually impossible to

apply SOS algorithm directly for task scheduling problem on IaaS cloud. Thus,

new set of search operators based on the task scheduling problem features are de-

signed which include organism encoding scheme presented in Section 6.1, organ-275

ism decoding scheme scheme presented in Section 6.3, ecosystem initialization

using chaotic logistic sequence presented in Section 6.2 to improve ecosystem
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Algorithm 2 Chaotic Local Search

Input: An archived individuals A

Output: Locally optimized archived individuals E

1: for each Ai ∈ A do

2: Let Ei ← Ai . Ei = (ei,j |j = 1, 2, 3, ..., D) D is the dimension of the

problem.

3: Scale ei,j into the range [0, 1] according to Equation 15 to obtain initial

vector X0

4: Generate a chaotic sequence variableX by the iteration of logistic chaotic

model using Equation 14.

5: Obtain the locally optimized solution Ei by scaling the chaotic variable

X into the original search space according to Equation 16.

6: Evaluate all the objectives of Ei

7: end for

8: si∗ ←
⌈
xi∗
⌉

9: return X∗i
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diversity. The random number components of mutualism, and commensalism

operators are replaced with chaotic sequences to improve the global convergence

of CMSOS algorithm, the mutualism, commensalism, and parasitism operators280

are described in Subsections 6.4.1, 6.4.2, and 6.4.3 respectively.

6.1. Organism encoding

In the proposed algorithm, the population structure of the organisms is rep-

resented as the set of instance types, each organism is an individual in the

population that represents a part of the search space. Each coordinate (each285

field) in an organism coordinate system is a instance types in the IaaS cloud.

In d-dimensional solution search space, a search population of n organisms is

denoted as X = {X1, X2, X3, ..., Xn}. The position of the ith organism is de-

noted as Xi = {xi1, xi2, xi3, ..., xid}. To define the solution representation for

the problem, each organism represents a complete task schedule, thus the di-290

mension of an organism is same as the number of tasks. The real values are used

to represent alternative instance type to be selected. The coordinate system for

determining the position of an organism in the solution search space is depen-

dent on the dimension of the organism. As an illustration, an organism depicted

in Figure 1 represents a schedule with 7 tasks. The organism is a 7-dimensional295

one and its position on the search space is defined by coordinates 1 through 7.

The range of movement of the organisms is determined by the number of

available instances to execute the tasks. Therefore, the value of the coordinates

will be from one to number of available instances. Since the fitness computation

for the selected VM is based on discrete values, the nearest integer value of each

coordinate in an organism’s position corresponds to an instance type to execute

the task defined by that specific coordinate. The nearest integer can be obtained

using Equation 17. In this manner, the organisms’s position encodes a task to

instance type mapping. Looking at the example in Figure 1, three instances are

in the resource pool so each coordinate takes a value in the range of 0 to 3. The

value 0.7 of coordinate 1 indicates that task 1 is assigned to instance type 2.

The value 2.8 of coordinate 2 indicates that task 2 is assigned to instance type
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3. The remaining coordinates follow the same logic.

dxie (17)

where xi is the value of coordinate number i.

Figure 1: Organism encoding and corresponding task to VM mapping

6.2. Ecosystem initialization

In the standard SOS algorithm, uniformly generated random numbers are

used to initialize the ecosystem (population) and as a source of randomness in300

updating the positions of the organisms. Recently, usage of chaotic maps as

a source of randomness in optimization theory and various fields have gained

wide attention instead of the usual random process. The logistic chaos model

described in Section 5 is used for generation of chaotic sequence.

6.3. Organism decoding305

Corresponding to encoding method, the decoding of an individual organ-

ism into a task schedule is presented as Algorithm 4. At the start, the set of

instances for executing the submitted tasks and set of task to instance type

mappings are initialized to empty sets. Then, the algorithm loops through ev-

ery organism’s coordinates contained in vector s to determine task to instance310

type assignment related to the current organism’s coordinate and sets I and M
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Algorithm 3 Individual Organism Encoding

Output: An individual X = (x, s) . x = {x1, x2, x3, ..., xn}; n is the number

of tasks to be scheduled.

