Journal of Mosquito Research

Mosquitoes, Flies Making Troubles to Humans

2016

JMR Vol.6

Journal of Mosquito Research 2016, Vol.6

http://jmr.biopublisher.ca

Publisher

Sophia Publishing Group

Edited by

Editorial Team of Journal of Mosquito Research

Email: edit@jmr.biopublisher.ca
Website: http://jmr.biopublisher.ca

Address:

11388 Stevenston Hwy,

PO Box 96016,

Richmond, V7A 5J5, British Columbia

Canada

Journal of Mosquito Research (ISSN 1927-646X) is an open access, peer reviewed journal published online by BioPublisher.

The journal publishes all the latest and outstanding research articles, letters and reviews in all areas of mosquito research, the range of topics including (but are not limited to) the research at molecular or protein level of mosquito, impact on the ecosystem, containing positive and negative information, natural history of mosquito, also publishing innovative research findings in the basic and applied fields of mosquito and novel techniques for improvement, as well as the significant evaluation of its related application field.

BioPublisher, operated by Sophia Publishing Group (SPG), is an international Open Access publishing platform that publishes scientific journals in the field of life science. Sophia Publishing Group (SPG), founded in British Columbia of Canada, is a multilingual publisher.

All the articles published in Journal of Mosquito Research are Open Access, and are distributed under the terms of the Creative Commons Attribution

<u>License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

BioPublisher uses CrossCheck service to identify academic plagiarism through the world's leading plagiarism prevention tool, iParadigms, and to protect the original authors' copyrights.

Latest Content

Adulticidal Effect of Crude Ethanol Extract of *Phytolacca dodecandra* on *Anopheles gambiae*

Yugi J.O., Okeyo-Owour J.B., Omondi D.O.

Journal of Mosquito Research, 2016, Vol.6, No.1

Larvicidal, Pupicidal and Smoke Toxic Activity of Alangium salvifolium Leaf Extracts against Culex vishnui Group Mosquitoes

Papiya Ghosh, Rajendra Prasad Mondal, Koyel Mallick Haldar, Goutam Chandra

Journal of Mosquito Research, 2016, Vol.6, No.2

<u>Larvicidal Efficacy of Root and Stem Bark Extracts of the Plant, Annona reticulata against Filarial Vector, Culex quinquefasciatus</u>

Subrata Mallick, Goutam Chandra

Journal of Mosquito Research, 2016, Vol.6, No.3

Entomological and Epidemiological Interpretations for Dengue Situation in Data Ganj Buksh Town, Lahore, Pakistan

Arooj Aftab Nadeem, Farkhanda Manzoor

Journal of Mosquito Research, 2016, Vol.6, No.4

<u>Characterization of the Midgut Bacterial Isolate of *Culex quinquefasciatus* and Its Control by Plant Extracts</u>

Syed Afrin Azmi, Soumendranath Chatterjee

Journal of Mosquito Research, 2016, Vol.6, No.5

Morphometrics Studies on Females *Anopheles arabiensis* Patton (Diptera: Culicidae) from Kassala State, Eastern Sudan

Asma Mahmoud Hamza, Sumaia Mohamed Ahmed Abukashawa, El Amin El Rayah

Journal of Mosquito Research, 2016, Vol.6, No.6

Studies on Larvicidal Activity of Some Plant Extracts against Filarial Vector Culex quinquefasciatus

Goutam Chandra, Rajendra Prasad Mondal, Aniket Singh, Anupam Ghosh

Journal of Mosquito Research, 2016, Vol.6, No.7

http://jmr.biopublisher.ca

Concurrent Infections of Three Mosquito Borne Diseases-Dengue, Chikungunya and Malaria

Amiya Kumar Hati, Goutam Chandra, Hiranmoy Mukherjee, Ruby Mondal, Srabani Talukdar, Nemai Bhattacharyya Journal of Mosquito Research, 2016, Vol.6, No.8

Efficacy of Occimum grattissimum on Adult Anopheles gambiae

AFOLABI Olajide Joseph

Journal of Mosquito Research, 2016, Vol.6, No.9

<u>Laboratory Bioassay of Chilodonella uncinata</u>, an Entomopathogenic Protozoan, against Mosquito Larvae

Bina Pani Das, Kedar Deobhankar, Karuna N. Pohekar, Rahul Marathe, Syed Akhtar Husain, P. Jambulingam Journal of Mosquito Research, 2016, Vol.6, No.10

Impact of High Dose of Gamma Radiation on Field Collected Aedes aegypti

Kiran Bala Bhuyan, Tapan Kumar Barik

Journal of Mosquito Research, 2016, Vol.6, No.11

Effect of Crushed Silver Cyprinid Rastrineobola Argentae Larval Diet on Pupae Eclosion and Mating Success of Male *Anopheles arabiensis* Mosquitoes

Yugi J.O., Ochanda O.H., Mukabana W.R.

