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Abstract 

A simplified dynamic model for the constant-force compression spring 

(CFCS) based on the pseudo-rigid-body model (PRBM) is presented including 

the basic formulations which takes care of the moment CFτ  due to coulomb 

friction in the pin joints of the CFCS, and the moment AFτ  due to axial force 

effects in the rigid links of the CFCS. The CFCS is a slider mechanism which 

consists of rigid links incorporating pin joints and a small-length flexural 

pivot which connects to a slider. Clearly the results with the inclusion of CFτ  

and AFτ  to the dynamic model, shows that the static terms AFCF and ττ  have 

very great significance on the dynamic model of the CFCS. 

Keyword 

Constant-force compression spring, Axial force effects, Coulomb friction, 

Pseudo-rigid-body model. 

 

 

Introduction 

 
With the emerging applications of compliant mechanisms, there is the need to develop 

a systematic formulation for the design and analysis of compliant mechanisms. Although 

existing methods such as the finite element method (FEM), elliptic integrals method, and 

chain algorithm method are widely available, there remain challenges in the computational 

model of compliant mechanisms (CMs). Many of these existing models are either inadequate 
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to capture the geometric nonlinearity or too complicated that they cannot serve as a basis for 

compliant mechanism (CM) design and simulation. Based on the principle of dynamic 

equivalence, a simplified dynamic model for the constant-force compression spring (CFCS) is 

developed using the pseudo-rigid-body (PRB) modeling technique. The pseudo-rigid-body 

model (PRBM) is used to simplify the analysis and design of CMs. It is used to unify CM and 

rigid-body mechanism theory by providing a method of modeling the nonlinear deflection of 

flexible beams. This method of modeling allows well-known rigid-body analysis methods to 

be used in the analysis of CMs (Salamon, 1989). The PRBM provides an easy way to model 

the complex, nonlinear deflections of many CMs (Howell, 2001). The model approximates 

the force-deflection characteristics of a compliant segment using two or more rigid segments 

joined by pin joints, with torsional springs at the joints modeling the segment’s stiffness. The 

usefulness of the PRBM in allowing accurate analysis and synthesis of mechanism motion 

and energy storage characteristics has been abundantly demonstrated (Opdahl et al., 1998; 

Derderian et al., 1996; Howell and Midha, 1996; Lyon et al., 1997; Jensen et al., 1997; 

Mattlach and Midha, 1996). While the model is very useful for the analysis of CMs, its true 

power lies in the capability it gives for designing original CMs (Jensen et al.’ 1997). The 

PRBM correlates the synthesis of CMs and the wealth of knowledge available in rigid-body 

mechanism design. CFCSs can be defined as mechanisms that produce a constant output force 

for a large range of input displacements. Such mechanisms are important in applications with 

varying displacements, but requiring a constant resultant output force. The mechanism is 

typically displacement driven, the input is a displacement at the slider and the output is a 

force. Unlike a linear spring where the force increases as the displacement increases, the 

reaction force for a CFCS remains constant for various displacements. 

 

 

Simplified Dynamic Model Development 

 
Figure 1 shows the CFCS and its PRBM. As shown in the figure, the CFCS consists of 

rigid links incorporating pin joints and a small-length flexural pivot which connects to a 

slider. The mechanism is converted to its rigid-body counterpart by using the PRBM rule for 

small-length flexural pivots. The most straight forward alteration is that the small-length 
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flexural pivot becomes a pin and torsional spring combination, centered at the middle of the 

flexible segment. The torsional spring constant K for small-length flexural pivots is given by 

K=EI/L         (1) 

Where, 

I is the moment of inertia of the cross section of the flexible segment 

E is the modulus of elasticity of the flexible segment 

L is the length of the flexible segment 

sm

33,mr

2θ

22 ,mr

3kθ

 
Figure 1: CFCS and Its pseudo-rigid-body model 

 

 

Formulation of the Dynamic Equation using Hamilton’s Principle 

 

The dynamic equation of motion for the CFCS can be systematically derived using 

Hamilton’s principle, where the following variational form holds: 

( ) ( )[ ] ( ) 0dttWdttVtT2

1

2

1

t

t

t

t nc =δ+−δ∫ ∫       (2) 

Equation (2), which is generally known as Hamilton’s variational statement of 

dynamics, shows that the sum of the time-variations of the difference in kinetic and potential 
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energies and the work done by the nonconservative forces over any time interval  

equals zero. It is of interest to note that Hamilton’s equation can also be applied to statics 

problems. In this case, the kinetic energy term 

21 ttot

T  vanishes, and the remaining terms in the 

integrands of equation (2) are invariant with time; thus, equation (2) reduces to 

