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Abstract 
The focus of this paper is to examine the problem of controlling spread of infectious 
diseases through the use of Vaccines, quarantine and Treatment. Through the use of 
Pontryagin’s maximum principle, we were able to ascertain the existence of the control 
systems. We also apply optimal control theory to minimizing the spread of infection in a 
population; the optimality was measured by the minimization of the probability of infectious 
individuals and maximization of the recovered individuals. 
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Introduction 
Epidemiologist and Health workers all over the world are always seeking a way to eradicate 
infectious diseases in a given population. It has been noted that if proper and timely steps 
are taken in the course of an outbreak of a disease, eradication is possible. Notable ways of 
preventing or eradicating an infection include but not limited to (i) vaccination (ii) 
enlightenment campaign (iii) treatment etc. 
 
Optimal control theory and its applications to models were first proposed by Pontryagin in 
the 1950s and improved on by Pontryagin et al (1986). Recently his work has been 
extended and used to make decisions in epidemiological models. 
 
Optimal control theory is a useful tool that can be used to control the spread of a disease for 
which vaccine and /or treatment are available;   see Yusuf and Benyah (2012), Zaman et al 
(2007), Zaman et al (2008) and Zaman et al (2009) for examples. The authors of 
aforementioned articles concentrated on the use of SIR models and they either applied 
optimal vaccination alone or with treatment, but in this study we applied the theory to a 
MSEIR model with standard incidence and we included quarantine as a control variable. The 
derivation and analysis of the MSEIR model used in this work can be found in Bolarin 
(2014). 
 
Optimal Control 
Optimal Vaccination 
We consider the control variable max( )u t U∈  to be the percentage of susceptible individuals 
being vaccinated per unit time. Here, 
 max { | ( ) is lebesque measurable, 0 ( ) 0.87,  [0, ]}.U u u t u t t T= ≤ ≤ ∈   
 
Now we consider an optimal control problem to minimize the objective functional 
 

2
1 2 3 4

0

1( ) ( ) ( ) ( ) ( ) ( )
2

T

J u AM t A S t A E t A I t u t dtκ = + + + +  ∫                             (1.1) 
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(1.2)

 

( 1, 2,3,4)iA i =  are small positive constants to keep a balance in the size of 
( ), ( ), ( ) and ( )M t S t E t I t  respectively. κ  is a positive weight parameter such that 0 Nκ< <  

which is associated with the control ( )u t  . In this work, what we intend to do is to minimize 
the ( ), ( ), ( ) and ( )M t S t E t I t  classes and to maximize the total number of recovered class 

( )R t  using possible minimal control variable ( )u t . 
 
First, we show the existence for the control system (1.2). Let ( ), ( ), ( ) and ( )M t S t E t I t  be 
state variables with control variable ( )u t . For existence, we consider a control system (1.2) 
with initial conditions. We rewrite (1.2) in the following form: 
   
    ( )t A Fφ φ φ= +                                                                                       (1.3) 
 
 
 

where 

( ) ( )                            0            0                     0
( )                  ( ( ))      0            0                      
( ) ;         0       
( )
( )

M t

S t u t

E t A

I t

R t

δ α µ
δ µ α ρ

φ

− + − 
  − − 
 = =
 
 
  

             0           ( )       0                      0
     0                    0                        ( )          0
     0                   ( )             0                       u t

ε α
ε γ α ϕ

γ

− +

− + +

      ( )ρ α

 
 
 
 
 
 
 − + 
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and ( )

0
0

K

SI

N

SI
F

N

β

β
φ

 
 − 
 
 

=  
 
 
 
 
  

  

and tφ  denotes the derivates of φ  with respect to time t. (1.3) is a non-linear system with a 
bounded coefficient. We set 

( ) ( )G A Fφ φ φ= +                                                                            (1.4) 
 
The second term on the right hand side of (1.4) satisfies; 

1 2 1 2 1 2 1 2 1 2| ( ) ( ) | (| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) ( ) |)F F D M t M t S t S t E t E t I t I tφ φ− ≤ − + − + − + −   where 
the positive constant D is independent of the state variables ( ), ( ), ( ) and ( ) ( )M t S t E t I t N t≤ . 
Moreso, 

1 2 1 2| ( ) ( ) | | |G G Lφ φ φ φ− ≤ −  where max{ , }L D A= < ∞  . So it follows that G is uniformly 
Lipschitz continuous. 
 
