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ABSTRACT 
 
In this work, we present a Minimaxloss criterion, 
based on D-efficiency, and which accounts for the 
within-whole plot correlation among the 
observations, for constructing split-plot response 
surface designs that are robust to missing a single 
observation of the various design points. We then 
develop robust split-plot designs, which are 
relatively insensitive to a single missing 
observation. It was observed that the criterion is 
robust to changes in the degree of correlation 
among the observations but varies with changes 
in the number of whole-plot and subplot factors for 
a given k –factor design. 
 
(Keywords: Split-plot response surface designs, robust 

designs, Minimaxloss criterion, within-whole plot 
correlation, missing observation) 

 

 
INTRODUCTION 
 
Response Surface Methodology (RSM) is an area 
of experimental design which consists of a group 
of mathematical and statistical techniques useful 
for developing, improving, and optimizing 
processes (Myers et al, 2009).  

 
The formal development of response surface 
methodology started with the work of Box and 
Wilson (1951). Many books and papers 
discussing RSM have been published since the 
appearance of this seminal paper. The articles by 
Hill and Hunter (1966), Myers et al. (1989) and 
Mead and Pike (1975) provide a broad review of 
RSM. The books by Khuri and Cornell (1996), Box 
and Draper (2007), and Myers et al (2009), give a 
comprehensive coverage of the various 
techniques used in RSM. In practice, the form of 
the relationship between the two types of design 

variables is unknown but can be approximated, 
within the experimental region, by a first -order 
polynomial model of the form 

 

 (1)  
 
Where y is the response vector,  is the n x p 

model matrix,  is the p x 1 vector of coefficients, 

and  is the n x 1 vector of random errors.  

 
RSM is sequential in nature. First, a first-order 

model is fit to the data from a  design, the 
model is examined for lack of fit and when this is 
exhibited (by existence of surface curvature), 
axial runs are added to allow the quadratic terms 
to be incorporated into the model to give a 2

nd
 -

order model. 
 
There are many designs available for fitting a 
second-order model. The most popular ones 

include the  factorial designs and their 

fractional replicates, the central composite 
designs (CCD) introduced by Box and Wilson 
(1951), and the Box-Behnken designs (BBD) 
introduced by Box and Behnken (1960).  
 
The CCD consists of factors with five levels that 
involve three categories. They are:  
 
i. a complete (or a fraction of) 2

k
  factorial 

design with factor levels coded as -1, 1 
(called the factorial portion),  

 
ii. an axial portion consisting of 2k points 

arranged so that two points are chosen 
on the coordinate axis of each control 
variable at a distance of α from the 
design center,  
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iii. n0 center points.  
 
Thus the total number of points in a CCD is 

022 nkn k  . The second-order response 

surface model for these designs is:      
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(2) 

 

Where y is the response variable,  is the input 

variable,  is a model coefficient, and  is a 

random error component.  
 
 
MISSING OBSERVATIONS IN DESIGNED 
EXPERIMENTS 
 
In an experimental work, situation often arises 
where some observations are lost or unavailable 
due to some accidents or cost constraints. 
Missing observations can occur as a result of 
many causes during the conduct of an 
experiment. An observation may be lost, animals 
can invade and destroy some experimental units, 
floods or fires can occur and damage a part of the 
experiment, and on some occasions workers have 
been known to unintentionally leave out some of 
the experimental units when setting up the 
experiment. Missing observations can create a big 
problem by making the results of a response 
surface experiment quite misleading, thereby 
adversely affecting the inference. Unavailability of 
some observations destroys some useful 
properties of the design, such as orthogonality, 
rotatability, and optimality. The design may break 
down as a result of missing observations 
(Herzberg and Andrews (1976) and Andrews and 
Herzberg (1979)).  
 
The data with missing observations may be 
handled by dropping the corresponding rows of 
the model matrix and then proceed with the 
analysis of the remaining (reduced) data using 
least squares procedure. However, dropping the 
rows of X amounts to changing the design 
structure and this adversely affects the useful 
design properties given above. Or, the remaining 
data may be handled by obtaining estimates for 
the missing observations using the techniques 
provided by some authors (e.g., Allan and Wishart 
(1930a), Yates (1933), Anderson (1946), Cochran 

and Cox, (1957)), etc., for computing missing plot 
values, substitute these estimates in to the data 
and then proceed with the analysis.  
 
