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ABSTRACT: Submerged vegetation is a key component in natural and restored rivers. It preserves the 

ecological balance yet has a hydraulic impact on the flow carrying capacity. The hydraulic resistance 

produced by submerged flexible vegetation depends on many factors, including the vegetation stem size, 

height, number density and flow depth. In the present work a numerical model is used to generate 

synthetic velocity profile data for hydraulic roughness determination. In the model turbulence is 

simulated by the Spalart-Allmaras closure with a modified length scale which is dependent on the 

vegetation density and vegetation height to water depth ratio. Flexibility of vegetation is accounted for by 

using a large deflection analysis. The model has been verified against available experiments. Based on the 

synthetic data an inducing equation is derived, which relates the Manning roughness coefficient to the 

vegetation parameters, flow depth and a zero-plane displacement parameter. 
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1 INTRODUCTION 

Submerged vegetation is a key component in natural and restored rivers. The ongoing promotion of 

the natural development of wetlands and other restoration projects to enhance development within river 

basins favors the growth of submerged vegetation. Vegetation preservation is of great significance to the 

ecological balance yet has a hydraulic impact on the flow carrying capacity. The hydraulic resistance 

produced by submerged flexible vegetation depends on many factors, including the vegetation stem size, 

height, number density and flow depth.  

Carollo et al. (2005) reported that the application of the well-known Kouwen’s method 

overestimated the flow resistance in an open channel with flexible vegetation. The coefficients in the 

logarithmic equation of flow resistance were subsequently recalibrated against their experimental data. It 

was analyzed dimensionally that at high vegetation density, the shear Reynolds number has to be included 

in the flow resistance law. Järvelä (2005) investigated experimentally the flow resistance above flexible 

vegetation in an open channel flume using Acoustic Doppler Velocimetry technique and confirmed that 

the logarithmic velocity profile for smooth open channel flow is altered in vegetated flow and the 

Darcy-Weisbach’s friction factor can be related to the maximum shear stress which occurs approximately 

at the deflected plant height. 

Wilson, (2007) investigated the variation of hydraulic roughness parameters with flow depth and 

found that the Manning roughness coefficient increases with decreasing flow depth reaching an 

asymptotic constant at high submergence depth ratio (water depth to vegetation height). The value of the 

constant is dependent on the vegetation height and other vegetation properties. Baptist et al. (2007) 
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proposed three equations describing the vegetation induced resistance from different angles. Two 

equations were based on analytical approach, and one equation was based on analyzing of the synthetic 

data generated by a 1-D k- model using the genetic programming approach.  

 Nikora et al, (2008) studied the impacts of vegetation on hydraulic resistance and suggested simple 

quantitative relation to predict these effects based on flow and vegetation parameters. The analysis 

showed that the submergence depth ratio was the major parameter to determine hydraulic roughness. 

Takaaki and Nezu, (2010) examined experimentally the flow structure in an open channel flow with 

flexible vegetation and confirmed that the zero plane displacement is well correlated with the plant 

deflected height and that the friction factor increases with the deflected height. Therefore, the mean 

deflected height was suggested to be a key parameter for hydraulic roughness. 

In the present work the numerical modeling approach is used to generate synthetic velocity profile 

data for hydraulic roughness determination. In the model turbulence is simulated by the Spalart-Allmaras 

closure with a modified length scale which is dependent on the vegetation density and water depth to 

vegetation height ratio. Flexibility of vegetation is accounted for by using a large deflection analysis. The 

model is verified against available experiments. Based on the synthetic data an inducing equation is 

derived, which relates the Manning roughness coefficient to the vegetation parameters, flow depth and a 

zero-plane displacement parameter. The derived equation is compared with an existing equation, as well 

as the data sets of flume experiments conducted by various researchers. Finally the predictive capability 

of the derived equation is tested in field conditions.   