Following the argument to Birkhoff and Rota (1986), from definition of the control ( )u t  and 
the restriction on ( ), ( ), ( ), ( ) and ( ) 0M t S t E t I t R t ≥ , we see that the solution of the system 
(1.3) exists. 
 
In order to find the optimal solution of our control problems (1.1) and (1.2) we first find the 
lagrangian and Hamiltonian for the optimal control problem. 
The lagrangian is given by; 

2
1 2 3 4

1( , , , , ) ( ) ( ) ( ) ( ) ( )
2

L M S E I u AM t A S t A E t A I t u tκ= + + + +                                     (1.5) 

What we seek is the minimal value of (1.5). So we define the following Hamiltonian Η  for 
the control problem in order to achieve this. 

1 2 3 4 5 1 2 3

4 5

( ) ( ) ( )( , , , , , , , , , , , ) ( , , , , ) ( ) ( ) ( )

( ) ( )                                                             ( ) ( )

dM t dS t dE t
M S E I R u t L M S E I u t t t

dt dt dt

dI t dR t
t t

dt dt

λ λ λ λ λ λ λ λ

λ λ

Η = + + + 

+


(1.6) 

 
Theorem 1 
There exists an optimal control *( )u t  such that *( ( )) min ( ( ))J u t J u t=  subject to the control 
(1.2) with initial conditions. 
 
Proof: 
We will use the result in Lukes (1982) to prove the existence of an optimal control. The 
control and the state variables are positive. In this minimizing problem, the necessary 
convexity of the objective functional in ( )u t  is satisfied. The control space 

max { | ( ) is lebesque measurable and 0 ( ) 0.87,  [0, ]}U u u t u t t T= ≤ ≤ ∈  is also convex and 
closed by definition. The optimal system is bounded which is the condition for compactness 
needed for the existence of the optimal control. 
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More so, the integral in the functional 2
1 2 3 4

1( ) ( ) ( ) ( ) ( )
2

AM t A S t A E t A I t u tκ+ + + +  is convex 

on the control ( )u t  . Lastly there exist a constant 1v >  , positive numbers 1 2 and ω ω  such 
that 

2 2
2 1( ( )) (| ( ) | )

v

J u t u tω ω≥ +   which completes the existence of an optimal control.  
Now to find the optimal solution, we apply the Pontryagin’s maximum principle as applied in 
Lenhart and John (2007) and Morton and Nancy (2000) to the Hamiltonian. 

( , ( ), ( ), ( )) ( , ( ), ( )) ( ) ( , ( ), ( ))H t x t u t t f t x t u t t g t x t u tλ λ= +                                     (1.7) 
Lemma 1 (Zaman et al, 2008) 
If * *( ( ), ( ))x t u t  is an optimal solution of an optimal control problem, then there exists a non-
trivial vector function 1 2( ) ( ( ), (2),... ( ))nt t tλ λ λ λ=  satisfying the following inequalities: 

* *

* *

* *
'

( , ( ), ( ), ( )) ,

( , ( ), ( ), ( ))0 ,

( , ( ), ( ), ( ))( )

dx H t x t u t t

dt

H t x t u t t

u

H t x t u t t
t

x

λ
λ

λ

λ
λ

∂
= ∂ 
∂ 

= 
∂ 

∂
= ∂ 

                                                                          (1.8) 

It follows from the derivation above that, 
*

*

*

0    0

0 0.87    0

0.87     0

H
u if

u

H
u if

u

H
u if

u

∂ = < ∂


∂ 
≤ ≤ = 

∂ 
∂ 

= > ∂ 

                                                                                  (1.9) 

Now we apply the necessary conditions to the Hamiltonian (1.7). 
 