All these techniques only make the analysis of 
the remaining data as simple as possible but do 
not guard against the loss incurred by the 
experiment when some observations are missing. 
To minimize the effects of missing observations, 
we require designs which are robust to missing 
observations. In such robust designs, the 
parameters of the assumed model can be 
estimated without much loss of efficiency. 
 
 
THE MINIMAXLOSS CRITERION 
 
Central Composite Designs with different 
properties can be developed by taking different 
values of α, i.e. distance of axial points from the 
center of the design. Box (1954) developed 
orthogonal CCD. Box and Hunter (1957) 
developed rotatable designs. Box and Draper 
(1959) discussed designs robust to inadequate 
model. Box and Draper (1975) studied designs 
robust to outliers, which are referred here as 
outlier robust designs. Designs robust to missing 
observations with different probability of missing 
for different observations are studied by Herzberg 
and Andrews (1975, 1976) and Andrews and 
Herzberg (1979). 
 
Akhtar and Prescott (1986) introduced a loss 
criterion, based on D – efficiency, for completely 
randomized response surface designs robust to 
missing observations, which minimizes the 
maximum loss due to missing observations. The 
loss is the relative reduction in the information 
matrix of these designs when one or more 
observations are missing. They defined the loss 
for the ith missing design point as: 
 

   (3) 

 
The loss  is a relative measure of efficiency 

with . A small value of  indicates a 

low reduction in the determinant of the 
information matrix and, in this sense, less loss of 
information.  
 
Akhtar and Prescott (1986) used this criterion to 
develop standard central composite designs 
robust to any single or any pair of missing 
observations. They showed that when two 
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observations are missing, say, the ith and jth 
observations, then, 
 

  (4) 

 

where , , and  are corresponding elements 

of the design’s ‘hat’ matrix, 
 

    (5) 

 
When the ith, jth and lth observations are missing, 
then, 

 

 
          

(6) 
 

Akhtar (2001) investigates two missing values in 
three different configurations of factorial and axial 
parts of completely randomized CCDs with five 
factors and construct five-factor CCDs that are 
robust to a pair of missing observations under the 
Minimaxloss criterion. The configurations are (i) 
designs with half replicate of factorial part and 
complete replicate of axial part (1/2 F+A), (ii) 
designs with one replication of factorial and axial 
parts (F+A), and (iii) designs with one replication 
of factorial part and two replications of axial part 
(F+2A).  

 
Akram (2002) studies the robustness of 
completely randomized central composite designs 

with , to all possible combinations of 

three missing observations with three different 
configurations, and developed CCDs that are 
robust to any three missing observations using the 
minimaxloss criterion. 
 
Ahmad and Gilmour (2010) study the robustness 
of subset response surface designs to a single 
missing observation and developed such designs 
that are robust to one missing observation. The 
subset designs are a wide class of three-level 
response surface designs introduced by Gilmour 
(2006). 
 
Ahmad (2011) studies and constructs different 
types of second-order response surface designs 
which are more robust to missing data than the 
competitive designs of the similar structure in the 
literature using the minimaxloss criterion. 
 
Martin et al (2013) studies the robustness of 
three-level response surface designs against 

missing data under the following criterion:- the 
maximum number of observations that can be 
missing from a design and still allow the 
estimation of the given model with a high 
probability. 
 
All these studies are on response surface 
experiments conducted in completely randomized 
(CRD) mode, which involve a single experimental 
unit, one level of randomization, single error 
structure, and independent observations.    
 
 
RESPONSE SURFACE DESIGNS WITH 
RESTRICTED RANDOMIZATION 
 
In most industrial experiments complete 
randomization is not achievable due to the 
presence of hard-to-change (HTC) factors. 
Instead, the experimenter approaches these 
experiments in an appropriate manner that 
restricts the randomization and that leads to a 
split-plot structure. In a split-plot design, the 
experimental runs are performed in groups, 
where, in a group, the levels of the HTC factors 
are not reset.  
 
Non-resetting of factors creates a dependence 
among the runs in one group, and this results in 
clusters of correlated errors and responses. In 
fact, it has been claimed long ago that all 
industrial experiments are split-plot experiments 
and this has been confirmed by recent works that 
many experiments previously thought to be CRD 
experiments also exhibit a split-plot structure. For 
details, see Daniel (1976), Anbari and Lucas 
(1994), Ganju and Lucas (1997, 1999, 2005), Ju 
and Lucas (2002), and Webb et al (2004). This 
surprising result has motivated a great deal of 
pioneering work in the design and analysis of 
split-plot experiments today. These designs 
consist of two different randomization procedures 
(whole plot and subplot) for the experimental 
runs, which lead to two error terms – the whole 

plot error term (
2

 ) and the subplot error term 

(
2

 ). Their performance depends, therefore, on 

the relative magnitude of the two variance 
components.  
 