 

2 NUMERICAL MODEL 

The numerical model for the determination of hydraulic roughness is based on conservation of mass 

and momentum of fluid.  
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where xi ( = x, y, z) are the coordinates in longitudinal, transverse and vertical directions respectively; u i 

(= u, v, w) are the time-averaged velocity components in x, y and z directions respectively; t =time; 

=density of fluid; m=molecular viscosity,  
'

j

'

iij uu =Reynolds stresses, iF ( = xF , yF , zF ) 

are the resistance force components per unit volume induced by vegetation in x, y and z directions 

respectively. gi (=0, 0, -9.81m/s
2
) are the components of the gravitational acceleration. The Reynolds 

stresses are represented by the eddy viscosity model: 
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k  is the turbulent kinetic energy which can be absorbed into the pressure gradient term, 
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t =eddy viscosity. The eddy viscosity
 
t is specified by the Spalart-Allmaras (SA) turbulence model 

which involves the solution of a new eddy viscosity variable . The version of the model used is for 

near-wall region and finite Reynolds number, which is most relevant to the present problem (Spalart and 

Allmaras, 1994).  

2

w1w

jj

2b

j

m

j

1b

j

j
d

fc
xx

c)
x

)((
x

1
S
~

c
x

u
t








 





































































   

                   (4) 

where  
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jjS   = magnitude of the vorticity, =0.41, =2/3, cb1=0.1355, cb2=0.622, c1=7.1, 
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1w

c1c
c , cw2=0.3, cw3=2, d=length scale, SF=additional source term due to vegetation. This 

turbulence model is a one-equation model which is simpler than the commonly used k- or k- model 

and it has been successfully applied in the modelling of certain free-shear flow, wall-bound flow and 

separated flow problems. The resistance force due to vegetation is determined by the quadratic friction 

law. The average force per unit volume within the vegetation domain is obtained by 

2,1ijjivDi uuNubC
2

1
F             (5) 

where CD=drag coefficient of stem, bv=width of stem and N=vegetation density (1/m
2
) .  

For wall bounded shear flow, the turbulence length scale d is proportional to the distance from the 

point of interest to the channel bed. In the presence of vegetation, the turbulence eddies above the 

vegetation canopy may not reach the channel bed and thus the turbulence length scale will be reduced. 

One approach to model the reduction in the turbulence length scale is to set a zero plane displacement 

parameter z0. The proposed turbulence length scale of a point at level z is given by 

 

L=z-z0  z>k>z0 

L=z(k-z0)/k z<k                (6) 
 

where k=deflection vegetation height.  
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Natural vegetation bends in high flow and the horizontal deflection at the top of a vegetation stem 

can be of the same order as the deflected stem height. Hence, the classical small deflection theory of a 

beam may not be adequate for a vegetation stem with high flexibility. In this work, a large deflection 

analysis based on the Euler-Bernoulli law for bending of a slender beam has been used to describe the 

deflection of a vegetation stem (Li and Xie, 2011). In the analysis each vegetation stem is modeled as a 

vertical in-extensible non-prismatic slender beam of length l. The water flow produces variable 

distributed loads qx(s) on the beam along the x-direction as shown in Fig. 1. Combining the 

Euler-Bernoulli law for the local bending moment and the equations of the equilibrium of forces and 

moments, the following fourth order nonlinear equation in the deflection 𝛿 is obtained.  
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where s = local ordinate along the beam, E = flexural stiffness (N/m
2
), I = second moment of area (m

4
)  

and 𝛿= deflection in x-direction. The vegetation stem is taken as inextensible as the total length remains 

constant. By dividing the stem into 𝑛 equal part of constant length ∆𝑠, the z-ordinate of the 𝑖th node is 

obtained by 
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Figure1: Schematic diagram of large deflection of a beam carrying distributed load. 

     

The deflected height of the stem is then equal to zn. Eq. (7) is solved by using a quasi-linearized 

central finite difference scheme. To save computational effort, the solution is expressed in 

non-dimensional form relating the deflected height to the applied force, and is approximated by a 

polynomial. Details can be found in Li and Xie (2011).  

