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Abstract 

 
A very practical and important alternative approach to the analysis of compliant 

mechanisms is the frequency response method. Frequency characteristics analysis of a 
system is important to gain an understanding of the dynamic performance of a 
compliant mechanism especially when it has a wide range of working frequencies. The 
resonance phenomenon can be examined through the amplitude-frequency 
characteristics of the system. As shown on the amplitude-frequency diagram, it is 
obvious that one must avoid driving this system at or near its natural frequency. 
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Introduction 
 

A constant-force mechanism can be 
defined as one that generates a constant, 
unidirectional force at any given point on a 
hinged lever, for all positions of the lever 
(Nathan 1985). Alternatively, it can be defined 
as a mechanism that produces a constant output 
force for a range of input displacements (Nahar 
and Sugar 2003). Such mechanisms are 
important in applications with varying 
displacements, but requiring a constant 
resultant output force. The mechanism is 
typically displacement driven, the input is a 
displacement at the slider and the output is a 
force. Unlike a linear spring where the force 
increases as the displacement increases, the 
reaction force remains constant for various 
displacements. Compliant constant-force 
mechanisms have specific geometry and 
stiffness that cause the combination of energy 
storage and mechanical advantage to produce a 
constant-force. 

The constant-force mechanism can be 
configured in a variety of ways for applications 
such as: electronic connectors that maintain a 
constant-force regardless of part tolerances; a 

constant-force spring in a hospital bed that will 
allow the same force to be applied evenly over 
a person’s body to reduce bed sores; a gripping 
device to hold delicate parts of varying size; 
wear testing, where a constant-force needs to 
be applied to a surface as the surface is worn 
down; manufacturing processes that involve 
tool diameter changes such as grinding and 
honing; motor brush wear improvement; and 
safety return spring to cause valves or other 
devices to go to a specified position when 
power is lost while minimizing actuator size. In 
these and other applications, the constant-force 
mechanism eliminates the need for expensive 
and elaborate force control, replacing it with a 
simple mechanical device (Evans and Howell 
1999). 

A very practical and important alternative 
approach to the analysis of compliant 
mechanisms is the frequency response method. 
The frequency response of a system is defined 
as the steady-state response of the system to a 
sinusoidal input. The sinusoid is a unique input 
and the resulting output for a linear system, as 
well as throughout the system, is sinusoidal in 
the steady state, it differs from input waveform 
only in amplitude and phase angle (Dorf and 
Bishop 1998). Basic frequency spectrum 
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includes the amplitude-frequency characteristic 
(dynamic compliance) and the phase-frequency 
characteristic of a system. Frequency 
characteristic analysis of a system is important 
to gain an understanding of the dynamic 
performance of a compliant mechanism 
especially when it has a wide range of working 
frequencies. The resonance phenomenon can be 
examined through the amplitude-frequency 
characteristics of the system. Even if the 
amplitude of the system output matches the 
design specification, the phase angle between 
the input and output of the system may not 
meet the desired performance. 
  

Design Analysis 
 
Dynamic Equations of Motion 
 

The dynamic differential equations of 
motion for the constant-force mechanism 
shown in Fig. 1 can be derived from 
Lagrange’s equation given as 

i
ii

i

Q
U
U

U
T

U

T
dt
d

=
∂
∂

+
∂
∂

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∂

∂
⋅ ,  (1) 

where i = 1, 2,…, 25. 
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Fig. 1. (a) The compliant constant-force 
mechanism; and (b) Its Pseudo-rigid-body 
model. 
 

In the absence of damping forces in the 
mechanism and of external forces on the slider, 
the equations of motion may be expressed in 
matrix form as 

[ ] [ ] { } { } 11
1

×××
×

⋅⋅

× =+
⎭
⎬
⎫

⎩
⎨
⎧

nnnn
n

ann QUKUM . (2) 

When damping forces are included, the 
equation of motion becomes 
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where n = number of generalized coordinates 
(elastic degrees of freedom of mechanism). 