Theorem 2 
Let * * * * *( ), ( ), ( ), ( ) and ( )M t S t E t I t R t  be the optimal state solutions with associated optimal 
control variable *( )u t  for the optimal control (1.1) and (1.2). Then there exist adjoint 
variables 1 2 3 4 5, , ,  and λ λ λ λ λ  satisfying  

( )

( )

( )

( ) ( )

( )

'
1 1 2 1 1

*
' *
2 1 2 5 2 2 5 2

'
3 3 4 3 3

*
'
4 2 3 4 5 4

'
5 5 2 5

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( )
( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) (

t t t t A

I t
t t t t t t t u t A

N t

t t t t A

S t
t t t t t A

N t

t t t t

λ λ λ δ αλ

β
λ µλ λ λ α µ λ λ λ

λ ε λ λ αλ

β
λ λ λ γ α ϕ λ γλ

λ λ λ ρ αλ

= − + −

= + − + − + − −

= − + −

= − + + + − −

= − + )













            (1.10) 

with transversality conditions, 
( ) 0       1, 2,3,4,5i T iλ = =                                                                                    (1.11) 

Furthermore, the optimal control *( )u t  is given as 



Journal of Science, Technology, Mathematics and Education (JOSTMED), 13(1), March, 2017 
 

145 
 

*
* 2 5( )( ( ) ( ))( ) max min ,0.87 ,0S t t t

u t
λ λ
κ

  − 
=    

   
                                                  (1.12) 

 
Proof: 
To determine the adjoint equations and the transversality conditions we use the Hamiltonian 
(1.6). By setting * * * * *( ) ( ), ( ) ( ), ( ) ( ), ( ) ( ) and ( ) ( )M t M t S t S t E t E t I t I t R t R t= = = = =  and 
differentiating the Hamiltonian (1.7) with respect to ( ), ( ), ( ), ( ) and ( )M t S t E t I t R t  we 
obtain, 

( )

( )

( )

( ) ( )

'
1 1 2 1 1

*
' *
2 1 2 5 2 2 5 2

'
3 3 4 3 3

*
'
4 2 3 4 5 4

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( )
( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )
( )

H
t t t t A

M

H I t
t t t t t t t u t A

S N t

H
t t t t A

E

H S t
t t t t t A

I N t

λ λ λ δ αλ

β
λ µλ λ λ α µ λ λ λ

λ ε λ λ αλ

β
λ λ λ γ α ϕ λ γλ

λ

−∂
= = − + −
∂
−∂

= = + − + − + − −
∂

−∂
= = − + −

∂
−∂

= = − + + + − −
∂

( )'
5 5 2 5( ) ( ) ( ) ( )H
t t t t

R
λ λ ρ αλ

−∂
= = − +

∂

  

Using the optimality conditions, we have 
* * *

2 5

* *
2 5

( ) ( ) ( ) ( ) 0

( ) ( )( ( ) ( ))

H
u S t t S t t

u

u t S t t t

κ λ λ

κ λ λ

∂
= − + =

∂
⇒ = −

  

which gives 
*

* 2 5( )( ( ) ( ))( ) S t t t
u t

λ λ
κ

−
=                                                                                   (1.13) 

 
from (1.9) and (1.13) we have 

*
2 5

* *
* 2 5 2 5

*
2 5

( )( ( ) ( ))0                                    if 0

( )( ( ) ( )) ( )( ( ) ( ))( ) ,     if 0 0.87

( )( ( ) ( ))0.87                              if 0.87

S t t t

S t t t S t t t
u t

S t t t

λ λ
κ

λ λ λ λ
κ κ

λ λ
κ

 −
≤


− −

= < <

 −

≥


  

It can be rewritten in the following form 
*

* 2 5( )( ( ) ( ))( ) max min ,0.87 ,0S t t t
u t

λ λ
κ

  − 
=    

   
  