 

Under uniform flow condition, the problem becomes one-dimensional and the 1D version of the 

numerical model by Li and Zeng (2009) can be used. The flow variables are the longitudinal velocity 

component u1 and the eddy viscosity, varying along the vertical direction. The boundary conditions are as 

X 

s 𝒍 

qx (s) 
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follows. At the free water surface the normal gradients of the variables are zero. At the bottom the 

velocity is determined by the wall function and the eddy viscosity is determined by the mixing length 

hypothesis.  

3 MODEL VERFICATION 

Three cases have been chosen for the verification of the numerical model. The flow and vegetation 

parameters for the experiments are shown in Table 1. The number of grids used is 61 and the time step 

size is in the order of 0.0005s to ensure computational stability. Grid convergence study shows that 

further reduction of grid size does not affect the results apparently.    

 
Table 1 Flow and vegetation parameters 

 

Investigator(s) Run N(m-2) h(m) k(m) EI(Nm2) Um(m/s) S(%) 

Lopez and 

Garcia (2001) 

Expt 1 142 0.335 0.12 Rigid 0.876 0.36 

Jarvela (2005) R4-8 12,000 0.707 0.280 4.35x10-5 0.129 0.02 

R4-9 12,000 0.704 0.280 4.35x10-5  0.185 0.03 

Wilson (2007) A-2 833,333 0.0480-

0.165 

0.016 - 0.139- 

0.343 

0.1 

h=water depth, Um=mean velocity, S=channel bottom slope 

 

Fig. 2 shows the comparison between the numerical results and the experimental data of Lopez and 

Garcia (2001). The computed velocity profile above the vegetation layer agreed well with that reported in 

the experiment and is more accurate than that computed by the k- turbulence model proposed by Lopez 

and Garcia (2001). The difference between the presently computed velocity above vegetation and the 

corresponding measured value is less than 7%. 

 

The computed and measured velocity profiles for the cases of Wilson (2007) are shown in Fig. 3. 

The flexibility of the grass was not determined in the experiments. In the numerical simulation the 

flexural rigidity of grass was calibrated to reproduce the observed deflected height. The profile is in 

non-dimensional form and is obtained by combining the results of several experiments with different h/k 

ratios. The computed results and measured data are almost overlapping. The results show a good 

correlation of the trend of variation of the velocity with h/k ratio within the range of selected water depth.  

 

Fig. 4 displays the computed and measured velocity profiles for the case of Jarvela (2005). The shear 

velocity is defined using the clear water depth (equal to total water depth minus the vegetation height), 

which is the same as that adopted by Jarvela (2005). The computed results are in good agreement with the 

measured data in the clear water zone and exhibit a low velocity region in the vegetation layer. There was 

no data recorded within the vegetation region, primarily due to the high vegetation density.  

 

The vegetation induced roughness can be expressed in terms of the Manning coefficient through the 

Manning equation for uniform flow. The capacity of the numerical model in predicting the vegetation 

induced roughness effect is examined in 117 cases with available experimental data. The data were 

measured in laboratory flumes, covering a considerable range of vegetation parameters and flow depths, 

and were reported in six independent literatures (Ikeda, 1996; Poggi, 2004; Jarvela, 2005; Carollo et al., 

2005; Velasco et al., 2010 and Zeng, 2011). In the computations, for cases in which the drag coefficient is 

not specified, the value of 1.2 is adopted. If the deflected height of vegetation is not specified, it will be 

computed using the large deflection analysis described above. The zero-plane displacement has been fine 

tuned to give the best fit result. The values of the Manning coefficient derived from the experimental data 

are compared with the calculated values using the model. As shown in Fig. 5, the agreement between the 

computed values and the measured data is good, with the difference generally within 10%.  
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Figure 4: Velocity profile comparison for Jarvela (2005). Run R4-8 (left), Run R4-9 (right). Solid line –computed; 

circle – measured 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Velocity profile comparison for  
Lopez and Garcia (2001). Solid line –

computed; circle – measured.  

 

Figure 3: Velocity profile comparison for  
Wilson (2007). Rhombus –computed; 

square – measured.  
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Figure 5: Comparison between the Manning coefficients determined from experiments and model simulations.  