( ) 0WV nc =−δ         (3) 

Equation (3) is the well known principle of minimum potential energy, so widely used 

in static analysis. For most mechanical or structural systems, the kinetic energy can be 

expressed in terms of the generalized coordinates and their first time derivatives, and the 

potential energy can be expressed in terms of the generalized coordinates alone (Clough and 

Penzien, 2003). In addition, the virtual work which is performed by the nonconservative 

forces as they act through the virtual displacements caused by an arbitrary set of variations in 

the generalized coordinates can be expressed as a linear function of those variations. In 

mathematical terms the above three statements are expressed in the form 
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( )N21 q,,q,qVV ⋅⋅⋅=         (5) 

  NN2211nc qQqQqQW δ+⋅⋅⋅+δ+δ=δ       (6) 

where the coefficients  are the generalized forcing functions corresponding to 

the coordinates 

NQQQ ,,, 21 ⋅⋅⋅

,, Nq⋅,, 21 qq ⋅⋅  respectively. Substituting equation (4), (5), and (6) into (2) and 

completing the variation of the first term gives 
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Integrating the velocity-dependent terms in equation (7) by paths leads to 
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The first term on the right hand side of equation (8) is equal to zero for each 

coordinate since ( ) ( ) 021 == tqtq ii δδ  is the basic condition imposed upon the variations. 

Substituting equation (8) into equation (7) gives, after rearranging terms, 
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where  are the kinetic and potential energy of the CFCS respectively. Since all 

variations 

VandT

iqi ( N,,2,1 )⋅⋅⋅=δ  are arbitrary, equation (9) can be satisfied in general only when 

the term in bracket vanishes. 
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Equations (10) are the well known Lagrange’s equations of motion, which have found 

widespread application in various fields of science and engineering. It should be noted that 

Lagrange’s equations are a direct result of applying Hamilton’s variational principle, under 

the specific condition that the energy and work terms can be expressed in terms of the 

generalized coordinates, and of their time derivatives and variations. Thus Lagrange’s 

equations are applicable to all systems which satisfy these restrictions, and they may be 

nonlinear as well as linear (Clough and Penzien, 1995). Following the standard procedure of 

Hamilton’s principle, the total kinetic energy equation for the CFCS is given as 
⋅⋅⋅

θ+θ+++= 2
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where, 

im = mass of links 2 and 3 

CiV = velocity of the center of mass of links 2 and 3 

CiI = mass moment of inertia of links 2 and 3 about the center of mass 

⋅

iθ = angular velocity of links 2 and 3 

⋅

1r = velocity of the slider 

⋅

θ= 222C r
2
1V          (12) 
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        (15) 

The first three terms of the kinetic energy expression represent the translational energy 

of the system, and the last two represent the rotational energy. The mass moments of inertia of 

links 2 and 3 about the center of mass is given by 

2
iiCi rm

12
1I =          (16) 

For the CFCS, the potential energy equation is given as 

( )2
3K3K

2
1V θ=          (17) 

where  is the torsional spring constant and 3K 3Kθ  is the relative deflections of the torsional 

spring given by the following expression 
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Expanding equation (10) and simplifying, the dynamic equation for the system becomes 
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To obtain the generalized forcing function , the virtual work 2θQ ncWδ  must be 

evaluated. This is the work performed by all nonconservative forces acting on or within the 

flexural member while an arbitrary set of virtual displacements is applied to the system. The 

nonconservative forces may include dissipative forces proportional to the angular and linear 

velocities. For the CFCS, the generalized forcing function  therefore consists of a moment 2θQ

Fτ  due directly to the force  acting on the slider, moment F CFτ  due to coulomb friction in 

the pin joints of the CFCS, and moment AFτ  due to axial force effects in the rigid links of the 

CFCS. In mathematical terms, the generalized forcing function is given by the expression 

below 

2θQ

AFCFF2
Q τ+τ+τ=θ         (20) 

Coulomb friction results from two dry or lubricated surfaces rubbing together. It is 

generally considered to be independent of velocity magnitude but has a different, larger value 

when velocity is zero (static friction) than when there is relative motion between the parts 

(dynamic friction). Though more elaborate expressions for the coulomb friction term CFτ  are 

possible, the following simple relation gives sound results: 
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where C is the coulomb friction coefficient 
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The value of the torque AFτ  is chosen using experimental data but may be 

approximated using the expression giving in equation (22). Torque  is transformed to 

mechanism’s output force F using the power relationship given as: 

2θQ
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where,  
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Equations (19)–(25) represent the simplified dynamic model of the CFCS. Note that 

the equation of motion was derived from the PRBM of the CFCS, rather than the actual 

CFCS. What is important in the derivation of the dynamic model is not the method chosen to 

arrive at the simplified dynamic model, but the fact that the method was applied to the PRBM 

simplification of the CFCS. 