1: Initialize a vector y0 . y = {y1, y2, y3, ..., yn}; yi ∈ (0, 1)

2: Generate chaotic sequence y using iteration of logistic chaotic model in

Equation 14

3: Transform the chaotic sequence into the range of parameters of task schedul-

ing model according to: xi = xmax + (xmax − xmin)× yi; i = 1, 2, 3, ..., n

4: Transform the organism coordinates into task schedules using Equa-

tion 17: si = dxie; i = 1, 2, 3, ..., n

are filled accordingly. This is achieved by using the organism encoding strategy

explained earlier, that is a coordinate i represents task ti and its value si indi-

cate the code of instance type. At this point, the leased instance type vjs(ti) to

execute task ti, the starting lease time S(ti, v
j
s) and finishing lease time F (ti, v

j
s)315

of instance type vjs(ti) are obtained as the elements of the tuple Ii. Then, the

algorithm compute the start time Sti and finish time Fti of task ti.

The start time Sti is the available time of instance that task ti is assigned,

which is the ready time S(ti, v
si
s ) of the instance type with index si. The finish

time Fti of task ti is computed according to the total running time and start time320

of a task, this is obtained by summing e(i, si) and Sti . At this point, the three

tuples of task to VM mapping have been computed. Then algorithm update

the time to finish execution of task ti assigned to a VM with index si. The

finishing time Fsi is obtained by summing the processing time e(ti, v
si
s ) of task

ti and the start time vsis of an instance with index si. After all the coordinates325

have been processed by the algorithm, instances to be leased are contained in

I and their start and stop times as well which are used to compute the cost of

execution according to Equation 3. In addition, task to instance assignments

are contained in M with their start and finish times and these information are

be used to compute makespan using Equation 2. At this point, the feasible330

schedule an organism is obtained along with the fitness values of the objectives.
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6.4. Organism position update for task scheduling

The candidate solutions are represented by ecosystem (population) of or-

ganisms, while mutualism, commensalism, and parasitism operators to direct335

the search process by candidate solutions. Each organism is represented by a

coordinate system in the search space, and organisms keep update of global best

position Xbest which is determined based on the fitness function of the problem

at hand. The fitter organisms are allowed to proceed to the next generation

of potential solution while the unfitted organisms are discarded. The fitter or-340

ganisms are those with good solution while the unfitted organisms holds bad

solution. The positions of the organisms are then update towards the Xbest

locations using mutualism, commensalism and parasitism phases respectively.

The rate of movement of organisms towards the Xbest locations are moderated

by chaotic random sequence to improve global search ability of the organisms.345

The SOS operators are continuously applied on the population of organisms

which represents candidate solutions until the stopping criterion are reached.

The mutualism, commensalism, and parasitism operators are described in the

following subsections 6.4.1, 6.4.2, and 6.4.3 respectively.

6.4.1. Mutualism operator350

Suppose Xi is the ith member of the ecosystem, a design vector Xj is

randomly selected from the ecosystem to interact with another design vector

Xi(i 6= j) for mutual benefit, MV defines the mutual relationship character-

istics as Equation. 18. The essence of the interaction is to improve extent of

survival of both Xi and Xj in the ecosystem. The new candidate solutions for

Xi and Xj are obtained according to Equations. 19 and 20 respectively. The

new candidate solutions replaced the old ones if their fitness values are better

than those of the old ones. In this case, X∗i and X∗j replace Xi and Xj respec-

tively in the next generation of ecosystem. Otherwise, X∗i and X∗j are discarded

while Xi and Xj survives to the next generation of the ecosystem. This scenario
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Algorithm 4 Individual Organism Decoding

Input: An individual X = (x, s).

Output: S = (I,M,makespan, cost), I : the set of leased instances; M is the

set of task to instance mappings;

1: Empty sets Ik; k = 1, 2, 3, ...,m

2: Empty sets Mk; l = 1, 2, 3, ...,m

3: Initialize makespan← 0

4: Initialize cost← 0

5: for si ∈ s; i = 1, 2, 3, ..., n do

6: Let j ← si

7: Obtain a tuple Ii ←< vjs(ti), S(ti, v
j
s), F (ti, v

j
s) >

8: Put Ii into set I

9: Assign the starting time of task ti as Sti ← F (ti, v
j
s); F (ti, v

j
s) is the

finishing time of instance type vjs

10: Compute estimated execution time of task ti on instance type vjs as

e(ti, v
j
s) according to Equation 1

11: Assign the finishing time of task ti as Fi ← e(i, j) + Sti

12: Obtain a tuple m(ti, v
j
s)←< ti, v

j
s(ti), Sti , Fti >

13: Put m(ti, v
j
s) into set M

14: Update the finishing time of instance type vjs as F (ti, v
j
s) ← e(i, j) +

S(ti, v
j
s) ; S(ti, v

j
s) is the starting time of instance vjs

15: end for

16: Compute makespan according to Equation 2.

17: Compute cost according to Equation 3.