The characterization of the optimal control is given by (1.12). 
To obtain the optimal control and state we solve the optimality system consisting of the 
state system (1.2) with boundary conditions, the adjoint systems (1.10) and (1.11) and the 
characterization of the optimal control (1.12). 
By substituting the values of *( )u t in the control system we get the following system 
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*
* *

** * *
* * * 2 5

* * *
*

*
* *

*

( ) ( ) ( ) ( )

( )( ( ) ( ))( ) ( ) ( ) ( ) ( ) ( ) ( ) max min ,0.87 ,0

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

dM t
K M t S t

dt

S t t tdS t S t I t
M t S t S t R

dt N

dE t S t I t
E t

dt N

dI t
E t I t

dt

dR t

d

δ α µ

λ λβ
δ µ α ρ

κ

β
ε α

ε γ α ϕ

= − + −

   − 
=− + + − − +         

= − +

= − + +

*
* * * 2 5( )( ( ) ( ))( ) ( ) ( ) ( ) max min ,0.87 ,0S t t t
I t R t S t

t

λ λ
γ ρ α

κ














   − 

= − + +            

(1.14) 

 
 
 
with the Hamiltonian *H  at * * * * * *

1 2 3 4 5( , , , , , , , , , , , )t M S E I R u λ λ λ λ λ  
  

2
*

* * * * * 2 5

* *
* *

*
* * * 2 5

1 2

( )( ( ) ( ))1( ) ( ) ( ) ( ) max min ,0.87 ,0
2

( ) ( ) ( ) ( ) ( )

( )( ( ) ( ))        ( ) ( ) ( ) ( ) ( ) ( ) max min

S t t t
H M t S t E t I t

S t I t
M t S t

N

S t t t
t K M t S t t S t

λ λ
κ

κ

β
δ µ α

λ λ
λ δ α µ λ

κ

    −  = + + + +            

− + + −

−
 + − + − + − 

* *
* * *

3 4

*
* * * 2 5

5

,0.87 ,0

( ) ( )        ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ( ) ( ))        ( ) ( ) ( ) ( ) ( ) max min ,0.87 ,

R

S t I t
t E t t E t I t

N

S t t t
t I t R t S t

ρ

β
λ ε α λ ε γ α ϕ

λ λ
λ γ ρ α

κ

 
 
 
     

           
 + 
  

 
 + − + + − + +   

 

 −
+ − + +  

 
0


















                

(1.15) 
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Optimal Vaccination and Treatment 
We define our objective functional as; 

2 2
1 2 3 4 1 1 2 2

0 0

1

2

1( ) [ ( ) ( ) ( ) ( )] ( )
2

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( )) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( (

T T

J u AM t A S t A E t A I t dt C u C u dt

subject to

dM t
K M t S t

dt

dS t S t I t
M t u t S t R t

dt N t

dE t S t I t
E t

dt N t

dI t
E t u

dt

δ α µ

β
δ µ α ρ

β
ε α

ε γ α ϕ

= + + + + +

= − + −

= − + + − − +

= − +

= − + + +

∫ ∫

1 2

)) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

t I t

dR t
I t u t S t u t I t

dt
γ ρ α= − + + +

                            (1.16) 

where 
( ){ }1 2 1 1max 2 2max( ), ( ) | 0 1,0 1, [0, ]U u t u t u u u u t T= ≤ ≤ ≤ ≤ ≤ ≤ ∈                                   (1.17) 

 
and it is measurable in lebesque sense. 

  1, 2,3, 4iA for i =  are small positive constant to keep a balance in the size of our 
compartments.  
 

1 2 and C C  are the relative weights attached to the cost of the interventions. 1 2 and u u  are 
proportions of vaccinated susceptible and treated infected respectively. 
 