 

 

 Results and Discussion 

 

All the necessary parameters of the CFCS used in the simulation are given in table 1. 

Using these parameters, the simulation results obtained are illustrated in the following figures. 

Figure 2 shows a comparison of the force predicted by the static portion of the dynamic model 

(i.e. with velocities and accelerations set to zero, with 0== AFCF ττ ), with that predicted by 

existing CFCS theory, essentially an application of the principle of virtual work on the PRBM 

of the CFCS. As shown in the figure, both plots match perfectly which is a confirmation that 

the static portion of the dynamic model is correct. Figure 3 shows the force predicted by the 

static portion of the dynamic model with inclusion of AFCF and ττ . As shown in the figure, 

AFCF and ττ have large effect on the performance of the CFCS.  

Table 1: CFCS parameters used for simulation 
Parameters Parameter Values 
r2 85 mm 
r3 95 mm 
m2 0.025kg 
m3 0.028 kg 
ms 0.087kg 
b 25.4 mm 

3h  0.38 mm 

3I  1.1615 x 10-13 m4 

E 207 Gpa 
3l  9.5 mm 

3K  2.5308 Nm 
α  0.045 rad 
C  0.02 
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Figure 5, 6, and 7 shows the mean force plot, the median force plot and the peak-to-

peak force magnitude difference plot of the dynamic model as a function of frequency 

respectively. Each frequency assumes a sinusoidal position input as shown in Figure 4 with 

amplitude equal to 40% mechanism deflection. Notice that the curve in the peak-to-peak force 

plots for the dynamic model with the inclusion of CFτ  and AFτ  first curves down, before it 

starts to increase. This shows the range of frequencies over which a CFCS exhibits better 

constant force behaviour. Figure 8, 9, 10, and 11 shows the plots of the force predicted by the 

dynamic model with, and without the inclusion of the static terms AFCF and ττ  for different 

input frequencies. Clearly as shown in the figures, the results with the inclusion 

of AFCF and ττ , shows that the static terms AFCF and ττ  have very great significance on the 

dynamic model. Figure 12 shows the plot of the percent constant-force (PCF) as a function of 

time. The PCF is very important because it measures the amount of variation between the 

minimum and maximum output force of the CFCS model. As shown in the figure, the 

maximum value of the PCF for the CFCS model is 87.2%. 

 
Figure 2: Force predicted by the static portion of the dynamic model  

with that predicted by the principle of virtual work 
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Figure 3: Force predicted by the static portion of the dynamic model 

with inclusion of τCF and τAF 

 

 
Figure 4: Position plot representing the sinusoidal input 

 

 
Figure 5: The mean force plot as a function of frequency for the CFCS 
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Figure 6: The median force plot as a function of frequency for the CFCS 

 

 
Figure 7: The peak-to-peak force difference plot as a function of frequency for the CFCS 

 

 
Figure 8: Predicted force for sinusoidal input of ω = 2.09 rad/s 
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Figure 9: Predicted force for sinusoidal input of ω = 4.19 rad/s 

 

 
Figure 10: Predicted force for sinusoidal input of ω = 14.7 rad/s 

 

 
Figure 11: Predicted force for sinusoidal input of ω = 41.89 rad/s 
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Figure 12: Percent constant-force as a function of time 

 

 

Conclusion 

 

The PRBM is a method of analysis that allows large deformations to be modeled using 

rigid-body kinematics. In light of the simplicity the PRBM affords, a simplified dynamic 

model for the CFCS based on the PRBM is presented which also includes basic formulations 

which take care of the axial force effects in the rigid links of the CFCS and the effect due to 

Coulomb friction in the pin joints of the CFCS. Although several methods for modeling 

CFCS exist, less attention has been paid to dynamic analysis. A very interesting aspect of the 

dynamic model is that it presents a very simplified and accurate mathematical expression 

which helps in the easy determination of the moment CFτ  due to coulomb friction in the pin 

joint of the CFCS, and the moment AFτ  due to axial force effects in the rigid links of the 

CFCS. Clearly the results with the inclusion of CFτ  and AFτ  to the dynamic model, shows that 

the static terms AFCF and ττ  have very great significance on the dynamic model of the CFCS. 
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