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ABSTRACT

The application of remote sensing has proved to be of tremendous importance over time in earth
observation, monitoring and development. Images (the output of a remote sensing process) provide
an overview of a particular place and afford the observer the opportunity to extract detailed
information that will aid in making informed decisions. However, these images often come in
overlapping patches from the sensor and also are of two-dimensional (2D) views. For a holistic
perspective and to enable a stereoscopic view of the desired scene of interest, the bit by bit images
must be fused together to produce a single image (mosaic). This fusion is the sole thrust of image
registration. This study is intended to provide solution to the traditional (manually assisted) image
registration by developing a model that performs automatic conjugate point identification, feature
match and registration of multiple overlapping images. An approach which makes use of the
relationship between the total matched points and final estimated inliers voted for the automatic
registration is proposed for the evaluation of the model s accuracy.

Keywords: image registration; mosaicking; transformation functions; conjugate points; pixel;
resolution.

1. INTRODUCTION

Image registration is one of the basic image processing operations in remote sensing and digital
photogrammetry. By registering the two different images acquired during different times or by
different sensors, it can be used in various applications such as motion correction, change detection,
image fusion and formation of composite maps [1]. Image registration is the process of spatially
matching two images so that corresponding pixels in the two images correspond to the same physical
region of the imaged scene. Image registration is an inevitable problem arising in many image-
processing applications whenever two or more images of the same scene have to be compared pixel
by pixel [2, 3]. In general, registration aims to align two images (the reference image and the
observed image) by estimating translation, rotation, and scale. However, because of the inherent
relationship between scale and image resolution, current methods tend to separate scale estimation
from translation and rotation estimation [4]. To find a match between two images, conventional
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methods first construct an image pyramid by downscaling the reference image; the observed image
is, subsequently, matched at each level by searching the translation and rotation parameters [5, 6].
The level at which the best match is found determines the scale factor between the reference and
the observed image. It is to be noted, however, that the scale can only be estimated at fixed levels
and independently from other registration parameters. These are the major disadvantages of this
approach [7].

Image registration can be broadly categorized into area based (or pixel-based) and feature-based methods
[8]. Area-based methods work by directly matching pixel intensities of the two images as a whole. In
contrast, feature based methods extract higher-level structures from the two images and finds the
corresponding features to perform registration. Therefore, feature-based methods are useful when
corresponding features can be reliably detected [8]. However, if the reference image and the observed
image are both in low-resolution, accurate detection of corresponding point may be quite challenging.

Most of image registration approaches fall into local or global methods. Local methods are referred
to as rubber sheeting or the control-points method. Global methods involve finding a single
transformation imposed on the whole image and are also referred to as automatic registration methods.
Registration methods can be viewed as different combination of choices for the following four
components [9, 10]: (a) feature space; (b) search space; (c) search strategy; and (d) similarity metric.

The feature space extracts the information in the images that is to be used for matching. The search
space is the class of transformations which is capable of aligning the images. The search strategy
decides how to choose the next transformation from this space, to be tested in the search for the
optimal transformation. The similarity metric determines the relative merit for each test. Search
continues according to the search strategy until a transformation is found whose similarity measure
is satisfactory. The choice and selection of each of these components is a function of the type of
variations present in the images [11].

Generally, image registration has two parts: image to object registration and image to image
registration. The image to object registration also includes registration of an image onto an existing
map for which control points are usually required. Image to image registration seeks to overlay one
image on another for comparison or change detection. It could also be to join one image to another
as in the production of mosaic. This could also be called edge-matching. For image to image
registration, common, pass or conjugate points are needed [7].