Journal of Mosquito Research, 2016, Vol.6, No.12

Mosquito Larvicidal Activity of Solvent Extracts of Fruits of Acacia auriculiformisagainst Japanese Encephalitis Vector Culex vishnui Group

Mousumi Barik, Anjali Rawani, Goutam Chandra

Journal of Mosquito Research, 2016, Vol.6, No.13

Effects of Temperature Stress on Pre-imaginal Development and Adult Ptero-fitness of the Vector Mosquito, *Culex quinquefasciatus* (Diptera: Culicidae)

Israel Kayode Olayemi, Onumanyi Victoria, Azubuike Christian Ukubuiwe, Aisha Imam Jibrin Journal of Mosquito Research, 2016, Vol.6, No.14

<u>Incidence of Malaria in Type 2 Diabetic Patients and the Effect on the Liver: a Case Study of Bayelsa state</u>

Ndiok E.O., Ohimain E.I., Izah S.C.

Journal of Mosquito Research, 2016, Vol.6, No.15

http://jmr.biopublisher.ca

Toxicity of Three Tropical Plants to Mosquito Larvae, Pupae and Adults

Owoeye J.A., Akawa O.A., Akinneye J.O., Oladipupo S.O., Akomolede O.E.

Journal of Mosquito Research, 2016, Vol.6, No.16

<u>Survey of Mosquitoes in Open and Closed Larval Habitats in Aguleri, Anambra East Local</u> Government Area of Anambra State, South Eastern Nigeria

Egbuche C.M., Ezihe C.K., Aribodor D.N., Ukonze C.B.

Journal of Mosquito Research, 2016, Vol.6, No.17

<u>Susceptibility Status of Culicine Mosquitoes to Alphacyphamethrin, Bifenthrin and Bendiocarb in</u> Gombe Metropolis

E. Abba, K.P. Yoriyo, J. Philimon, H. Saidu, B.S. Abdulmalik

Journal of Mosquito Research, 2016, Vol.6, No.18

Synthesis of Copper Nanoparticles (CuNPs) from Petal Extracts of Marigold (Tagetes sp.) and Sunflower (Helianthus sp.) and Their Effective use as a Control Tool against Mosquito Vectors

Naba Kumar Mondal, Amita Hajra

Journal of Mosquito Research, 2016, Vol.6, No.19

Larvicidal Efficacy of Fruit Peel Extracts of Citrus maxima against Culex quinquefasciatus

Subrata Mallick, Devaleena Mukherjee, Anushree Singha Ray, Goutam Chandra

Journal of Mosquito Research, 2016, Vol.6, No.20

Effects of the Weather on Dengue Infections in Kolkata, India

Sudipta Poddar, Pallav Sengupta, Goutam Chandra, Amiya Kumar Hati

Journal of Mosquito Research, 2016, Vol.6, No.21

<u>Seasonal Distribution of Anopheles Species and the Effect of Micro-Climatic Factors in the Abundance of the Malaria Vectors</u>

Ebuka Ezihe, Maduka Friday Chikezie, Chukwudi Micheal Egbuche, Ejidikeme Angus Onyido, Dennis Aribodor, Musa Lazarus Samdi

Journal of Mosquito Research, 2016, Vol.6, No.22

Synergistic Activity of a Mixture of *Lantana camara* and *Ocimum gratissimum* Leaves Extracts against *Aedes aegypti* Larvae (Diptera: Culicidae)

Ezeike Amarachi Keziah, Elias Nchiwan Nukenine, Simon Pierre Yingyang Danga, Charles Okechukwu Esimon Journal of Mosquito Research, 2016, Vol.6, No.23

<u>Treatment Confusion Due to Misjudgment between Malaria and Dengue: A Comparative Study and Differential Analysis</u>

Somia Gul, Abeeha Malick, Sameera Kaleem, Aniqa Malick, Afshan Shameem Journal of Mosquito Research, 2016, Vol.6, No.24

Comparative Efficiency of Four Repellents against Anopheles gambiae s.s.

Karama Ibrahim Ogillo, Lucille Lyaruu, Ester Lyatuu, Aneth Mahande, Eliningaya J. Kweka Journal of Mosquito Research, 2016, Vol.6, No.25

Phenotypic and Biochemical Characterization of Microbial Diversity of *Aedes albopictus* Breeding Groundwater Occurring in Burdwan, West Bengal, India

Arunima Chakraborty, Soumendranath Chatterjee Journal of Mosquito Research, 2016, Vol.6, No.26

Bioefficacy of Some Indigenous Nigerian Plant Leaves on Mosquito Species

T.E. Ebe, R.F. Njoku-Tony, I.C. Mgbemena, C.E. Ihejirika, L.C. Izunobi, U. Udensi Journal of Mosquito Research, 2016, Vol.6, No.27

<u>Larvicidal Activities against Aedes aegypti and Culex quinquefasciatus of Some Extracts from Amazon Edible Fruits</u>

P. de Souza Pinto Hidalgoa, R. de C. Saraiva Nunomuraa, A.C. da Silva Pintob, W. Pedro Tadeib, S. Massayoshi Nunomura

Journal of Mosquito Research, 2016, Vol.6, No.28

Dengue Fever: Causes, Prevention and Recent Advances

Anum Jaweria, Fatima Naeem, Momna Malik, Faqeeha Javaid, Qurban Ali, Shahbaz Ahmad, Muhammad Fahad Khan, Idrees Ahmad Nasir