Following the approach above we have; 
For existence: 

  ( ), ( ), ( ) and ( )Let M t S t E t I t  be the state variables with a control variable u  (as given in 
1.17). For existence we consider a control system (1.16) with initial conditions. We can 
rewrite (1.16) in the following form 
 

( )t A Fφ φ φ= +                                                                             (1.18) 
Where 

 
( )

( )
( ) ;

( )
( )

M t

S t

E t

I t

R t

φ

 
 
 
 =
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( )                            0            0                     0
                 ( ( ))      0            0                      

      0                    0           ( )       0  
u t

A

δ α µ
δ µ α ρ

ε α

− + −

− −

= − +

2

2

                    0
     0                    0                        ( )          0
     0                   ( )             0              ( )               ( )

u

u t u

ε γ α ϕ

γ ρ α

 
 
 
 
 

− + + + 
 + − +   

( )

0
0

K

SI

N

SI
F

N

β

β
φ

 
 − 
 
 

=  
 
 
 
 
    

and tφ  denote the derivative of φ  with respect to time t. As we know (1.18) is a non-linear 
system with a bounded coefficient. Now we have 

( ) ( )G A Fφ φ φ= +                                                                            (1.19) 
 
The second term on the RHS of (1.19) satisfies 

( )1 2 1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )F F L M t M t S t S t E t E t I t I tφ φ− ≤ − + − + − + −  where L 
(positive constant) is independent of the state variable ( ), ( ), ( ) and ( ) ( )M t S t E t I t N t≤  . 
 
More so, 

1 2 1 2( ) ( )  where  H max{ , }G G H L Kφ φ φ φ− ≤ − =  with restriction on  
 

( ), ( ), ( ), ( ) and ( ) 0M t S t E t I t R t ≥  and the definition of u  , we can see that the solution of 
the system (1.16) exists and G is uniformly Lipschitz continuous. 
 
To find the optimal solution of (1.16) and (1.17) we find the Lagrangian and Hamiltonian for 
the optimal control problem. 
 
The Lagrangian is given by, 

2 2
1 2 3 4 1 1 2 2

1( , , , , ) ( ) ( ) ( ) ( )
2

L M S E I U AM t A S t A E t A I t C u C u= + + + + +                          (1.20) 

We seek the minimal value of (1.20). So we define the following Hamiltonian H for the 
control problem. 

1 2 3 4 5 1 2 3

4 5

( ) ( ) ( )( , , , , , , , , , , , ) ( , , , , ) ( ) ( ) ( )

( ) ( )                                                             ( ) ( )

dM t dS t dE t
M S E I R u t L M S E I u t t t

dt dt dt

dI t dR t
t t

dt dt

λ λ λ λ λ λ λ λ

λ λ

Η = + + + 

+
 (1.21) 

Theorem 3 
Let  * * * * *( ), ( ), ( ), ( ) and ( )M t S t E t I t R t  be optimal state solutions with associated optimal 
control pair * *

1 2( ) and ( )u t u t  for the optimal control problem (16) and (17) then there exists 
an adjoint variables 1 2 3 4 5, , ,  and λ λ λ λ λ  which satisfy: 
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( )

( )

( )

( ) ( )

'
1 1 2 1 1

*
' *
2 1 2 5 2 2 5 1 2

'
3 3 4 3 3

*
'
4 2 3 4 5 4

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( )
( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) (
( )

H
t t t t A

M

H I t
t t t t t t t u t A

S N t

H
t t t t A

E

H S t
t t t t

I N t

λ λ λ δ αλ

β
λ µλ λ λ α µ λ λ λ

λ ε λ λ αλ

β
λ λ λ λ λ γ α ϕ λ λ

−∂
= = − + −
∂
−∂

= = + − + − + − −
∂

−∂
= = − + −

∂
−∂

= = − + − + + +
∂

( )

*
4 5 2 4

'
5 5 2 5

)

( ) ( ) ( ) ( )

u A

H
t t t t

R

λ

λ λ λ ρ αλ












− − 

−∂

= = − + ∂ 

 (1.22) 

with transversality conditions ( ) 0   1, 2,3,4,5i T iλ = =  (1.23) 
Further more, the optimal control * *