2.  REGISTRATION PROBLEM

The sequence of image registration is as follows: given two different representations of the same
object (or geographical scene), find a transformation function which (when applied to one image)
will align (or register) points in that image with corresponding points in the other image of the same
scene/object. By using appropriate computational algorithms, a mapping (transformation) function
between two images (spatially and with respect to intensity) can be found to produce a new
informative image which has functional and structural information. Mathematically, for two-
dimensional (2D) datasets (images) of a given size denoted by A4, and 4;, mapping between these
two images can be expressed as Eq. (1).
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Ay (x, y) = g(4o(fx, M) + e(x, y) (1a)
when e(x, y) =0

Ay (x, y) = g(Ao(fx, ) (1b)

where e(x,y) is an error vector (residual) and is said to be zero for a perfect registration, f'is a 2D
spatial coordinate transformation i.e (x, y) = f(x, y) and g is a one-dimensional (1D) intensity or
radiometric transformation. Note that 4,(x, y) and A4, (x, y) each map to their respective intensity
values. Registration, therefore, requires finding the optimal f'and g, although the spatial transformation
is generally the key to the problem [7].

3. METHODOLOGY OF WORK

The step by step procedure of developing the fully automatic registration model is presented in the
flowchart shown in Figure 1. Some of the components of the methodology are briefly highlighted
as follows

1) Feature identification and extraction: The speeded-up robust feature (SURF) algorithm was
used for the identification/detection and extraction of the features on both the base and moving
images.

2) Feature matching: Builds the relationship between the feature point sets from the reference and
floating images. Sum of square difference (SSD) metric was used at a match threshold of 1.0
Scalar vector

3) Model estimation: The model estimation decides the types and parameters that are needed for
mapping function. The parameters are computed from the feature pairs from the correspondence
built in feature matching

4) Resampling and computation of transformation matrix: The bilinear interpolation was used for
the resampling of the pixel-values and computation of non-integer coordinates. RANdom
Sampling Consensus (RANSAC) was used to exclude the outliers and to compute the
transformation matrix.

The mathematical models of these algorithms have been explicitly formulated and extensively
discussed in reference [7]. Meanwhile the considered transformation functions and the image
matching strategy have been herein discussed briefly in the forthcoming sections.
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Figure 1. Feature based image registration flowchart.
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3.1 Transformation Functions

The type of spatial or geometric transformation needed to properly overlay the input and reference
image is one of the most fundamental and difficult tasks in any image registration technique [12].
The establishment of the transformation function that mathematically describes the mapping between
imagery in question is a major issue in image registration. In other words, given a pair of images,
reference and input images, the transformation function attempts to properly overlay these images.
The functions (used to align two images) may be global or local. A global transformation is given
by a single set of equations, which optimally registers all the pixels in the two images. Local
transformations map the images depending on the spatial location; this results in several sets of
equations for one map. Local transformations are usually more accurate but also more computationally
demanding [13, 14].

To overcome the problem of geometric distortions, several types of transformation functions have
been considered and three of them were used for this study. The 2D conformal transformation (also
known as 2D similarity or orthogonal transformation) is sufficient to match two images with rigid-
body distortion [9, 10] where the true shape is retained. This is a four-parameter transformation that
includes two translations in x- and y-directions, one scale and one rotation. At least two tie points
are required to solve for the parameters of the 2D similarity transformation. Mathematically,
orthogonal transformation function is given as Eq. (2).

X=au+bv+c (2a)
y=-bu+av+d (2b)

Egs. (2a) and (2b) can be substituted in the matrix notation given by Eq. (3)

HEMIHEN

where a = cosa; b = sina; ¢ = T; d = T; a is the rotation angle; T, is the translation along x-axis;
and 7, is the translation along y-axis.

The affine is a six parameter transformation with the following unknown parameters: a, b, ¢, d, e,
/- Each transformation requires a minimum number of reference points (three for affine, six for
second order and nine for third order polynomials). If more points are selected, the residuals and
the derived root mean square error (RMSE) or sigma may be used to obtain the best estimates.

NN

a b e
where |: :| are scalar quantities and |: :|are the translation parameters.
c d f

The affine transformation function modifies the orthogonal type by using different scale factors in
x- and y-directions. It applies correction for shrinkage by means of scale factor, applies the translation
to the shift of the origin and also performs rotation through angle 0 (plus a small angular correction
for non-orthogonality to orient the axes in the (#,v) photo system). Unlike orthogonal projection,
affine projection allows oblique projection to an image plane [15, 16].