Journal of Mosquito Research, 2016, Vol.6, No.29

Effect of Habitat Modifications on Predation Potential of *Anisops sardea* (Hemiptera: Notonectidae) against Larvae of Culex vishnui, Vector of Japanease Encephalitis

Anupam Ghosh, Goutam Chandra, Subhasis Bandyopadhyay, Rajendra Prasad Mondal Journal of Mosquito Research, 2016, Vol.6, No.30

<u>Aedes Indices and Their Significance on the Evaluation of the Dengue Control Activities in</u> Rajapalayam Municipality of Tamil Nadu, India

Parasuraman Basker, Palani Sampath, Paramasivam Arumugasamy, Karumana Gounder Kolandaswamy, Govindasamy Elumalai

Journal of Mosquito Research, 2016, Vol.6, No.31

Bio-efficacy of Risasi Electric Mosquito Mat Against Anopheles Gambiae Anthropophilic Malaria Vectors

Eliningaya J. Kweka

Journal of Mosquito Research, 2016, Vol.6, No.32

<u>Laboratory Evaluation of Crude Leaf Extracts of Cassia occidentalis Linneaus (Caesalpinaceae) as an Oviposition Determinant and Ovicide against Vector Mosquitoes Anopheles stephensi Liston, Culex quinquefasciatus Say and Aedes aegypti Linneaus (Diptera: Culicidae)</u>

V. Raja, K. John Ravindran, Alex Eapen, S. John William Journal of Mosquito Research, 2016, Vol.6, No.33

The Consciousness in Mosquitoes

Richa, Devendra Kumar Chaturvedi, Soam Prakash Journal of Mosquito Research, 2016, Vol.6, No.34

Larvicidal Activity of *Tinospora crispa* (Menispermaceae) Fruit Extract against Filarial Vector Culex Quinquefasciatus

Jibon Kumar Pal, Anjali Rawani, Aniket Singh, Goutam Chandra

Journal of Mosquito Research, 2016, Vol.6, No.35

In Vitro Effects of Some Plant Extracts on the Development of *Culex quinquefasciatus* in the <u>Laboratory</u>

El Maghrbi A.A.

Journal of Mosquito Research, 2016, Vol.6, No.36

http://jmr.biopublisher.ca

Research Report Open Access

Effects of Temperature Stress on Pre-imaginal Development and Adult Ptero-

fitness of the Vector Mosquito, Culex quinquefasciatus (Diptera: Culicidae)

Olayemi I.K. ¹, Onumanyi V. ¹, Ukubuiwe A.C. ¹, Jibrin A.I. ²

1 Applied Entomology and Parasitology Research Unit, Department of Biological Sciences, Federal University of Technology, Minna, Nigeria

2 Department of Integrated Sciences, Niger State College of Education, Minna, Nigeria

Corresponding author email: <u>a.ukubuiwe@futminna.edu.ng</u>

Journal of Mosquito Research, 2016, Vol.6, No.14 doi: 10.5376/jmr.2016.06.0014

Received: 07 Apr., 2016 Accepted: 29 Jun., 2016 Published: 18 Nov., 2016

Copyright © 2016 Olayemi et al., This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Preferred citation for this article:

Olayemi I.K., Onumanyi V., Ukubuiwe A.C., and Jibrin A.I., 2016, Effects of temperature stress on pre-imaginal development and adult ptero-fitness of the vector mosquito, *Culex quinquefasciatus* (Diptera: Culicidae), Journal of Mosquito Research, 6(14): 1-7 (doi: 10.5376/jmr.2016.06.0014)

Abstract Day-old first instar larvae of *Culex quinquefasciatus* mosquitoes were cultured to imago eclosion, at constant temperatures of 30.00, 32.00, 34.00 °C and ambient water temperature (28.00 ± 0.02 °C, Control). The duration and survivorship of larval and pupal life stages were monitored daily. The wings of adult mosquitoes were measured for length and fluctuating asymmetry. The results indicated significant (p<0.05) effects of water temperature on developmental indices investigated. The duration of larval and pupal stage was significantly shortened from 10.82 ± 1.02 days (28.00 ± 0.02 °C) to 7.65 ± 2.15 days (34.00 °C) and 2.04 ± 0.70 (28.00 ± 0.02 °C) to 1.19 ± 0.27 days (34.00 °C), respectively. Survivorship of immature stages showed inverse relationship with increasing water temperature; with survivorship of the pupae significantly higher than those of the larvae at all the temperatures tested. Wing length and fluctuating asymmetry were also affected by rise in temperature. The findings of this study indicate limited thermal adaptation of *Cx. quinquefasciatus* to relatively warm areas; this information should help in developing effective environmental mosquito-vector control against the species by the discouragement of ecological settings that may reduce micro-climatic temperatures around breeding habitats of the mosquito species.

Keywords Fluctuating Asymmetry; Larva; Breeding Temperature; pupa; Thermal Adaptation; Wing Length

Introduction

Culex species are important mosquito vectors, responsible for the transmission of important human diseases including, West Nile virus, filariasis, encephalitis, etc, that pose serious threats to global public health (Curtis, 1996; Micheal and Bundy, 1997; Smith, 2006). According to World Health Organisation (2004), more than 1.3 billion people in 83 countries and territories; with 120 million of them dying yearly from secondary complications of the disease (Terranella et al., 2006a; 2006b; Sichangi et al., 2009) and approximately 18% of the world's population live in areas at risk of infection with filariasis (Carter Centre, 2008; Mukhopadhyay et al., 2008).