18: S = (I,M,makespan, cost)
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is captured by Equations. 21 and 23.

MV ← Xi +Xj

2
(18)

X∗i ← Xi + y1 ∗ (Xbest −MV ∗ β1) (19)

X∗j ← Xj + y2 ∗ (Xbest −MV ∗ β2) (20)

Xi =

 X∗i if f(X∗i ) > f(Xi)

Xi if f(X∗i ) ≤ f(Xi)
(21)

si =

 dX∗i e if f(X∗i ) > f(Xi)

dXie if f(X∗i ) ≤ f(Xi)
(22)

Xj =

 X∗j if f(X∗j ) > f(Xj); s
j∗ ←

⌈
xj∗
⌉

Xj if f(X∗j ) ≤ f(Xj)
(23)

sj =


⌈
X∗j
⌉

if f(X∗j ) > f(Xj)

dXje if f(X∗j ) ≤ f(Xj)
(24)

where f(.) denotes the fitness evaluation function; y1 and y2 are vectors of

chaotic sequence generated using chaotic logistic model as described in Section 5;

si and sj are the instance type index as defined in Equations 22 and 24

that execute a given task, i = 1, 2, 3, ..., ecosize; j ∈ {1, 2, 3, ..., ecosize|j 6= i};

ecosize is the number of organisms in the search space. β1 and β2 denote the355

benefit factors.

6.4.2. Commensalism operator

In commensalism phase, an ith member of the ecosystem randomly selects an

organism Xj for interaction with Xi(i 6= j). In this case, Xi intends to benefit

from Xj , and Xj neither gain or loss from the interaction. The interaction with

Xj and Xbest tries to improve the quality of fitness of design vector Xi and

increase the exploitation ability of the algorithm respectively. The interaction
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is modelled by Equation 25. Xbest represents the organism with best fitness

value similar to that of mutualism phase. Xi is updated to X∗i as computed in

Equation 25, if the fitness value f(X∗i ) is better that of f(Xi). The relationship

for updating Xi is given by Equation 26.

X∗i ← Xi + y1 ∗ (Xbest −Xj) (25)

Xi =

 X∗i if f(X∗i ) > f(Xi); s
i∗ ←

⌈
xi∗
⌉

Xi if f(X∗i ) ≤ f(Xi)
(26)

si =

 dX∗i e if f(X∗i ) > f(Xi)

dXie if f(X∗i ) ≤ f(Xi)
(27)

where y1 is a vector of chaotic sequence generated using chaotic logistic model

as described in Section 5; i = 1, 2, 3, ..., ecosize; j ∈ {1, 2, 3, ..., ecosize|j 6= i};

ecosize is the number of organisms in the search space, si is the instance type360

index as defined in Equation 27 that executes a given task.

6.4.3. Parasitism operator

In parasitism phase, an artificial parasite called parasite vector is created by

cloning the current organism Xi denoted as Xi(cloned) and mutate the randomly

selected kth dimension of organism Xi(cloned) according to Equation 28. Then,365

Xj is randomly selected from ecosystem, and fitness values of parasite vector

and Xj are computed. If the parasite vector is fitter than Xj , then Xj is

replaced by the parasite vector, otherwise Xj survives to the next generation

of ecosystem and parasite vector is discarded. Xj is updated according relation

in Equation 29. This phase of the the search procedure to jump out of local370

optima by randomly removing the inactive solution and introducing the active

ones.

xik ← xmax + (xmax − xmin)× y1 (28)
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Xj =

 Xi(cloned) if f(Xi(cloned)) > f(Xj)

Xj if f(Xi(cloned)) ≤ f(Xj)
(29)

sj =


⌈
xi(cloned)

⌉
if f(Xi(cloned)) > f(Xj)⌈

xj
⌉

if f(Xi(cloned)) ≤ f(Xj)
(30)

where y1 is a vector of chaotic sequence generated according to Equation 14;

Xi(cloned) denotes the parasite vector; xmax and xmin are the minimum and

maximum values of the solution range respectively.375

6.5. Archive update

The effectiveness of the mechanisms for selecting the non-dominated feasible

complete solutions that are contained in the archive facilitates the generation

of good Pareto Fronts (PFs). In the course of optimization process, the size of

archive is fixed since the generation of non-dominated feasible complete solutions380

grows fast. The archive maintains a set of feasible complete solutions, the

capacity of the archive is fixed as ecosize and number of current solution in

the archive is is denoted as e. A new feasible complete solution is added to the

archive, if the content of archive is not filled to its capacity. Otherwise, a new

feasible complete solution is added to the archive if it dominates a solution in the385

archive, in which case the new feasible complete solution replaces the solution it

dominates. To avoid local PFs, Chaotic Local Search (CLS) is performed on each

solution in archive to obtain new solutions, the CLS is described in Section 5.1.