The relational/projective transformation exactly describes a deformation of a flat scene photographed
by a pin-hole camera, the optical axis of which is not perpendicular to the scene [8]. It is an eight
parameter transformation, which enables the analytical computation of the (,v) coordinates of the
points after they have been projected into a plane from another non-parallel plane and can be
expressed by the operator given in Eq. (5).

a b, cd
n=9¢ )
e fgh
The transformation can be written as Eq. (6).
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ax + by +1 dx +cy+1
where t=gx+hy+1l;x=—"—""""—;andy=—""
gx+hy+1 gx+hy+1

3.2 Image Matching Strategy

Sum of squared difference was used for the correlation and matching of the extracted conjugate
points. This algorithm measures the similarity between image templates by taking the sum of pixel
differences between each pixel in the reference template (4) and the corresponding pixel in the
compared template (B). The summation of these differences creates a simple metric of template or
block similarity [Eq. (7)]. It is expected that if the two overlapping images (left and right images)
are perfectly matched, the resultant SSD will be equal to zero.

SSD (i, j)= f: 3 (A(i +m, j+n)-B(m, n))? (7)
0

m=0 n=

SSD works by shifting the template over the reference image (4) to find the best match. For example,
shifting the template to different positions on the reference image until the best matching area or
position is found. It should also be noted that a good match is said to be found when the computed
SSD is equal to zero. Figure 2 is a block flow showing the major stages of computing SSD. The
working of SSD algorithm can be demonstrated with the help of following example.

3.2.1 Example

Suppose that

A= |3|4|2|andB=|1]3
7113 316
21316

In order to find the best match between A and B, four cases have been considered. The region
highlighted in red colour is the region under consideration.

Case # 1:

The difference between the shaded region and the template is

A -B= |3 |-1
213
The square of the difference between the shaded region and the template is
(A -B¥?=19 |1
419

SSD of the shaded region and the template is

5 (A -BP=9+1+9+4=23

Compute The Difference Find the Squared Value Compute the
between the conjugate of the computed Summation of the
points. i.e: > Difference. i.e: » squared differences i.e:
A(i+m, j+n)—B(m,n) (A +m, j+n)—B(m,n))* iﬁjumm, Jj+n)=B(m,n)*

Figure 2. Computation stages of SSD.
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Since 23 > 0, this shaded region is not a good match for the template.
Case # 2:

The difference between the shaded region and the template is
A,-B= 1010
00
The square of the difference between the shaded region and the template is
(A, -BP?=1[0/0
0/0

SSD of the shaded region and the template is

2 (A,-BP=0+0+0+0=0

Since 0 = 0, this shaded region can be said to be good match for the template.

Case # 3:

The difference between the shaded region and the template is

A, -B=[6]-2
1]-3

The square of the difference between the shaded region and the template is

(A, -By = [36[4
19

SSD of the shaded region and the template is

2 (A;-BY=36+4+9+1=50
Since 50 # 0, this shaded region is not a good match for the template.

Case # 4:

The difference between the shaded region and the template is

A, -B= [2]1
415

The square of the difference between the shaded region and the template is

(A -B)?= [4]1
16| 25

SSD of the shaded region and the template is

2 (Ag- B2 =4+1425+16 = 46

Since 46 # 0, this shaded region is not a good match for the template.

J. B. Olaleye et al.
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3.3 Building Graphic User Interphase

For presentable packaging and to ensure interaction between the model and the user, a simple and
user-friendly graphic user interphase (GUI) was constructed and designed to harmonise all the
written scripts (programme codes). The GUIDE builder within the MATLAB environment was used
for the GUI design.

4. EXPERIMETNAL RESULTS

The results obtained from the developed model for geometric based registration using three
transformation models are discussed in the forthcoming sections.

4.1 Graphical User Interphase of Model

Figure 2 shows the screen shot of the GUI developed for the model to aid user interaction with the
model and for easy manipulation.

4.2 Model Experimentation

The images used for the model experimentation are images showing aerial view of part of the
University of Lagos, Akoka Campus, Nigeria. They were extracted from Google Earth Pro
which is a real time online images provider. Some of the images to be registered are presented
as Figures 3a and 3b.