The breeding success of *Culex* Mosquito vectors of human diseases is largely influenced by prevailing ecological conditions in the larval habitats. Studies have shown that *Culex* species are principally cosmopolitan and breed preferentially in large water bodies such as natural swamps and man-made irrigation-related water receptacles, as well as, accessible septic tanks in urban slums (WHO, 1975; Wayne, 2010). Mean physico-chemical conditions in these varieties of active *Culex*-breeding sites differ considerably (Loetti et al., 2011).

Yet, water temperature is one of the most important physico-chemical factors that influence productivity of mosquito larval habitats (Clements, 1992). To this end, mosquitoes are conditioned to breeding preferentially in relatively narrow range of types of water bodies, especially, small sun-lit rain pools, characterized by warm water temperature for faster immature development (Secil et al., 2009; Loetti et al., 2011). Being ectothermic, mosquitoes are greatly influenced by environmental temperatures (Atkinson, 1994; Silby and Atkinson, 1994), and the rates of immature development are crucially dependent on water temperature of the larval habitats (Mpho et al., 2002a; Mourya et al., 2004; Carrington et al., 2013). Exposure of mosquito larval cohorts to widely different water temperatures, as obtainable in the diverse active habitats of *Culex* species, could impose significant stress on

http://jmr.biopublisher.ca

a population resulting in increased developmental and anatomical deficiencies, as well as, genetic instability (Mpho et al., 2001; 2002b). Therefore, effective management of *Culex* mosquito population development in its diverse larval habitats, most of which are unavoidably associated with anthropogenic communities and activities, demands a good understanding of the influence of water temperature on immature development of the mosquitoes. This information is presently scanty, and in order to bridge the research gap, this study was carried out to evaluate the effects of water temperature on survival rates and duration of development of immature life stages, as well as, adult body size and fitness, of *Culex quinquefasciatus* mosquitoes under laboratory conditions.

1 Materials and Methods

1.1 Source and exposure of larvae to different temperature regime

The Culex quinquefasciatus mosquitoes used in this study came from a colony raised in the Laboratory of the Department of Biological Sciences, Federal University of Technology, Minna, Nigeria. Twelfth Filial generation (F₁₂) were used in the study. The experimental set-up consisted of four water temperature treatments namely, 28.00±0.02°C (i.e., ambient room temperature, Mean ± Standard Deviation), 30.00, 32.00 and 34.00°C. The ambient temperature served as the control experiment. For each treatment, 100 approximately day-old first instar larvae of the mosquito were placed in thermal tanks (15 litres capacity), containing ten litres of bore-hole water (i.e., a density rate of 10 larvae per 1 000 ml). The temperatures of treatments 30.00 – 34.00°C were maintained constant with the aid of aquarium tube heaters regulated by digital thermostats (Model: 300W, LifeTech Aquarium GB4706.67-2003). The ambient temperature treatment (i.e. Control) had no water heater but simply kept under the influence of room temperature. The larvae were fed with pulverized fish feed (Cuppens®), maintained generally according to the techniques of Olayemi et al. (2012). The mosquitoes were monitored for mortality, ecdysis and metamorphosis, during the hours of 0800 and 0900 daily. At pupations, the mosquitoes were transferred in plastic cups (350 ml) to adult-holding cages for eclosion. Survival rates and duration of development of the immature life stages were estimated as described by Ukubuiwe et al. (2013). The whole experiment was repeated three additional times at weekly intervals, resulting in the monitoring of 800 larvae per water temperature treatment.

1.2 Measurements of indices of wing quality

The adult Mosquitoes were sacrificed within 24 hours post-emergence, and had their wings carefully detached for analysis. Wing length was determined as the interval between the base of the Costa and distal extremity of the R3 vein, excluding the fringe setae (Loetti et al., 2011). Wing fluctuating asymmetry was determined as the difference between right and left wings of the mosquitoes (Ukubuiwe et al., 2016).

1.3 Data analysis

All data obtained from experimental replicates and repeats were processed as Mean ±SD, and subsequently pooled for statistical analysis. Differences in mean values of immature life stage duration and survival rates, as well as adult wing lengths, among the water temperature treatments were compared for statistical significance using ANOVA at p=0.05.

2 Results

Table 1 highlights the influence of temperature on duration of immature stages of the *Culex* mosquitoes. Duration of aggregate immature stage reduced significantly (p<0.05) with increase in water temperature, ranging from 12.86 ± 1.72 days in the Control Mosquitoes (i.e., $28.00\pm0.02^{\circ}$ C), to 8.84 ± 2.24 days among those raised at the highest temperature (34.00° C). However, duration of aggregate immature development was not significantly (p>0.05) affected by temperatures between 30.00 and 32.00° C. Generally, the influence of temperature on duration of development was more pronounced on the larval than pupal stage. While the Control temperature significantly extended duration of the pupal stage (2.04 ± 0.70 days) compared to the treatments, subsequent increases in temperature resulted in insignificant reduction in duration of the stage (range = 1.40 ± 0.20 days at 30° C to 1.19 ± 0.27 days at 34.00° C). Duration of the larval stage ranged from 10.82 ± 1.02 days at the Control temperature, to 7.65 ± 2.15 days at 34.00° C.