The current solutions in the archive and new generated solutions are combined

to obtain 2 × e solutions. Then, non-dominated solutions are determined, if390

the number of non-dominated solutions are not more than the size of archive,

then all the non-dominated solutions are added as the current content of the

archive and the current size is set as e. Otherwise, fast non-dominated sorting

and crowding distance are performed the combined solutions, the first e less

crowded solutions are chosen to be added as the current content of the archive395

and e is set as ecosize. The selection procedure based on non-dominated sorting

and crowding distance as depicted in Figure 2.
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6.6. Current ecosystem update

After each generation, the current organisms are combined with the advanced

organisms form combined ecosystem. The combined ecosystem is obviously400

larger than the ecosize. Thus, the following techniques are used to select the

ecosystem with the size ecosize for the next generation. First, organisms in the

combined ecosystem is ranked into non-dominated sets (F1, F2, F3, F4, ...) using

fast non-dominated sorting. The non-dominated organisms belonging to set R1

are selected first for addition into the current. If the size of F1 is smaller than the405

ecosize, the rest number of organisms are selected from the non-dominated sets

in the order (F2, F3, F4, ...). The procedure continues until the capacity of the

ecosize is filled. Suppose Fj is the last set of non-dominated solutions beyond

which no other set can be taken and total size of the sets F1, F2, F3, ..., Fj is more

than the ecosize. The optimal ecosystem of ecosize is selected using crowding410

distance and selection of solutions are based on descending order of distance.

Overview of the procedure is depicted in Figure 2.

Current 
ecosystem

New 
ecosystem 

X(t )

X(new)

Combined
ecosystem

...

F1

F2

F3

F4

F5

Fn

F4

F1

F2

F3

F1

F2

F3

F1

F2

F3

F1

F2

F3

F1

F2

F3

Non-dominated sorting

Crowding distance

F4

Reject

Reject

X(t+1)

Ecosystem 
for next 
generation

Figure 2: Procedure of ecosystem selection for next generation
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6.7. Implementation of the proposed algorithm

The proposed CMSOS algorithm for large task scheduling optimization prob-

lem in IaaS cloud computing environment is presented as Algorithm 5.415

Ecosystem generation evolves each ecosystem using mutualism, commensal-

ism, and parasitism operators. The generation of new organisms in mutualism,

commensalism, and parasitism operators are described in Section 6.4.1, 6.4.2,

and 6.4.3 respectively. Algorithm 6 describes the procedure of ecosystem evo-

lution.420

6.8. Complexity Analysis

The time complexity of each phases (Mutualism, Commensalism, and Par-

asititsm) is O(n), where n is the number of tasks. For a given n tasks, the

time complexity of each evaluation of an organism is O(n). Therefore, the total

time complexity of the ecosystem evolution is O(egn), where e is the number425

of organisms in the ecosystem, and g is the number of generations. Besides

the ecosystem evolution, the chaotic local search (CLS) is performed on evolved

organisms, the CLS procedure has a time complexity of O(e). Most of all, the

total time complexity of the proposed algorithm is O(egn+e). Hence, the dom-

inant time-consuming part of the proposed algorithm is the ecosystem evolution430

which has the time complexity of O(egn).

7. Performance evaluation and results analysis

This section describes the experimental design, performance evaluation, and

result analysis of the proposed algorithms.

7.1. Experimental Design435

The proposed algorithm was implemented using CloudSim 3.0.3 (Calheiros

et al., 2011) simulation toolkit for IaaS cloud environment. The choice of

CloudSim simulation toolkit is informed by its support for simulating cloud

computing scenarios which supports modeling and simulation of large scale com-

puting environments. CloudSim provides support for modeling data centers,440
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Algorithm 5 Multi-objective Symbiotic Organisms Search for Task Scheduling

Optimization

Input: CMSOS settings: ecosize N , maximum number of generations gmax.

Output: Optimal solutions.

1: Step 1 Initialization: Set g = 0; Initialize y0 for generation of Lo-

gistic chaotic sequence {yn|n=1,2,3,...}; Generate initial ecosystem X(g) =

{X(g)
i|i=1,2,3,...,ecosize} using Algorithm 3;

2: Step 2 Generation:

3: Step 2.1: Decode organisms in X(0) using Algorithm 4 and evaluate the

fitness of each organisms in X(0);

4: Step 2.2: Perform non-dominated sorting on individual organisms as de-

scribed in Section 6.6; Randomly select any organism in rank R1 as the

best organism Xbest; Select non-dominated feasible organisms into external

archive, and set the capacity of external archive to ecosize.