1 2( , )u u u=  is given as 
*

* 2 5
1 1max

1

*
* 4 5
2 2max

5

( )( ( ) ( ))( ) max min 0, , ,0

( )( ( ) ( ))( ) max min 0, , ,0

S t t t
u t u

C

I t t t
u t u

C

λ λ

λ λ

  − 
=    

    


  − =    
   

(1.24)
 

 
Proof: 
From (21) our Hamiltonian is given as 

( )

( ) ( )

1 1 2 2 1 2 3 4 1

2 1 3

4 2 5 1 2

1 ( ) ( ) ( ) ( ) ( ( ) ( ) ( ))
2

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

C u C u AM t A S t A E t A I t A M t S t

S t I t S t I t
M u S t R t E t

N N

E t u I t I t R t u S t u I t

λ δ α µ

β β
λ δ µ α ρ λ ε α

λ ε γ α ϕ λ γ ρ α

+ + + + + + − + −

−   + + + − − + + − +   
   

+ − + + + + − + + +

  

So from the third equation of system (8) and by setting * *( ) ( ), ( ) ( ),M t M t S t S t= =   
* * *( ) ( ), ( ) ( ) and ( ) ( )E t E t I t I t R t R t= = =  we have 

( )

( )

( )

( ) ( )

'
1 1 2 1 1

*
' *
2 1 2 5 2 2 5 1 2

'
3 3 4 3 3

*
'
4 2 3 4 5 4

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( )
( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) (
( )

H
t t t t A

M

H I t
t t t t t t t u t A

S N t

H
t t t t A

E

H S t
t t t t

I N t

λ λ λ δ αλ

β
λ µλ λ λ α µ λ λ λ

λ ε λ λ αλ

β
λ λ λ λ λ γ α ϕ λ λ

−∂
= = − + −
∂
−∂

= = + − + − + − −
∂

−∂
= = − + −

∂
−∂

= = − + − + + +
∂

( )

*
4 5 2 4

'
5 5 2 5

)

( ) ( ) ( ) ( )

u A

H
t t t t

R

λ

λ λ λ ρ αλ












− − 

−∂

= = − + ∂ 

 

Now the Hamiltonian is maximized with respect to controls at the optimal control pair. 
So by optimality conditions, we have 

1 2

0 and 0H H

u u

δ δ
= =   
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1 1 2 5

2 2 4 5

( ) ( ) 0
( ) ( ) 0

C u S t S t

C u I t I t

λ λ

λ λ

− + = 
⇒ 

− + = 
        (1.25) 

which gives 
2 5

1
1

4 5
2

2

( ) ( )

( ) ( )

S t
u

C

I t
u

C

λ λ

λ λ

− = 


− =


         (1.26) 

by setting * * * *
1 1 2 2( ) ( ), ( ) ( ), ( ) ( ) and ( ) ( )u t u t u t u t S t S t I t I t= = = =  , from (25) we have 

*
* 2 5
1

1
*

* 4 5
2

2

( ) ( )

( ) ( )

S t
u

C

I t
u

C

λ λ

λ λ

−
= 




− = 

 

So if we impose the bounds 1 1max 2 2max0  and 0  u u u u≤ ≤ ≤ ≤ , in compact form we have 
*

* 2 5
1 1max

1

*
* 4 5
2 2max

5

( )( ( ) ( ))( ) max min 0, , ,0

( )( ( ) ( ))( ) max min 0, , ,0

S t t t
u t u

C

I t t t
u t u

C

λ λ

λ λ

  − 
=    

    


  − =    
   

. 

So we have (16) and (22) as our resulting optimality system. 
 
Quarantine, Vaccination and Treatment 
We now consider an additional optimality parameter, quarantine. 
 