http://jmr.biopublisher.ca

Table 1 Immature developmental and survival rates of Culex quinquefasciatus mosquitoes exposed to different temperature regimens

Water Temperature ($^{\circ}$ C)	Duration of Immature Life Stage (Days)			Survivorship of Immature Life Stage (%)		
	Larval	Pupal	Aggregate	Larval	Pupal	Aggregate
28.00±0.02 (Control)	$3.98\pm0.03b^{c^*}$	$3.98\pm0.03b^{c*}$	$3.98\pm0.03b^{c*}$	74.66±10.21 d ^{a**}	$91.05\pm2.80^{d}_{b}$	82.86 ± 6.50^{d}
30.00	4.01 ± 0.02^{c}	4.01 ± 0.02^{c}	4.01 ± 0.02^{c}	51.50±7.10 ° _a	$63.38\pm12.50^{\circ}_{b}$	$57.44 \pm 9.80^{\circ}$
32.00	3.60 ± 0.25^{b}	3.60 ± 0.25^{b}	3.60 ± 0.25^{b}	$28.63\pm5.98^{\ b}_{\ a}$	$44.24\pm6.70^{b}_{b}$	36.44 ± 6.34^{b}
34.00	2.70 ± 0.16^{a}	2.70 ± 0.16^{a}	2.70 ± 0.16^{a}	2.89 ±2.30 ^a _a	44.24 ± 6.70^{b} _b	3.99 ± 2.75^{a}

Note: *Values followed by same superscript alphabets, in a column, are not significantly different at p = 0.05; **Values followed by same subscript alphabets, in a row of larval and pupal survivorship, are not significantly different at p = 0.05

The survivorship of the immature mosquitoes in response to increasing temperatures is presented in Table 2. Much more than duration of development, temperature significantly (p<0.05) influenced survival rates of the immature mosquitoes. Survival rate of the aggregate immature stage showed significant decrease with every increase of about 2.00° C in water temperature (range=82.86±6.50% at $28.00\pm0.02^{\circ}$ C, to $3.99\pm2.75\%$ at 34.00° C). Similar trends of decrease in survival rates, with increasing temperature, were recorded for the larval and pupal stages with ranges of 74.66 ± 10.21 to $2.89\pm2.30\%$ and 91.05 ± 2.80 to $5.08\pm3.20\%$, respectively. The survival rates of the pupal stage were consistently higher than those of larvae, except amongst the mosquitoes cultured at the highest temperature, i.e., 34.00° C. While, survivorship of the larvae ranged from $74.66\pm10.21\%$ at Control temperature, to $2.89\pm2.30\%$ at 34.00° C, those of the pupae were 91.05 ± 2.80 to $5.08\pm3.20\%$ at respective similar temperatures.

Table 2 Effects of temperature on wing length of Culex quinquefasciatus mosquitoes exposed to different temperature regimens

Water Temperature (°C)	Wing Length (mm)					
	Left	Right	Mean			
28.00±0.02 (Control)	$3.98\pm0.03^{bc*}$	$3.98\pm0.03^{bc*}$	$3.98\pm0.03^{bc*}$			
30.00	4.01 ± 0.02^{c}	$3.98\pm0.03^{bc*}$	$3.98\pm0.03^{bc^*}$			
32.00	3.60 ± 0.25^{b}	$3.98\pm0.03^{bc*}$	3.60±0.25 ^b			
34.00	2.70 ± 0.16^{a}	2.70 ± 0.16^{a}	2.70 ± 0.16^{a}			

Note: *Values followed by same superscript alphabets, in a column, are not significantly different at P=0.05

The effects of water temperature on wing fluctuating asymmetry of *Cx. quinquefasciatus* is shown in Figure 1. The responses of length of wings of the emergent mosquitoes to temperature variation were less pronounced than those of survivorship and developmental rates, as wing length (WL) was not significantly different (p>0.05) between mosquitoes raised at the Control and 30.00°C temperatures. However, mean wing length of the mosquitoes significantly (p<0.05) reduced with increase in water temperature above 30.00°C. The fluctuating asymmetry (FA) of the wings of the mosquitoes equally increased with increase in breeding temperature; becoming more-or-less exponential at temperatures above 32.00°C (Figure 1).

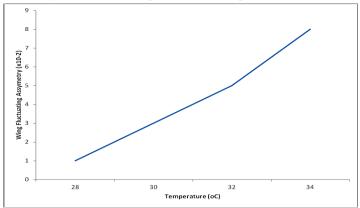


Figure 1 Effects of temperature on wing fluctuating asymmetry of *Culex quinquefasciatus* mosquitoes exposed to different temperatures

http://jmr.biopublisher.ca

3 Discussion

Water temperature significantly affected the development of the immature life stages of the *Culex quinquefasciatus* mosquitoes; with reduction in life stage duration been inversely temperature-dependent. Similar temperature-immature development relationships have been reported for other mosquito species (Rueda et al., 1990; Ribeiro et al., 2004), and were attributed to enhanced relatively higher temperature within the optimum range requirement for growth and/or development mediating enzymatic activities. Insect size has been correlated with temperature (Lyimo et al., 1992; Atkinson, 1994; Angilleta et al., 2010; Fischer et al., 2011), as higher temperatures tend to produce smaller adults. Loetti et al. (2008) observed a positive linear relationship between water-breeding temperature and developmental rates of immature *Culex hepperi* mosquitoes within the thermal tolerance range. The duration of larval development was not significantly affected at water temperatures between 30.00 and 32.00°C and, hence may be regarded as the optimum developmental temperature range for the species.