5: Step 2.3 Ecosystem Evolution:

6: for g = 1 to gmax do

7: Step 2.3.1: Use Algorithm 6 to generate new ecosystem X
(g)
com.

8: Step 2.3.2: Perform non-dominated sorting on X
(g)
com ecosystem as de-

scribed in Section 6.6.

9: Step 2.3.3 Archive Update: For each feasible individual organism

X ′ in ecosystem X
(g)
com, replace an organism X∗ in the archive with the

organism X ′ in ecosystem X
(g)
com, if X ′ dominates X∗; Perform Chaotic

Local Search (CLS) on current archive as described in Section 5.1.

10: Step 2.3.4 Current ecosystem selection: Perform non-dominated

sorting and crowding distance on ecosystem X
(g)
com as described in Sec-

tion 6.6. Then, select top ecosize organisms into X
(g+1)
com as the current

ecosystem.

11: end for

12: Step 3: Output the content of archive as the optimal solutions.
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Algorithm 6 Ecosystem Evolution

Input: ecosystem X(g) = {X(g)
i|i=1,2,3,...,ecosize}, maximum number of genera-

tions gmax.

Output: Eevol ecosystem.

1: Em ← ∅; Ec ← ∅; El ← ∅; Ecom ← ∅; set g = 0.

2: Step 1 Initialization: Decode the organisms in X(g) using Algorithm 4

and evaluate the fitness of each individual organism; Then, perform non-

dominated sorting on X(g) as described in Section 6.6; Randomly select any

organism in rank R1 as the best organism X
(g)
best in X(g);

3: for i = 1 to N do

4: Mutualism Phase: Randomly select an organism X
(g)
j from the

current generation of organisms to interact with current organism X
(g)
i ,

j ∈ {1, 2, 3, ..., N} and j 6= i; Initialize the benefit factors β1 and β2, let

β1 and β2 be assigned a randomly selected number 1 or 2; Compute the

mutual vector MV using Equation 18; Update the values of the chaotic

sequence yin and yjn using Equation 14; Modify organisms X
(g)
i and X

(g)
j

using Equations 19 and 20 respectively to obtain X
(g)
i(new) and X

(g)
j(new);

Em = Em ∪X(g)
i(new) ∪X

(g)
j(new).

5: Commensalism Phase: Randomly select an organism X
(g)
j from the

current generation of organisms to interact with current organism X
(g)
i ,

j ∈ {1, 2, 3, ..., N} and j 6= i; Update the values of the chaotic sequence

yin using Equation 14; Modify organisms X
(g)
i using Equation 26 to obtain

X
(g)
i(new); Ec = Ec ∪X(g)

i(new).

6: Parasitism Phase: Clone the current organism X
(g)
i as X

(g)
i(cloned); Mu-

tate a randomly selected kth dimension of X
(g)
i(cloned) according to Equa-

tion 28; Randomly select an organism X
(g)
j from the current generation of

organisms; Decode X
(g)
i(cloned) and X

(g)
j organisms using Algorithm 4; Evalu-

ate the fitness of X
(g)
i(cloned) and X

(g)
j as F (X

(g)
i(cloned)) and F (X

(g)
j ); Update

X
(g)
j for next generation of organisms according to Equations 29 and 30;

Ep = Ep ∪X(g)
j(new).

7: end for

8: Eevol = Em ∪ Ec ∪ Ep

9: return Eevol
30
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physical machine hosts, VMs, cloud service brokers, and scheduling systems.

In the experiment, an IaaS cloud provider with a single data center, 2 hosts,

and 20 VMs of different configurations (Rodriguez and Buyya, 2014; Li et al.,

2016). The configurations of the data center and the hosts are presented in

Table 1. The VM configurations are based on the current Amazon EC2 offer-445

ings (https://aws.amazon.com/ec2/pricing/) as presented in Table 2. The VM

processing capacity of VMs in MFLOPS based on the work of Ostermann et al.

(2009). The workload parameters for tasks are presented in Table 3.