The coefficient matrices [ ] , [  andM ]C [ ]K  
are system mass, damping and stiffness matrix 
respectively and {U} is the set of generalized 
coordinates representing the translation and 
rotation deformations at each element node in a 
global coordinate system. They are functions of 
the mechanism geometry and vary as input 
angle is varied. These values are repeated after 
each motion cycle of the mechanism. 
 
Mechanisms Mass and Stiffness matrices 
 

The element mass matrix [m] and 
stiffness matrix [k] can be written as follows: 
[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−

−

−

=

105210
110

140420
130

210
11

35
130

420
13

70
90

00
3
100

6
1

140420
130

105210
110

420
13

70
90

210
11

35
130

00
6
100

3
1

22

22

eeee

ee

eeee

ee

e

e

llll

ll

llll

ll

Al

m

ρ

, (4) 

 
[ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−−

−

−

−

−

=

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

ee

e

l
IE

l
IE

l
IE

l
IE

l
IE

l
IE

l
IE

l
IE

l
AE

l
AE

l
IE

l
IE

l
IE

l
IE

l
IE

l
IE

l
IE

l
IE

l
AE

l
AE

k

460260

61206120

0000

260460

61206120

0000

22

2323

22

2323 , (5) 

Technical Report 194



AU J.T. 12(3): 193-198 (Jan. 2009) 

where = the cross sectional area of the 
element. 

eA

The transformation matrix is given as 
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where: 
λ = cosθ and μ = sinθ.   (7) 

With the transformation matrix, the following 
vector transformations may be expressed: 
[ ] [ ]{ }URu = ,     (8) 
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The element mass matrix [m] and 
stiffness matrix [k] given in Eqs. (4) and (5) 
may be transformed from the elements local 
(element-oriented) coordinates to global 
(system-oriented) coordinates using Eq. (6). 
Typically, a compliant mechanism is 
discretized into many elements as in finite 
element analysis. Each element is associated 
with a mass and a stiffness matrix. Each 
element has its own local coordinate system. 
As shown in Fig. 2, half of the symmetric 
compliant mechanism is discretized into eight 
planar frame elements. When the element mass 
and stiffness matrices of all elements are 
combined and coordinate transformation 
necessary to transform the element local 
coordinate system to a global coordinate 
system is carried out, it gives the system mass 
[M] and stiffness [K] matrices. 

 
Fig. 2. Generalized coordinate in system-oriented coordinates with nodal compatibility. 

 
Natural Frequencies and Modes of 
Mechanism 
 

For most structures, the exact form of 
damping matrix is unknown since the sources 
of energy loss are complicated. Also, in most 
cases, the effect of damping on the vibration 
mode shapes of the structure is small (Sandor 
and Erdman 1988). Therefore, an assumption 
as to the form of this matrix is justifiable and 
since a mechanism during its motion is 
regarded as a structure in numerous positions, 
the adaptation of the conventional structural 
damping matrices to mechanism problems is 
deemed appropriate (Sandor and Erdman 

1988). In order to obtain the natural frequencies 
and natural modes of a system, undamped free 
vibration equation is used because the damping 
has very little influence on the natural 
frequencies of a system. From the free 
vibration of the system, the following modal 
equation is obtained, 

[ ] [ ]( ){ } { }0=− ii XMK λ , i = 1, 2,…, n. (11) 

The condition of non-zero solution of 
equation is 

[ ] [ ]( ) 0=− MK iλ , i = 1, 2,…, n.  (12) 
From Eq. (12), the eigenvalues λi, i = 1, 

2,…, n, of the system can be obtained: 
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2
nii ωλ = .      (13) 

The circular natural frequency ωn 
(rad/sec) can be converted to cycles per second 
(hertz) by noting that there are 2π radians per 
revolution and one revolution per cycle: 

nnf ω
π2
1

=  Hertz.    (14) 

By substituting each eigenvalueλi into Eq. 
(11), the eigenvector {Xi} of the system can be 
determined. The modal matrix, whose columns 
are the natural modes of the system, is defined 
as 
[ ] { } { } { }[ nXXX .......21=Φ ].   (15) 
 
Frequency Characteristics of Mechanism 
 

The equation of motion for damped force 
vibrations is given as 

tFKuuCuM ωsin0=++
⋅⋅⋅

.   (17) 
The solution for steady-state vibration of 

the system (after the initial transient behavior) 
is given as (Sandor et al. 1999) 
u = Asin(ωt - φ),     (18) 
where: A = amplitude, ω = angular velocity of 
forcing function, and φ = phase angle between 
applied force and displacement. 