＋Ikeda & Kanazawa (1996); □ Poggi et al. (2004); △Jarvela (2005); ﹡Carollo et al. (2005); －Velasco et al. (2010); × Zeng (2011) 

4 INDUCING EQUATION 

 

4.1 Fitting Equation   

Numerical experiments have been carried out against available experimental data to obtain an 

empirical equation of z0 which is given by  
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where fv=Nbvk, =0.5, =0.7. The equation is in reasonable agreement with the equation proposed by 

Raupach (1994). 

 

Several empirical equations for vegetation induced roughness have been proposed previously, 

including Kouwen and Unny (1973) for flexible vegetation, Baptist et al. (2007) and Gu (2007) for rigid 

vegetation. The equations are of the following general form.  
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where a, b are parameters dependent on the flow and vegetation parameters; ks is a roughness parameter. 

In the present work a refined empirical equation for vegetal roughness is derived from the numerical 

model generated synthetic data and will be compared with the other available equations. After extensive 

tests the following equation is proposed.  
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where 𝐴’ is an empirical parameter and =0.41. The parameter, 𝑍𝑜
′  represents a modified zero plane 

displacement parameter and is given by 
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where =3.7. Numerical simulations show that the parameter A’ is a nonlinear function of h/k. The fitting 

of eq. (12) to the synthetic data from numerical simulations leads to the following quartic polynomial 

equation. 
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where 𝑎1, 𝑎2, 𝑎3 and 𝑎4 are constants equal to 0.0043, -0.0608, 0.2550 and -0.1604 respectively. The 

correlation coefficient of the fitting is high and is equal to 0.991. Fig. 6 shows that the fitting is the best at 

lower values of h/k, and has larger discrepancy when fv is low and h/k is high (i.e. in the low hydraulic 

resistance range).   

 

A simplified form of equation (11) can be obtained by noting that the exponential function in 

equation (12) approaches 1 at very high vegetation density (fv). In that case 𝑧𝑜
’ 𝑧0, and equation (11) 

takes the following form:  
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Figure 6: Fitting equation (11) and synthetic data for different submergence ratio. Dot – synthetic data; solid line – 

fitting equation 
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The fitting of equation (14) to the synthetic data yields a quadratic polynomial equation of A and h/k 

with correlation coefficient approximately equal to 1. The equation is given by: 
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where b1 and b2 equal to 0.0165 and 0.0379 respectively. 

 

4.3 Verification of Equations   

 Eqs. (11) and (14) are then verified by the experimental data and compared with the equation 

proposed by Baptist et al (2007). The available experiments are subdivided into three categories with 

different vegetation densities. A brief description of the parameters of the data sets is shown in Table 2. In 

parallel the inducing equation by Baptist et al. (2007) is also employed for comparison. The equation is as 

follow and is simpler than Eqs. (11) and (14), but the zero plane displacement parameter is not included.  
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Table 2: A list of the datasets used in model verification  

 

Investigator(s) Category m(m-2) h/k Vegetation Characteristics 

Lopez and Garcia (2001) 

Huai et al. (2009) 

Velasco et al. (2010) 

Zeng (2011) 

 

I 

 

 500 

 

1.2 h/k 3.5 

Artificial, rigid wooden dowels. 

Artificial, rigid metal rods. 

Artificial, flexible plastic strips. 

Artificial, flexible plastic strips.  

Ikeda and Kanazawa (1996) 

Poggi et al. (2004) 

Jarvela (2005) 

 

II 

 

 

 15,000 

 

1.4 h/k  5.0 

Artificial, flexible Nylon 

filaments. 

Artificial, rigid stainless steel. 

 

Natural, flexible wheat.  

 

Carollo et al. (2002) 

Carollo et al. (2005) 

III 20,000 1.6 h/k  9.0 Natural, flexible Barley grass. 

Grass mixture. 