Table 1: Experimental Settings

Cloud Entity Parameter Value

Datacenter Number 1

Host

Number 2

RAM 2048000 MB

Storage 1000000 MB

Bandwidth 1000000000 Mb/s

Operating System Linux

Architecture x86

VMM Xen

VM
Number 20

Bandwidth 0.1 GB/s

The Parallel Workloads Archive, whose data is the focus of this paper, is a

repository of such logs; it is accessible at URL www. cs.huji.ac.il/labs/parallel/workload/.450

The archived logs (see Table 4) contain accounting data about the jobs that ex-

ecuted on parallel supercomputers, clusters, and grids, which is necessary in

order to evaluate schedulers for such systems. These logs have been used in

many hundreds of research papers since the archive was started in 1999.

Both standard parallel workload traces and synthetic workloads are used to455

evaluate the performance of the proposed algorithms. It is assumed that tasks

are independent that is no precedence constraints between tasks, and execution
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Table 2: Configurations and Types of VMs

Name vCPU Processing

capacity

(MFLOPS)

Memory (GiB) SSD Stor-

age (GB)

Cost per hour ($)

c3.large 2 8 800 3.75 2 × 16 0.105

c3.xlarge 4 17 600 7.5 2 × 40 0.210

c3.2xlarge 8 35 200 15 2 × 80 0.420

c3.4xlarge 16 70 400 30 2 × 160 0.840

c3.8xlarge 32 140 800 60 2 × 320 1.680

Table 3: Workload Settings

Parameter Value

Length [5000, 50 000] MFLOPS

File size [10, 100] GB

Memory [10, 100] GB

of tasks are non-preemptive. The parallel workloads used for evaluation are

NASA Ames iPSC/860 and HPC2N; the workloads are accessible through the

URL http://www.cs.huji.ac.il/labs/parallel/workload/. NASA Ames iPSC/860460

and HPC2N set log are some of the popular standard formatted workloads

for evaluating the performance of distributed systems (Feitelson et al., 2014;

Wang et al., 2016; Alla et al., 2017). The information about the log are shown

in Table 4. The synthetic workloads are generated using normal and uniform

distribution. Uniform distribution depicts more medium size tasks, and fewer465

small and large size tasks. Uniform distribution depicts an equal number of

large, medium, and small size tasks. The larger instances will enable us to

gain insight into the scalability of performance of the algorithms with large

problem sizes. Besides the standard workload traces, the synthetic workloads

are generated using normal and uniform distribution respectively. Normally470

distributed workloads distribution depicts medium size tasks, and fewer small
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and large size tasks. Uniformly distributed workloads depicts equal number of

large, medium, and small size tasks.

Table 4: Logs in the Parallel Workloads

Log Period Months PEs1 Users Jobs Util.2 File3

NASA iPSC 10/93-12/93 3 128 69 42,264 0.47 NASA-iPSC-1993-3.swf

HPC2N 07/02-01/06 42 240 258 527,371 0.70 HPC2N-2002-2.swf

1 was nodes or CPUs in old logs, today it typically represents cores.

2 is the system utilization, i.e. the fraction of the resources that were allocated to jobs. It is not com-

puted for SHARCNET because this is a grid system, and the constituent clusters became available

at different times.

3 File names include a version number, as most logs were re-converted to swf when errors were found

or new considerations were introduced.

7.1.1. Performance Metrics

This study used makespan, cost (financial cost), Hypervolume, and Percent-475

age change as performance metrics to evaluate the proposed algorithms against

similar task scheduling algorithms in the literature. Makespan is the latest fin-

ish time of VMs, minimal makespan implies that users pay moderate cost for

their task execution since cloud service offering is based on per-use-model and

users are charged per unit time of VM usage usually per-hour. Cost is the cost480

of leasing VMs from IaaS cloud providers.

Makespan also referred to as total execution time is the latest finish time

of all the VMs used in executing the collection of tasks as defined in Equa-

tion 31(Netjinda et al., 2014).

makespan = max{vmtime
j ; j = 1, 2, 3, ...,m} (31)

where m is the number of VMs; vmtime
j is the total execution time of VM j.485

Cost is the sum of the product of VM cost by its makespan rounded to the
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closest integer as define in Equation 32 Zheng and Sakellariou (2013).

cost =

m∑
j=1

dvmtime
j evmcost

j (32)

where m is the number of VMs; vmtime
j is the total execution time of VM j;

vmcost
j is the financial cost for leasing VM j per unit time.

Hypervolume (HV) indicator (Zhu et al., 2016; Zhang et al., 2017) is the490

most popular performance metric for this sake. HV is obtained by computing

the volume of the objective function space between the obtained non-dominated

solutions and a reference point, by providing an insight between the convergence

and diversity of the solution sets. HV is obtained as a union of all the found

hypercubes according to Equation 33. To obtain the HV values, each algorithm495

is run on all the workload instances for 30 independent runs and solutions ob-

tained by each algorithm for the 30 runs are merged to form a reference set, then,

non-dominated solutions are selected to the reference set to form true Pareto

Front (PF) and results dominated by true PF are discarded (Zitzler et al., 2003).