Letsinger et al. (1996) is the first paper to 
investigate the efficiency of various second-order 
response surface designs when run as a split-plot 
experiment. Then, Draper and John (1998) 
discussed modifications of central composite 



The Pacific Journal of Science and Technology               –197– 
http://www.akamaiuniversity.us/PJST.htm                                            Volume 14.  Number 2.  November 2013 (Fall) 

 

designs and Box-Behnken designs to be run in a 
split-plot format. A sequential strategy for 
designing multistratum designs, special cases of 
which are split-plot designs, was presented by 
Trinca and Gilmour (2001).  
 
The optimal design of first- and second-order split-
plot experiments later received attention by Goos 
and Vandebroek (2001b, 2003a, 2004). Goos 
(2002) provided a thorough development of the D-
optimal split-plot design approach including 
implementation strategies. The optimal design of 
split-plot experiments for spherical design regions 
receives special attention in Mee (2006).  
 
Vining, Kowalski and Montgomery (VKM) (2005) 
modify the standard CCD to accommodate a split-
plot structure and illustrate the construction of 
split-plot response surface designs that are based 
on the original CCD of Box and Wilson (1951) and 
BBD of Box and Behnken (1960). The authors 
then develop designs that achieve the 
equivalence of OLS and GLS estimates, and 
establish the general conditions for equivalent 
estimation designs. VKM (2005) also show that 
these designs provide estimates of pure-error at 
both the whole-plot and subplot levels, thereby 
producing a model-independent estimate of the 
variance-covariance matrix, V.  
 
Kowalski et al. (2006) modifies the VKM (2005) 
CCD to allow the estimation of separate models 
for the characteristic’s mean and variances under 
a split-plot structure and note that the OLS -GLS 
equivalence will no longer hold for these designs, 
and discuss how to estimate the terms in both 
models. 
 
As we have seen, missing observations in 
response surface designs conducted within a 
completely randomized (CRD) mode, especially 
the central composite designs (CCD), are well 
investigated since the development of 
Minimaxloss criterion presented by Akhtar and 
Prescott [1986]. But the same is not true for such 
designs conducted within a split-plot structure for 
which the performance depends on the unknown 
variance components. 
 
This work therefore extends the form of the 
minimaxloss criterion of Akhtar and Prescott 
(1986) for constructing completely randomized 
response surface designs robust to missing 
observations, to the response surface designs 
conducted within a split-plot structure. 

The impact of missing a single observation of the 
different design points on the robustness of these 
designs is investigated and robust designs were 
constructed under each of the following 
configurations:- (i) single replicate designs and 
(ii) designs with half factorial replicate and full 
axial replicate. 
 
 
MODEL AND NOTATIONS 
 
In a split-plot design, observations within a whole 
plot are correlated and those from different whole 
plots are independent. To account for such 
correlation among the observations, the 
generalized least squares (GLS) model below is 
required to obtain estimates of the model 
parameters: 
 

   (7) 

 

Where is the N x 1 vector of responses,   is 

the N x p model matrix,  is the p x 1 vector of 

coefficients,  is an N x b incidence matrix 
assigning observations to each of the b whole 

plots;  is the N x 1 vector of random whole-plot 

errors,  is the N x 1 vector of random subplot 

errors. It is assumed that  

. 

 
The variance - covariance matrix for the 
observation vector y is 

 

 
                         (8)  

 

where .  

 

The matrix 𝒁𝒁’ is a block diagonal matrix with 
diagonal matrices of  𝐽𝑛1, 𝐽𝑛2, …, 𝐽𝑛𝑧, where 𝐽𝑛𝑖 is 

an 𝑛𝑖 x 𝑛𝑖 matrix of 1’s, and    denotes the 

ratio of the two variance components.  
 
 
MATERIALS AND METHODS 
 
Robustness of split-plot central composite 

designs with  factors were investigated 

in the presence of a single missing observation 
under each of the following configurations using 
the proposed minimaxloss criterion: (i) designs 
with single replication of factorial and axial parts 
(F+A) and (ii) designs with half replicate of 
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factorial part and complete replicate of axial part 
(1/2 F+A).  
 