The results of this study showed that water temperature was much more impacting on survivorship of the immature stages than duration of their development, with every 2.00°C increase in temperature resulting in significant decrease in survival rate. Survival rates of the aggregate immature stage was critically low (< 4.00%) at the highest temperature, i.e., 34.00°C, tested in this study; and such survivorship may not be able to sustain occurrence of the species in an area. According to Clements (1963), enzymatic activities are seriously impaired at temperatures above the optimum and, thus, explain the near 100% mortality recorded among the immature mosquitoes exposed to 34.00 °C in this study.

Consistently, the pupal stage exhibited higher tolerance to increasing temperatures than the larvae, till 32.00°C after which they both succumbed statistically equally to 34.00°C water temperature. The significantly higher adaptability of the pupal stage to higher temperatures may be due to the fact that, unlike larvae, pupae possess much tougher integument (Hoskins, 1932; Davis, 1932), and do not ecdyse into pupal instars, during which an immature stage is surrounded by a thin, vulnerable cuticle that may be easily detrimentally impacted by high temperatures (Davis, 1932). Interestingly, there is considerable disparity between the optimal temperatures for duration of development and survivorship of the immature mosquitoes, thus, suggesting that other factors, probably endogenous, play more important roles in the development of immature mosquitoes.

The results of this study revealed that beyond 30.00°C, wing length (proxy for adult body size) of the emergent adult mosquitoes reduced significantly with increasing breeding water temperature. Since metabolic rate (i.e., histogenesis) is a limiting factor and temperature-dependent particularly in poikilotherms such as insects (Oda et al., 2002), then mosquito larvae raised in low temperatures should give rise to large adults with longer wings than their counterparts cultured in higher temperature. This fact, probably, explain the significantly smaller adult mosquitoes from breeding water media maintained at the relatively higher temperatures of 32.00 and 34.00°C in mosquitoes, reduced adult body size (i.e., wing length) is associated with impaired ecological adaptability, low

http://jmr.biopublisher.ca

fecundity and, hence, reduced vectorial potential (Briegel 1990a; 1990b). Ptero-deficiency also manifested in the fluctuating asymmetry of the wings with increasing temperature, thus, further confirming the vectorial fitness liability incurred by immature mosquitoes raised in relatively high temperatures.

4 Conclusions

The findings of this study have provided further evidence of the limiting-potentials of breeding water temperature against population development, ecological adaptability and vectorial fitness of *Culex quinquefasciatus* mosquitoes. Though, increasing water temperature enhanced the rate of immature development, by significantly shortening the duration of larval and pupal stages, this metabolic gain was effectively neutralized by the set-back manifested as critical reduction in survivorship, production of relatively smaller mosquitoes with its consequent ecological liabilities, and pronounced vectorial ptero-misfitness. It, therefore, seems that *Cx. quinquefasciatus* may be poorly adapted to relatively warm ecological zones, and this information should help in developing effective environmental mosquito-vector control against the species by discouraging ecological settings (such as adjourning vegetation, increased wind flow, etc) that may reduce micro-climatic temperatures around breeding habitats of the mosquito species.

Authors' Contributions

Conceived and designed the experiment: **OIK** and **UAC**. Analysed the data: **OIK**. Wrote the first draft of the manuscript: **OIK** and **VO**. Contributed to the writing of the manuscript: **UAC**, and **JAI**. Agree with manuscript results and conclusion: **OIK**, **VO**, **UAC**, and **JAI**. Jointly developed the structure and arguments for the paper: **OIK**, **VO**, **UAC**, and **JAI**. Made critical revisions and approved final version: all authors. All authors reviewed and approved of the final manuscript.

Acknowledgements

We wish to acknowledge the Management and Staff of Entomological Unit of Department of Biological Sciences, for the use of the laboratory equipment for the successful completion of the study. We also wish to acknowledge Laboratory Technologists for their immense co-operation in the extraction processes.