 

For category I in which the vegetation density is low, the vegetation is artificial and is either 

rigid or flexible. The comparison results are presented in Fig. 7, showing good agreement between the 

empirical equations and the experimental data. Eq. 11 gives the best fit results.  

 

 

 

 

 

 

 

 

 

Figure 7: Comparison between the measured values of n (m-1/3s) and those calculated using equation 11 (Left), 

equation 14 (Middle) and equation 16 (Right) for Category I cases 

 

 

Category II consists of data corresponding to natural or artificial vegetation with medium density 

and wider range of degree of submergence. The results in Fig. 8 show that the equations generally yield 

good results comparing with the experimental data. Eq. 16 overestimates the Manning roughness at 

higher vegetation density whereas Eq. 14 produces wider scattering of the results around the line of 

perfect agreement. 
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Figure 8: Comparison between the measured values of n (m-1/3s) and those calculated using equation 11 (Left), 

equation 14 (Middle) and equation 16 (Right) for Category II cases 

 

In category III the vegetation is natural and of very high density, ranging from 28,000 to 44,000 

stems/m
2
. In the simulation it was found that the drag coefficient needed to be adjusted to 0.1 due to the 

large deflection of the plants and the significant sheltering effect induced. Fig. 9 shows that the results 

computed by Eqs. 11 and 16 bias on the high side and overestimate the Manning’s roughness coefficient. 

The degree of scatter increases with decreasing Manning roughness coefficient. Eq. 14 however gives 

good prediction results. This is mainly because the zero plane displacement z0 is important for these cases 

with high vegetation density. Water flow is significantly retarded by the vegetation and the turbulence 

eddies cannot penetrate into the lower vegetation region. Eq. 14 is most sensitive to the change in z0.   

 

  

 

 

 

 

 

 

 

     

Figure 9: Comparison between the measured values of n (m-1/3s) and those calculated using equation 11 (Left), 

equation 14 (Middle) and equation 16 (Right) for Category III  

 

 

4.3 Field Application   

While most empirical equations were validated against laboratory measurement data only (e.g. 

Klopstra et al, 1997; Stephan and Gutknecht, 2002; Brian et al., 2002, Gu, 2007 and Baptist et al, 2007), 

the present study extends the validation study against existing field data. Nikora et al, (2008) studied the 

impacts of aquatic vegetation on hydraulic resistance in five small streams and suggested empirical 

equations to predict these effects. The reach length of stream considered varied from 12 to 30m. The 

dominant vegetation types of varying flexibility and variable morphology under consideration were 
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Charophytic alga (Nitella hookeri), Myriophyllum sp., Riccia sp., Filamentous algae and Elodea 

canadensis.  

In the simulation the parameter frk (=CDbvN) is not available and needs to be estimated. The drag 

coefficient CD is in the order of 1, the exact value depends on the streamlined flow effect due to 

vegetation deflection. The stem width bv lies between 4-6mm and the density N depends on the plant 

characteristics (Bowmer et al, 1995; Hofstra et al, 2006; Kevin et al, 2007). In the simulation, the average 

stem width is taken to be 5mm for all vegetation types, the vegetation density is assumed to be 12,000/m
2
.  

Fig. 10 shows that the computed Manning's coefficients are in good agreement with the measured data 

reported by Nikora et al. (2008). The predicted value of the Manning’s coefficient is found not quite 

sensitive to the value of frk within the practical range.   

 

 

 

 

 

 

 

 

 

 

 

Fig. 10:  Field verification of Eq. 11 (left) and Eq. 14 (right).  

 

 

4 CONCLUSIONS  

A new hydraulic roughness equation has been derived for submerged vegetation. The equation 

relates the Manning roughness coefficient to the vegetation parameters (including flexibility), flow depth 

and a zero-plane displacement parameter. The equation is calibrated from the synthetic velocity profile 

data generated by a numerical model which has been extensively verified. A large number of experimental 

data by various investigators is then used to verify the equation and its simplified version. The 

performance of the equations is good and better than the previous equation without the zero plane 

displacement parameter. The equations have been subsequently applied to the field successively.  
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