Flgure 3b. Image of part of UNILAG campus (movmg image).
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4.2.1Registration using non-reflective similarity transformation function

Figure 4a shows the automatic conjugate points identification and extraction (with inliers and
outliers) while Figure 4b presents the automatically extracted conjugate points used for the
computation of the transformation matrix (outliers excluded). Figure 4¢ shows the final registered
image of the two overlapping images using non-reflective transformation function. The computed
transformation matrix (7) is given below. The estimation of accuracy measure comes out to be
20.1111 percent.

MATCHED POINTS INCLUDING OUTLIERS

2 matchedPtsin
matchedPtsOut |
N

100 200 300 400 500 600 700 800 900 1000

Figure 4a. All matched points (using non reflective similarity transformation function).

MATCHING INLIERS

inliersin
+ inliersOut

—

200 300 400 500 600 700 800 900 1000
Figure 4b. Image of inliers used for computation of transformation matrix and final
registration.

Registered Image

! 4
PONE] 37N 542822136 m E 720602 99 N

200 400 600 800 1000 1200 1400

Figure 4c. Registered image of two overlapping images using non-reflective similarity
transformation function.

60 NED UNIVERSITY JOURNAL OF RESEARCH - APPLIED SCIENCES, VOL XII, NO. 4, 2015



0.9752  0.0198 543.4348
T=1-0.0198 09752 77.0953
0.0000  0.0000 1.0000

4.2.2 Using affine transformation model

The results obtained from the process of using affine transformation function are as shown in Figures
5a-c. Figure 5a shows the automatic conjugate point identification and extraction (inliers and
outliers). Figure 5b shows the inliers used for the final computation of the transformation matrix.
Figure 5c shows the final registered image of the two overlapping images using affine transform.
The computed transformation matrix is given below. The estimation of accuracy measure comes
out to be 61.9576 percent.

1.0023  0.0731 508.4306
T=1-0.0005 1.0163 50.6341
0.0000  0.0000 1.0000

4.2.3 Using projective transformation

The results obtained from using the projective transformation function for the automatic registration
are as shown in Figures 6a-c. Figure 6a shows the automatic conjugate point identification and

MATCHED POINTS INCLUDING OUTLIERS

@ matchedPtsin
t matchedPtsOut

100

200

300

400

500

600

700
100 200 300 400 500 600 700 800 900 1000

Figure Sa. Image of all matched points including outliers (using affine transformation
function).

MATCHING INLIERS

100
200
300
400
500 3

600

700

100 200 300 400 500 600 700 800 900 1000

Figure 5b. Image of inliers used for computation of transformation matrix and final
registration.
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Registered Image

100
200
300
400
SO0
GO0

J00

Figure Sc. Registered image of two overlapping images using affine transformation.

200 400 BO0 a0 1000 1 QEII:I 1400

MATCHED POINTS INCLUDING OUTLIERS

100 200 300 400 500 600 700 500 900 1000
Figure 6a. Image of all matched points including outliers (using projective transformation).

MATCHING INLIERS

100 200 300 400 500 600 700 800 900 1000

Figure 6b. Image showing only inliers used for computation of transformation matrix
and final registration.
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Registered Image

200 400 600 600 1000 1200 1400 1600

Figure 6c¢. Registered image of two overlapping images using projective transformation.

extraction (inliers and outliers). Figure 6b shows the inliers used for the final computation of the
transformation matrix. Figure 6c shows the final registered image of the two overlapping images
using projective transformation function. The computed transformation matrix is given below. The
estimation of accuracy measure comes out to be 75.0007 percent.

1.0333  0.1185 496.2473
7'=]0.0015 1.0588 41.9808
0.0000  0.0000 1.0000

4.2.4 Automatic registration of three overlapping images using projective transformation

The results obtained from the process of using projective transformation function for the registration
of three overlapping images are as shown in Figures 7a-c. Figure 7a shows the automatic conjugate
point identification and extraction (inliers and outliers). Figure 7b shows the inliers used for the
final computation of the transformation matrix. Figure 7¢ shows the final registered image of the
three overlapping images using projective transform. The computed transformation matrix is given
below. The accuracy estimation of the three overlapping images using projective transformation
comes out to be 72.5011 percent.