Under the first configuration (i.e., F+A), six split-
plot central composite designs (SP-CCDs) 
comprising of one 2-factor design (D(1,1)), two 3-
factor designs differing in numbers of whole plot 
and subplot variables (i.e., D(1,2) and D(2,1)), and 
three 4-factor designs also with different numbers 
of whole plot and subplot variables (i.e., D(1,3), 
D(3,1), and D(2,2)) were considered. Under the 
second configuration (i.e., 1/2F+A), three split-plot 
designs were considered consisting of two 5-
factor designs differing in numbers of whole plot 
and subplot variables (D(1,4) and D(2,3)), and 
one 6-factor design (D(2,4)).  
 
Now for split-plot response surface designs, the 
generalized least squares (GLS) estimates are  
 

 
 

 
 

 
 

        (9) 

 
where X is the model matrix, y is the vector of 
responses and H is the ‘hat’ matrix for the split-
plot CCD.   
 
We denote the determinant of the information 
matrix for the complete split-plot central composite 
design by: 
 

     (10) 

 
Under D-optimality, we maximize (10), and for 
these designs our computations have shown that 
(10) is an increasing function of α and is maximum 
at , where α is the axial point distance from 

the design center. 
 
We denote the determinant of the information 
matrix for the reduced design by: 
 

      (11)    

 
If there are two missing observations u and v, (10) 
is reduced to: 
 

.   (12) 

 

We want this reduction to be as small as 

possible. Therefore, since the loss  is a relative 
measure of D-efficiency, we define the 
minimaxloss criterion due to the uth missing point 
in a split-plot CCD as: 
 

   

(13) 
 

Where  is the determinant of the 

reduced information matrix due to the missing u
th
 

point. The values of  lie between zero and one, 

that is,  If  , then  and 

this shows that the determinant of the reduced 
information matrix is zero and the design may 
break down (Herzberg and Andrews, 1976).  
 
The criterion in (13) is used in this work to 
construct split-plot central composite designs with  

 factors and at different values of 

, that are robust to a single missing 

observation of the different design points under 
the two different configurations mentioned above, 
for various degrees of correlation (d). 
 
Now, a split-plot CCD consists of four different 
kinds of design points. These include the factorial 
design points (nf), the whole-plot axial points (nα), 
the subplot axial points (nβ), and the central 
points (nc). Each of these points has different 
effects on the design when their corresponding 
observations or combinations of observations are 
missing. In this work we investigate the 
robustness of split-plot central composite designs 
(CCD) with w whole plot variables (w = 1, 2) and 
s subplot variables (s = 2, 3, 4), which we denote 
as D(w,s), for a second order model with the 
fixed effect in the form: 
  

 
      
    (14)  
 
Where z is a whole-plot factor, x is a subplot 

factor, the  are the regression coefficients at 
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the whole-plot levels,  and  are the 

regression coefficients at the subplot levels. 
 
In all the designs considered in this work, the 
missing observation is only at the subplot level, 
and the whole -plot axial point distance equals the 
subplot axial point distance from the design center 
(i.e., α = β). Then a split-plot response surface 
design under a given configuration is regarded as 
a minimaloss design robust to a single missing 

observation, at a given value of , when the 

loss due to a missing factorial point equals the 
loss due to a missing subplot axial point, and such 
a loss is also the minimum among all the 
maximum losses for the different types of design 
points. 
 
 
RESULTS AND DISCUSSIONS 
 
Tables of maximum losses due to missing a single 
observation of each of these design points were 

constructed at different values of  for each 

of the different  split-plot central composite 

designs with  factors, nf factorial, nα 
whole plot axial, nβ subplot axial and nc center 
points, under each of the two configurations. 

These losses are denoted as , ,  , and   

corresponding to missing a center, a whole plot 
axial, a factorial, and a subplot axial points, 
respectively.  
 
Our computations of losses have shown that, for 
each of these designs, the loss due to missing an 
observation is robust to changes in the ratio of the 
two variance components but varies with changes 
in the number of whole-plot and subplot factors for 
a given k –factor design. It was also observed that 
the loss corresponding to missing a center point, 

, and that corresponding to missing an axial 

point , are each less than  and   for the 

whole range of α, and also that  continues to 

increase up to the point  , and then 

decreases as α increases beyond this point. It can 
also be seen from each of the tables that the loss 

 decreases gradually with increasing value of α, 

whereas  has an increasing trend with 

increasing α. 
 