Then, the makespan and cost are normalized, a reference point (1.1, 1.1) is used500

to compute the values of HV (Ishibuchi et al., 2010; Zhu et al., 2016).

HV = volume

( |R|⋃
j=1

vj

)
(33)

The percentage change for each proposed algorithm is computed with respect

to the compared algorithms from the literature as in Equation 34. This provides

an insight on the extent of the performance of the proposed algorithm against

the existing algorithms in the literature (Vincent et al., 2017).505

gap(%) =
(Zprop − Zlit)

Zlit
(34)

where Zprop is the solution obtained by the proposed algorithm and Zlit is the

solution obtained one the algorithm are reported in the literature. A negative

indicates that proposed algorithm is better.
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The results of the proposed MSOS algorithm are compared with EMS-C

(Zhu et al., 2016), ECMSMOO (Yao et al., 2016), and BOGA (Zhang et al.,510

2017) multi-objective task scheduling algorithms using the same workload trace

(Table 1) and on the same test bed (Tables 2 and 3). The compared algorithms

are chosen so as to compare the proposed techniques against the recent tech-

niques in the area. Besides, the goal of compared algorithms are identical to

the goal of the proposed techniques. For fair comparison, the stopping condi-515

tion for compared algorithms and proposed are taken to be same. Each of the

algorithms are used for solving the workload instances over 30 independent runs

(Zhu et al., 2016).

Table 5: Parameter Settings for Compared Algorithms

Algorithm Parameter Value

EMS-C
Crossover rate Pc 1.0

Mutation rate Pm 1/n

BOGA

Crossover rate Pc 0.5

Mutation rate Pm 0.5

ECMSMOO

Social learning factor c1 2

Personal learning factor c2 2

Variable inertia weight ω 0.9-0.4

7.2. Results Analysis and Discussion

Section 7.2.1 presents the results analysis and discussion of CMSOS algo-520

rithm.

7.2.1. Comparison of CMSOS results with compared algorithms

This section begin with discussion on the benefit of using chaotic optimiza-

tion strategy within the proposed algorithm. The proposed algorithm with

(denoted as CMSOS) and without (denoted as MSOS) chaotic optimization525

strategy. To ensure a fair comparison between the CMSOS and MSOS, the

initial ecosystem (population), number of generations, stopping criteria and
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hardware resources are same for the workload instances. Both algorithms (CM-

SOS and MSOS) are run for 30 runs over all workload instances. Thereafter,

the performance of the proposed CMSOS is assessed by comparing it against530

other algorithms. To ensure a fair comparison, the parameter values and the

termination condition of EMS-C, ECMSMOO, and BOGA are fixed same as

CMSOS.

The non-dominated solutions for workloads instances of 5000 sizes are pre-

sented in Figure 3a to Figure 4b. As it can be observed from the figures, CMSOS535

performs remarkably better than EMS-C, ECMSMOO, and BOGA algorithms.

The remarkable performance of CMSOS algorithm is attributed to the global

convergence of underlying MSOS algorithm, the incorporation of chaotic op-

timization strategy into MSOS ensures diversity among the organisms which

further enables the algorithm to achieve better convergence and effectively han-540

dle large search space.

The Hypervolume improvements for CMSOS algorithm over the compared

algorithms are given in Figure 5a to Figure 6b. From the figures, it can be ob-

served that CMSOS algorithm have a significant Hypervolume improvement over

the EMS-C, ECMSMOO, and BOGA algorithms for all the workload instances.545

CMSOS obtain performance improvement over EMS-C ranging 8.72% to 19.55%

across the workloads, while the performance improvement over ECMSMOO is

between 11.51% to 23.70%. Moreover, the percentage improvement over BOGA

is between 9.52% to 28.72%. Besides, CMSOS showed noticeable improvement

of 5.43% to 14.41% over the MSOS without the incorporation of chaotic se-550

quence which showcased the effectiveness of chaotic optimization strategy.