The amplitude and phase angle are 
obtained from the following expressions 
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It should be understood that this phase angle is 
limited to the range 0 < θ < 180° (Clough and 
Penzien 2003). Also: 
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It is convenient to define the frequency ratio β 
as 
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Then Eq. (21) becomes 
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Results and Discussion 
 

The natural frequency (and its overtones) 
is of great importance to the design of 
compliant mechanisms as they define the 
frequencies at which the system will resonate 
(Norton 2004). Any system which contains 
more than one energy storage device such as a 
mass and a spring will possess at least one 
natural frequency. If such a system is excited at 
its natural frequency, a condition called 
resonance is set up, in which the energy stored 
in the system’s elements will oscillate from one 
element to the other at that frequency. The 
result can be violent oscillations in the 
displacements of the movable elements in the 
system as the energy moves from potential to 
kinetic form and vice versa (Norton 2004). Fig. 
3 shows the amplitude-frequency characteristic 
of the output displacement, from which a non-
linear relationship of the amplitude versus input 
frequency can be seen. These plots normalize 
the forcing frequency as a frequency ratio of 
the input frequency over the fundamental 
frequency. Likewise, the amplitude is 
normalized as the ratio of the amplitude of the 
output displacement over the static 
displacement. The maximum value of the 
amplitude displacement at a given operation 
frequency can be quantitatively determined 
from the amplitude-frequency characteristic 
curve. Thus, at a frequency of zero, the output 
is one, equal to the static displacement at the 
amplitude of the input force. As the forcing 
frequency increases toward the natural 
frequency, the amplitude of the output motion 
increases rapidly towards maximum at 
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resonance. Beyond this point, the amplitude 
decreases rapidly and asymptotically toward 
zero at high frequency ratios. Dangerously, 
large amplitudes may occur at resonance and at 
other frequency ratios near the resonant 
frequency (Sandor, et al. 1999). It is therefore 
obvious as shown in Fig. 3, that one must avoid 
driving this system at or near its natural 
frequency. The designer has a degree of control 
over resonance, in that the system’s mass and 
stiffness can be tailored to move its natural 
frequency away from any required operating 
frequencies. A common rule of thumb is to 
design the system to have a fundamental 
natural frequency at least ten times the highest 
forcing frequency expected in service, thus 
keeping all operations well below the 

resonance point. This is often difficult to 
achieve in mechanical systems. 

Fig. 4 shows the spectrum of the phase 
difference between the output and input. In 
static and low speed situations, the phase 
difference is near 90o, that is, the input and 
output are moving in directions opposite to 
each other. But when the frequency ratio is 
over 0.9, the phase difference reduces quickly. 
At the resonant state, the phase difference is 
near zero. The input and output move in the 
same direction. The analysis indicates that for 
the mechanism to function properly, it must 
operate at frequencies far away from the 
resonant state, either at relatively low 
frequency or at very high frequencies. 

 

Fig. 3. Amplitude-frequency characteristic of mechanism. 
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Fig. 4. Phase-frequency characteristic of mechanism.
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Conclusion 
 

Frequency characteristic analysis of a 
compliant mechanism is important to gain an 
understanding of the dynamic performance of 
compliant mechanisms especially when it has a 
wide range of working frequencies. The 
resonance phenomenon can be examined 
through the amplitude-frequency characteristics 
of the system. Results show that large 
amplitudes may occur at resonance and at other 
frequency ratios near the resonant frequency 
which makes it obvious, that one must avoid 
driving this system at or near its natural 
frequency. The designer has a degree of control 
over resonance, in that the system’s mass and 
stiffness can be tailored to move its natural 
frequency away from any required operating 
frequencies. 
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