 
 
 
 

DESIGNS WITH SINGLE REPLICATION OF     
FACTORIAL AND AXIAL PARTS (F+A) 
 
Under this configuration, the losses 
corresponding to missing a single observation of 
each of the different categories of design points 
are given in Tables 1 – 6, respectively,  for the 
split-plot central composite designs D(1,1), 
D(2,1), D(1,2), D(1,3), D(3,1), and D(2,2). These 
losses are also plotted against the various α 
values and given in the corresponding Figures 1-
6 as shown below for each of the designs. 
 
Comparing the different losses, it can be seen 
from each of the tables that there is a point (α) 
where the values of  and  coincide, as can 

also be seen visually from the corresponding 
figures. That is, at this point, the maximum loss is 
minimized. For the design D(1,1) in Table 1, this 
point is at , and thus the D(1,1) split-
plot CCD with nf = 4, nα = 4, nβ = 2, nc = 2, and 

 is a minimaxloss design robust 

to a single missing observation.  
 
From Table 2, we see that the three-factor split-
plot CCD with,  
 

 
 
is a minimaxloss design robust to a single 
missing observation. From Table 3, we can see 
that the three-factor split-plot CCD with, 
 

 
is a minimaxloss design robust to a single 
missing observation. From Table 4, we observed 
that the values of  and  coincide at the point 

 for the design D(1,3). Thus the 

four-factor split-plot CCD with, 
 

 
is a minimaxloss design robust to a single 
missing observation. We can observe from Table 
5 that for the design D(3,1), the values of  and 

 coincide at the point where .  
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Thus, the four-factor split-plot CCD 
with,

  
 
is a minimaxloss design robust to a single missing 
observation. We observe from TABLE 3.6 that the 
four-factor split-plot CCD with, 
 

  
is a minimaxloss design robust to a single missing 
observation. 
 
These points of minimum can also be seen 
visually from each of the corresponding Figures 1-
6 where the loss curves  and  intersect at the 

value of .   

 
We can see from Figures 1, 2, 5, and 6 that the 

loss  makes a bell-shaped curve when plotted 

against α, attaining it’s maximum at , while 

 increases gradually with increasing α. Figure 3 

shows that  slightly makes a bell-shaped curve 

when plotted against α, attaining its maximum at 

, while  is almost horizontal for the whole 

range of α. In Figure 4, we observed that the loss 

curves  and  maintain almost the same value 

for the whole range of α. 
 
 
DESIGNS WITH HALF REPLICATION OF 
FACTORIAL PART AND COMPLETE 
REPLICATION OF AXIAL PART (1/2F+A ) 
 
Under this configuration, the losses corresponding 
to missing a single observation of each of the 
different categories of design points are given in 
Tables 7-9, respectively, for the split-plot designs 
D(1,4), D(2,3) and D(2,4). These losses are also 
plotted against the various α values and given in 
the corresponding Figures 7-9 as shown below for 
each of the designs. 
 
Our computations of losses have shown that, for 
each of these designs also, the loss 
corresponding to missing a center point, , and 

that corresponding to missing an axial point , 

are each less than  and   for the whole range 

of α, and also that  continues to increase up to 

the point  , and then decreases as α 

increases beyond this point. It can also be seen 
from each of the tables that the loss  decreases 

gradually with increasing value of α, whereas  

has an increasing trend with increasing α. 
 
From the losses in Table 7 for the D(1,4) design, 
we observed that the maximum loss 
( ) is minimum when  

for  as indicated in the last column 

of the table. Thus, the five-factor D(1,4) split-plot 
CCD with half replication of factorial part and 
complete replication of axial part, and with, 
  

  
is a minimaxloss design robust to a single 
missing observation. From Table 8, we observed 
that the maximum loss ( ) is minimum 

when  for , as 

indicated in the last column of the table. Thus, 
the five-factor D(2,3) split-plot CCD with half 
replication of factorial part and complete 
replication of axial part, and with, 
  

 
is a minimaxloss design robust to a single 
missing observation. We can observe from Table 
9 that the maximum loss ( ) is 

minimum when  for 

, as indicated in the last column of 

the table. Thus, the six-factor D(2,4) split-plot 
CCD with half replication of factorial part and 
complete replication of axial part and with, 
 

  
is a minimaxloss design robust to a single 
missing observation. 
 