Furthermore, the computational time (in seconds) taken by CMSOS to ob-

tain the best result is compared with EMS-C, ECMSMOO, and BOGA for all

the tested workload instances. Table 6 shows the computational times (in sec-555

onds) of CMSOS compared to EMS-C, ECMSMOO, and BOGA. It is clear

from Table 6 that the computational time of CMSOS is lower that of EMS-C,

ECMSMOO, and BOGA for all the tested workload instances. The reported
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Figure 3: Obtained non-dominated solutions by CMSOS for Real Parallel Workloads
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Figure 4: Obtained non-dominated solutions by CMSOS for Synthetic Workloads

38



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1000 2000 3000 4000 5000

H
V

 im
pr

ov
em

en
t o

f 
C

C
−

C
M

SO
S 

(%
)

0

5

10

15

20 CMSOS
EMS−C
ECMSMOO
BOGA

Number of Tasks

(a) NASA

1000 2000 3000 4000 5000

H
V

 im
pr

ov
em

en
t o

f 
C

C
−

C
M

SO
S 

(%
)

0

5

10

15

20

25 CMSOS
EMS−C
ECMSMOO
BOGA

Number of Tasks

(b) HSPC2N

Figure 5: Convergence and Diversity Performance of CMSOS on Real Parallel Workloads
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Figure 6: Convergence and Diversity Performance of CMSOS on Synthetic Workloads
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results reveal that the proposed CMSOS produces better quality solutions with

lower computational time as compared to other algorithms. This proves that560

CMSOS is an effective and efficient solution method for solving large scale task

scheduling optimization problems.

Table 6: Running times of CC-CMSOS algorithm and compared algorithms

Instances EMS-C ECMSMOO BOGA CMSOS CC-CMSOS

HPC2N

1000 14.50 17.95 18.17 13.03 0.31

2000 36.34 36.72 37.01 35.35 1.48

3000 58.65 59.31 59.89 56.53 2.82

4000 72.86 73.66 73.74 70.10 5.12

5000 85.06 87.22 91.46 84.85 8.03

NASA

1000 14.21 22.78 23.53 12.32 0.44

2000 29.51 38.97 41.99 28.14 1.26

3000 48.13 48.62 49.80 42.49 5.02

4000 61.00 67.91 68.34 51.52 6.38

5000 75.25 77.08 90.83 73.50 7.08

Uniform

1000 18.41 18.53 25.41 7.81 0.74

2000 31.57 33.08 36.98 30.20 2.37

3000 38.44 39.29 44.23 38.00 3.85

4000 53.96 67.25 71.81 44.91 5.14

5000 75.13 92.84 96.18 72.77 9.72

Random

1000 12.27 12.87 20.81 6.80 1.06

2000 30.52 43.44 60.84 21.16 2.72

3000 70.80 72.44 78.54 66.70 3.39

4000 86.70 91.37 93.69 81.88 6.14

5000 97.65 104.66 110.41 96.26 8.35

The results showed that CMSOS algorithm gain better convergence and so-

lution diversity, thus leading to global solution. Better convergence is derived

from global convergence of MSOS algorithm. The principal feature that ensures565
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global convergence in both CMSOS and MSOS algorithms is introduction of

chaotic maps for generating initial solutions and replacement of random number

components of the SOS algorithm which increases diversity among organisms

which represents candidate solutions. Another reason for better global con-

vergence of the CMSOS algorithm is the commensalism association exhibited570

by organisms which encourages elitism among organisms. The commensalism

mechanism and chaotic sequence strategy improves local search and global con-

vergence of the proposed algorithm. The application of chaotic local search

strategy on Pareto Front tried to avoid possible entrapment in local optima.

Furthermore, the archive maintenance when the archive is filled to capacity575

and ecosystem selection using non-dominated sorting and crowding distance im-

proves the coverage of the Pareto optimal front in the course of the optimization

process. Overall, the above revealing results justifies the benefit of incorporat-

ing chaotic optimization strategy within the proposed algorithm. So, the use of

chaotic optimization strategy can efficiently enhance the search performance to580

obtain better solutions for all tested workload instances.

8. Conclusion and future work

In this paper, a multi-objective symbiotic organisms search algorithm with

a chaotic optimization strategy for addressing task scheduling problem is pro-

posed. The experimental results of both the standard and synthetic workload585

instances indicates the appropriateness of the proposed algorithm for producing

task schedules. The proposed algorithm consistently produced task schedules

with better makespan and cost with respect to the compared algorithms, for all

the workload instances studied. Chaotic optimization was employed to generate

initial ecosystem (population) for effective ecosystem diversity to ensure better590

global convergence. Moreover, new operators for the phases of SOS were de-

signed to further ensure global solutions for task scheduling problem. Finally,

chaotic local search was hybridized with the proposed algorithm to empower

CMSOS with the exploitative ability to complement the explorative power of
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underlining SOS algorithm. The proposed algorithm can be extended to han-595

dle other QoS requirements like reliability and security for very large workload

instances.
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