Hydrothermal assisted-green synthesis of Fe/N co-doped TiO2 nanocomposites using *Vernonia amygdalina* leaf extract

Amigun, A.T^{1, 2}*, Adekola, F.A², Tijani, J.O^{3, 4}, Mustapha, S^{3, 4}, and Eleburuike, N.A¹

¹Department of Chemical and Geological Sciences, Al-Hikmah University, Ilorin, PMB1601 Nigeria, ²Department of Industrial Chemistry, University of Ilorin, PMB 1515, Ilorin, Nigeria,

³Department of Chemistry, Federal University of Technology, Bosso Campus, Minna, PMB 65, Nigeria,

⁴Nanotechnology Research Group, Center for Genetic Engineering and Biotechnology, Federal University of Technology, Minna, PMB 65, Niger State, Nigeria

*azeezahage@gmail.com

Abstract: In this paper, pure TiO₂ and Fe/N co-doped TiO₂ nanocomposites were prepared via hydrothermal-assisted-green synthesis method using aqueous extract of bitter leaf, Vernonia *amyqdalina*. The doping of pure TiO_2 was by wet impregnation of titanium isopropoxide with NH4NO3 and FeCl3.6H2O such that the theoretical Fe/N doped Ti molar ratio was 4:1. The prepared nanocomposites were annealed at 450 °C and characterized by High resolution thermal electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) measurements methods. The XRD patterns confirmed the formation of anatase for pure TiO₂ and rutile phase for Fe/N co-doped TiO₂ samples. The phase transformation from anatase to rutile was linked to electronic movement between 3d and 2p orbitals of Fe and N respectively. The increase in average crystallite size of 37.4 nm observed for Fe-N-TiO2 was attributed to complete phase change from anatase to rutile. The HRTEM images of the assynthesized Fe/N co-doped TiO₂ shows an agglomeration of small spherical shape nanoparticles with sizes in good agreement with the sizes obtained from XRD measurements. The co-doping effect of Fe and N was responsible for the increased surface area from $10.37 \text{ m}_2/\text{g}$ for pure TiO₂ to 25.48 m₂/g for Fe/N co-doped TiO₂ nanocomposites respectively. This study demonstrated that the microstructural, textural, phase types and oxidation states of TiO₂ were influenced by Fe and N.

Keywords: TiO₂ nanocomposites, hydrothermal-assisted-green synthesis, *Vernonia amygdalina* crystallite size, anatase-rutile, surface area, impregnation

• http: DOI: <u>10.48187/stnanomat.2021.1.002</u>