0.6982  0.0282 620.5997
7'=10.0024 1.6998 43.0431
0.0000  0.0000 1.0000

MATCHED POINTS INCLUDING OUTLIERS

100

300

400

B

700

o0 200 0 400 500 E0D 700 300 00 1000
axt

Figure 7a. Image of inliers and outliers of three overlapping images using projective
transformation.
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MATCHING INLIERS

inliersin
inliersCut

0o
200
300
400
500
600

o0 .
100 200 300 400 500 B00 700 800 900 1000

Figure 7b. Image of matched inliers of three overlapping images using projective
transformation.

Registered lmage

- _. -~ - L. e
200 400 B0 g00 1000 1200

Figure 7c. Three registered overlapping images using projective transformation function.

4.2.5 Automatic registration of four overlapping images using projective transformation

Attempt was made during the experimentation to register four overlapping images by applying
projective transformation function using the developed MATLAB model and the results obtained
are presented in Figure 8. The computed transformation matrix is given below. The estimated
accuracy comes out to be 83.7838 percent.

Fegistered Image

50 100 150 200 250 300 350 400 450 500

Figure 8. Four overlapping images registered using developed model (based on projective
transformation function).
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T=10.0035 0.2223 29.5582

0.2285  0.0128 280.3468
0.0000  0.0000 1.0000

S.  DISCUSSION ON RESULTS

The corresponding relationship that exists between all the matched points (outliers and inliers) and
the matched points obtained after the exclusion of outliers (inliers) only defines the accuracy of the
registration process. This indicates the strength and robustness of the statistical tool used for the
exclusion of outliers and the computation of transformation matrix. The statistical tool uses the
inliers obtained after the exclusion of the outliers to compute the transformation matrix which is
the backbone of the registration. RANSAC was used for the exclusion of the outliers (to sieve out
the outliers or destructive errors and mismatch) and the computation of transformation matrix. It
is a very robust and dependable statistical tool.

Deductions from the results of the feature based automatic registration obtained shows that projective
transformation model gave the highest estimation of accuracy with approximate accuracy ranging
from 75-84 percent. This is followed by the affine based transformation registration with an accuracy
of approximately 62 percent. The lowest accuracy was obtained from the registration process which
used non-reflective similarity transformation model with an accuracy estimation of approximately
20 percent. The accuracy obtained is basically a function of the statistical tools used for SURF,
feature match (SSD metric), similarity measure, interpolation and resampling (bilinear interpolation),
exclusion of outliers and computation of transformation matrix (RANSAC), the radiometric and
geometric resolution of the image amongst other factors. The degree of overlap in both images is
also very important.

5.  CONCLUSIONS

1) Efficiency and accuracy is a function of the degrees of freedom of the transformation matrix.
The more numbers of degree of freedom as presented by the transformation technique, the more
flexible registration becomes which improves the registration efficiency and the resultant
accuracy. The result obtained from the registration process in which projective transformation
was used (with eight degrees of freedom) produced an accuracy which is better than the accuracy
obtained from affine based transformation model. The result obtained from the affine-based
registration algorithm also proved to be more accurate than those obtained from the registration
process which used non-reflective similarity transformation model.

2) SURF was adopted for the feature detection and feature extraction. Feature matching was done
using the SSD metric with the matchthreshold set at 1.0 scalar value, the feature vectors were
normalized to unit vectors before computation. Bilinear interpolation was used for resampling
and computation of non-integer coordinates which is commonly implemented by convolving
the input image separately in the x- and y- directions with a triangle weighting function while
RANSAC was used for the exclusion of the outliers and the computation of the transformation matrix.

3) The time taken by the registration process and the accuracy obtained are both directly proportional
to the radiometric and geometric properties (e.g. resolution) of the image. The automatic
registration model took 42-62 sec during the experimentation.

4) The speed of the developed model is also a function of the nature and size of the images to be
registered and also the configuration of the operating system computer used.

Further research focus will concentrate on investigating the robustness of epipolar geometry in
automatic registration of overlapping images. The robustness of other feature detection, extraction
and image matching models will also be examined.
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