Define the objective function as: 

2 2 2
1 2 3 4 1 1 2 2 2 2

0 0

1( ) [ ( ) ( ) ( ) ( )] ( )
2

T T

J u AM t A S t A E t A I t dt C u C u C u dt= + + + + + +∫ ∫  

1

2

1 2 3

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( )) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

subject to

dM t
K M t S t

dt

dS t S t I t
M t u t S t R t

dt N t

dE t S t I t
E t

dt N t

dI t
E t u t I t

dt

dR t
I t u t S t u t I t u R t

dt

δ α µ

β
δ µ α ρ

β
ε α

ε γ α ϕ

γ ρ α

= − + −

= − + + − − +

= − +

= − + + +

= − + + + +

  (1.27) 

 
where 

( ){ }1 2 3 1 1max 2 2max 2 2max( ), ( ) , ( ) | 0 1,0 1,0 1, [0, ]U u t u t u t u u u u u u t T= ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ∈ (1.28) 
  1, 2,3, 4iA for i =  are small positive constant to keep a balance in the size of our 

compartments.  
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1 2 3,  and C C C  are the relative weights attached to the cost of the interventions. 1 2 3,  and u u u  

are proportions of vaccinated susceptible, quarantine exposed and treated infected 
respectively. 
 
Similarly, we can show the existence for the optimality system by following the reasoning 
above. 
 
To find the optimal solution of (1.27) and (1.28) we find the Lagrangian and Hamiltonian for 
the optimal control problem. 
 
The Lagrange is given by 

2 2 2
1 2 3 4 1 1 2 2 3 3

1( , , , , ) ( ) ( ) ( ) ( )
2

L M S E I U AM t A S t A E t A I t C u C u C u= + + + + + +
(1.29) 

We seek the minimal value of (1.29), so we define the following Hamiltonian H for the 
control problem. 

 

1 2 3 4 5 1 2 3

4 5

( ) ( ) ( )( , , , , , , , , , , , ) ( , , , , ) ( ) ( ) ( )

( ) ( )                                                             ( ) ( )

dM t dS t dE t
M S E I R u t L M S E I u t t t

dt dt dt

dI t dR t
t t

dt dt

λ λ λ λ λ λ λ λ

λ λ

Η = + + + 

+
 (1.30) 

Theorem 4 
Let  * * * * *( ), ( ), ( ), ( ) and ( )M t S t E t I t R t  be optimal state solutions with associated optimal 
control pair * *

1 2( ) and ( )u t u t  for the optimal control problem (1.16) and (1.17) then there 
exists an adjoint variables 1 2 3 4 5, , ,  and λ λ λ λ λ  which satisfy: 

( )

( )

( )

( )

'
1 1 2 1 1

*
' *
2 1 2 5 2 2 5 1 2

' *
3 3 4 3 3 5 2 3

*
'
4 2 3

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( )) ( )
( )

( ) ( ) ( ) ( ) ( ( ) ( )) ( )

( )( ) ( ) ( )
( )

H
t t t t A

M

H I t
t t t t t t t u t A

S N t

H
t t t t t t u t A

E

H S t
t t t

I N t

λ λ λ δ αλ

β
λ µλ λ λ α µ λ λ λ

λ ε λ λ αλ λ λ

β
λ λ λ

−∂
= = − + −
∂
−∂

= = + − + − + − −
∂

−∂
= = − + + − −

∂
−∂

= = − +
∂

( )

( )

*
4 5 4 4 5 3 4

'
5 5 2 5

( ) ( ) ( )

( ) ( ) ( ) ( )

t u A

H
t t t t

R

λ λ γ α ϕ λ λ λ

λ λ λ ρ αλ












− + + + − − 

−∂

= = − + ∂ 

(1.31) 

with transversality conditions ( ) 0   1, 2,3,4,5i T iλ = =  (1.32) 
 
Proof: 
The proof follows from Theorem 3 
 
Conclusion 
In this work a MSEIR model was used to study application of optimal control technique to 
epidemiology. Pontryagin’s Maximum Principle was used in this work. We have shown the 
existence of the control systems, where we focused on the application of optimal control 
theory to minimizing the spread of measles in a population, the optimality was measured by 
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the minimality of the probability of infectious individuals and maximization of the recovered 
individuals. We derived the necessary conditions for the control problems by studying three 
scenarios namely; (i) Vaccination alone (ii) Vaccination and Treatment (iii) Vaccination, 
Quarantine and Treatment. 
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