References

Armbruster P., and Hutchinson R.A., 2002, Pupal mass and wing length as indicators of fecundity in *Aedes albopictus* and *Aedes geniculatus* (Diptera: Culicidae), Journal of Medical Entomology, 39:699–704

https://doi.org/10.1603/0022-2585-39.4.699

PMid:12144308

Angilletta M.J., Huey, R.B., and Frazier M.R., 2010, Thermodynamic effects on organismal performance: is hotter better? Physiology, Biochemistry, and Zoology, 83, 197–206

https:/doi.org/10.1086/648567

PMid:20001251

Atkinson D., 1994, Temperature and organism size – A biological laws for ecotherms? Advances in Ecological Research, 25: 1-58 https://doi.org/10.1016/S0065-2504(08)60212-3

Briegel H., 1990a, Fecundity, metabolism, and body size in *Anopheles* (Diptera: Culicidae), vectors of malaria, Journal of Medical Entomology, 27:839–850 https://doi.org/10.1093/jmedent/27.5.839

Briegel H., 1990b, Metabolic relationship between female body size, reserves, and fecundity of *Aedes aegypti*, Journal of Insect Physiology, 36:165–172 https://doi.org/10.1016/0022-1910(90)90118-Y https://doi.org/10.1371/journal.pone.0058824

 $\underline{https:}/\underline{doi.org/10.1016/0022} - 1910(90)90118 - Y$

Carrington L.B., Armijos M.V., Lambrechts L., Barker C.M., and Scott T.W., 2013, Effects of fluctuating daily temperatures at critical thermal extremes on *Aedes aegypti* life-history traits, PLoS ONE, 8(3): e58824. doi: 10.1371/journal.pone.0058824

https://doi.org/10.1371/journal.pone.0058824

Carter Centre, 2008. Lymphatic filariasis elimination program. Available on: http://www.cartercenter.org/health/lf/index.html

Christophers S.R., 1960, Aedes aegypti (L.) the yellow fever mosquito: its life history, bionomics and structure, Cambridge University Press, page 750

Clements A.N., 1963, The physiology of mosquitoes, Pergamon Press Ltd., page 392

 $Clements\ A.N.,\ 1992,\ The\ biology\ of\ mosquitoes,\ Vol.\ I.\ Development,\ Nutrition\ and\ Reproduction.\ London:\ Chapman\ \&\ Hall\ A.N.,\ Production\ A.N.,\$

Curtis C.E., 1996, Control of malaria vectors in Africa and Asia

 $\underline{http://ipmworld.umn.edu/chapters/curtiscf.html}$

Davis N.C., 1932, The effect of heat and cold upon Aedes (Stegomyia) aegypti, American Journal of Hygiene 1932, 16:177-191

http://jmr.biopublisher.ca

Dodson B.L., Kramer L.D., and Rasgon J.L., 2012, Effects of larval rearing temperature on immature development and West Nile virus vector competence of *Culex tarsalis*, Parasites and Vectors, 5:199

https:/doi.org/10.1186/1756-3305-5-199

PMid:22967798 PMCid:PMC3480948

Fischer K., Koelzow N., Hoeltje H., and Karl I., 2011, Assay conditions in laboratory experiments: Is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia, 166, 23–33

https://doi.org/10.1007/s00442-011-1917-0

PMid:21286923

Hoskins W.M., 1932, Toxicity and permeability. I. The toxicity of acid and basic solutions of sodium arsenite to mosquito pupae, Journal of Economic Entomology, 25, 1212-1224

https://doi.org/10.1093/jee/25.6.1212

Loetti M.V., Nora E.B., Paula P., and Schweigmann N., 2008, Effect of temperature on the development time and survival of preimaginal *Culex hepperi* (Diptera: Culicidae), Revolutionary Society of Entomology, 67 (3-4):79-85

Loetti V., Nicolas S., and Burronia N., 2011, Development rates, larval survivorship and wing length of *Culex pipiens* (Diptera: Culicidae) at constant temperatures, Journal of Natural History. 45 Nos. 35–36, 2207–2217

Lounibos L.P., Nishimura N., Conn J., and Lourenco-de-oliveira R., 1995, Life history correlates of adult size in the malaria vector *Anopheles darlingi*, Mem Inst Oswaldo Cruz, 90:769–774

https://doi.org/10.1590/S0074-02761995000600020

PMid:8731375

Lyimo E.O., Takken W. and Koella J.C., 1992, Effect of rearing temperature and larval density on larval survival, age at pupation, and adult size of Anopheles gambia, Entomologia Experimentalis et Applicata, 63: 265–271

https://doi.org/10.1111/j.1570-7458.1992.tb01583.x

Michael E., and Bundy D.A.P., 1997, Global mapping of lymphatic filariasis, Parasitology Today, 13:471-476

https://doi.org/10.1016/S0169-4758(97)01151-4

Mourya D.T., Yadav P., and Mishra A.C., 2004, Effect of temperature stress on immature stages and susceptibility of *Aedes aegypti* mosquitoes to chikungunya virus, American Journal of Tropical Medicine and Hygiene, 70(4):346-350

Mpho M., Callaghan A., and Holloway G.J., 2002a, Effects of temperature and genetic stress on life history and fluctuating wing asymmetry in *Culex pipiens* mosquitoes, European Journal of Entomology, 99:405–412

https://doi.org/10.14411/eje.2002.050

Mpho M., Callaghan A., and Holloway G.R., 2002b, Temperature and genotypic effects on life history and fluctuating asymmetry in a field strain of *Culex* pipiens, Heredity, 88:307-312

https://doi.org/10.1038/sj.hdy.6800045

PMid:11920140

Mpho M., Holloway G.R., and Callaghan A.A., 2001, Comparison of organophosphate insecticide exposure and temperature stress on fluctuating asymmetry and life history traits in *Culex quinquefasciatus*, Chemosphere, 45:713-720

 $\underline{https:\!/doi.org/10.1016/S0045\text{-}6535(01)00140\text{-}0}$

Mukhopadhyay A.K., Pathaik S.K., Satya B.P., and Rao K.N.M.B., 2008, Knowledge on lymphatic filariasis and mass drug administration (MDA) programme in filaria endemic districts of Andhra Pradesh, India, Journal of Vector Borne Diseases, 45; 73–75

PMid:18399322

Oda T., Eshita Y., Uchida K., Mine M., Eshita Y., Kurokawa K., Ogawa Y., Kato K., and Tahara H., 2002, Reproductive activity and survival of *Culex pipiens* pallens and *Culex quinquefasciatus* (Diptera: Culicidae) in Japan at high temperature, Journal of Medical Entomology, 39:185–190

https://doi.org/10.1603/0022-2585-39.1.185

PMid:11931255

Olayemi I.K., Maduegbuna E.N., Ukubuiwe A.C., and Chukwuemeka V.I., 2012, Laboratory studies on developmental responses of the filarial vector mosquito, *Culex pipiens pipiens* (Diptera: Culicidae), to Urea fertilizer, Journal of Medical Sciences. doi: 10.3923/jms/2012

Pfadt R.E., 1978, Fundamental of Applied Entomology. 4th ed, Macmillan Publishing Company, New York. Page 1

Ribeiro P.B., Costa P.R.P., Loeck A.E., Vianna E.E.S., and Silveira Jr.P., 2004, Exigências térmicas de *Culex quinquefasciatus* (Diptera, Culicidae) em Pelotas, Rio Grande do Sul, Brasil. Iheringia, Série Zoologica, 94:177–180

Rueda L.M., Patel K.J., Axtella R.C., and Stinner R.E., 1990, Temperature-dependent development and survival rates of *Culex quinquefasciatus* and *Aedes aegypti* (Diptera: Culicidae), Journal of Medical Entomology 1990; 27:892–898

https://doi.org/10.1093/jmedent/27.5.892

PMid:2231624

Secil A.A., Murat A., and Bulent A., 2009, Effect of different larval rearing temperatures on the productivity (Ro) and morphology of the malaria vector Anopheles superpictus Grassi (Diptera: Culicidae) using geometric morphometrics, Journal of Vector Ecology, 34 (1):32-42

 $\underline{https:}/\underline{doi.org/10.1111/j.1948-7134.2009.00005.x}$

PMid:20836803

http://jmr.biopublisher.ca

Sibly R.M., and Atkinson D., 1994, How rearing temperature affects optimal adult size in ecotherms, Functional Ecology, 8:486-493 https://doi.org/10.2307/2390073

Sichangi K., Florence O., Wamaec C., and Charles M., 2009, Seasonal changes of infectivity rates of Bancroftian filariasis vectors in coast province, Kenya. Journal of Vector Borne Diseases, 46, pp. 219–224

Smith S., 2006, Blood and tissue dwelling nematodes. Lecture delivered 12 April. Human Biology 103, Parasites and Pestilence: Infectious Public Health Challenges, Stanford University, Spring. Page 79

Terranella A., Eigege A., Gontor I., Dagwa P., Damishi S., and Richards F.O., 2006a, Urban lymphatic filariasis in central Nigeria, Annals of Tropical Medicine and Parasitology, 100(2):163-172

https:/doi.org/10.1179/136485906X86266

PMid:16492364

Terranella A., Eigege A., Jinadu M.Y., Miri E., and Richards F.O., 2006b, Urban lymphatic filariasis in central Nigeria, Annals of Tropical Medicine and Parasitology, 100(1):1-10

https:/doi.org/10.1179/136485906x86266

Ukubuiwe A.C., Olayemi I.K. and Jibrin A.I., 2016, Genetic variations in bionomics of *Culex quinquefasciatus* (Diptera: Culicidae) Mosquito Population in Minna, North Central Nigeria, International Journal of Insect Science 2016:8 1–7 http://scialert.net/abstract

Ukubuiwe A.C., Olayemi I.K., Omalu I.C.J., Jibrin A., and Oyibo-usman K., 2013, Molecular bases of reproductive and vectorial fitness of *Culex pipiens pipiens* (Diptera: Culicidae) mosquito populations, for the transmission of filariasis in North Central Nigeria, Journal of Medical Sciences, 13(3): 201-201 JMS (ISSN 1682-4474)/doi: 10.3923/jms.2013.201.207

https://doi.org/10.3923/jms.2013.201.207

Wayne J.C., 2010, Mosquito Research & Control, Rutgers University. Available at http://www.rci.rutgers.edu/~insects/cxpip.html

World Health Organization, 1975, Manual on practical entomology in malaria, part II. Methods and technique, World Health Organisation Offset Publication, 13, Geneva

World Health Organization, 2004, Community participation and tropical disease control in resource-poor settings, TDR/STR/SEB/ST/04.1

Reasons to publish in BioPublisher

A BioScience Publishing Platform

- ★ Peer review quickly and professionally
- ☆ Publish online immediately upon acceptance
- ★ Deposit permanently and track easily
- ☆ Access free and open around the world
- ★ Disseminate multilingual available

Submit your manuscript at: http://biopublisher.ca