These points of minimum can also be seen 
visually from each of the corresponding Figures 
7-9 where the loss curves  and  intersect at 

the value of .   

 
We can see from Figures 7 and 9 that the loss 

curves  and  almost maintain the same value 

for the whole range of α, while in Figure 8,  the 

loss  makes a bell-shaped curve when plotted 

against α, attaining it’s maximum at , while 

 increases gradually with increasing α.   
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CONFIGURATION ONE 

 

1. Two-Factor D(1,1) Split-Plot CCD  
 
This design consists of one whole-plot factor (w 
=1) and one subplot factor (s = 1), nf = 4 factorial 
points, nα = 4 whole-plot axial points, nβ = 2 

subplot axial points, and nc = 2 center points. 
There are 6 whole plots each of size 2 and N = 
12 total design points. The losses due to missing 
single observations of these different points are 
studied for range of α from 1.0 to 2.0, and are 
given in the table below. These losses are also 
plotted against α as given in Figure 1 below. 

 
 

TABLE 3.1: Losses due to Single Missing Observations of Different Design Points for D(1,1) Split-plot 
CCD. 

 
α       

for complete 
design 

Loses due 
to missing 
a Center 

point ( ) 

Loses due 
to missing a 
factorial 

point   ( ) 

Loses due 
to missing a 
whole-plot 
axial point 
( ) 

Loses due to 
missing a 
subplot axial 

point ( ) 

Overall 
maxloss due 
to single 
missing 
observation 

1.0 2.2755E+2 0.1666 0.7916 0.1666 0.4166 0.7916 

1.20 6.2718E+2 0.2224 0.7237 0.1768 0.4762 0.7237 

 =1.414 2.1210E+3 0.2499 0.6577 0.1904 0.5534 0.6577 

1.50 3.6188E+3 0.2461 0.6376 0.1962 0.5859 0.6376 

1.5946 6.6133E+3 0.2353 0.6200** 0.2022 0.6200** 0.6200** 

1.70 1.2991E+4 0.2193 0.6048 0.2082 0.6546 0.6546 

1.90 4.5199E+4 0.1889 0.5840 0.2169 0.7090 0.7090 

2.0 8.1920E+4 0.1759 0.5759 0.2203 0.7314 0.7314 

**Minimaxloss due to one missing observation.  

 

 

 

 
Figure 1: Loss curves due to one missing 
observation for a D(1,1) split-plot CCD with nf = 4, 
nα = 4, nβ = 2, and nc = 2.  
 
 
 
 
 
 
 

2. Three-Factor D(2,1) Split-plot CCD. 

A three-factor split-plot CCD in two whole plot and 
one subplot variables and with single replication 
of factorial and axial parts consists of nf = 8 
factorial points, nα = 8 whole-plot axial points, nβ =  
 
 
 

 
 
 
 
2 subplot axial points, and nc = 2 center points. 
There are 10 whole plots each of size 2 and N = 
20 total design points. The losses due to missing 
single observations of these different points are 
studied for range of α from 1.0 to 3.0, and are 
given in the table below. These losses are also 
plotted against α as given in Figure 2 below. 
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Table 2: Losses due to Single Missing Observations of Different Design Points for D(2,1) Split-plot     

CCD. 
 

α       for 

complete 
design 

Loses due 
to missing a 
Center point 
( ) 

Loses due to 
missing a 
factorial 

point      ( ) 

Loses due to 
missing a 
whole-plot 
axial point ( ) 

Loses due to 
missing a 
subplot axial 

point ( ) 

Overall maxloss due 
to single missing 
observation 

1.0 5.3939E+5 0.0900 0.7308 0.1566 0.3600 0.7308 

1.50 2.1241E+7 0.2132 0.6581 0.1748 0.4546 0.6581 

1.7320 1.1549E+8 0.2499 0.6240 0.1852 0.5125 0.6240 

1.85 2.9328E+8 0.2412 0.6113 0.1916 0.5468 0.6113 

2.0 9.8978E+8 0.2142 0.5997 0.1994 0.5892 0.5997 

2.032 1.2829E+9 0.2077 0.5977** 0.2009 0.5977** 0.5977** 

2.2 4.8932E+9 0.1747 0.5888 0.2078 0.6383 0.6383 

2.5 4.5584E+10 0.1317 0.5761 0.2168 0.6961 0.6961 

3.0 1.1529E+12 0.0954 0.5586 0.2261 0.7649 0.7649 

**Minimaxloss due to one missing observation  

 

 

 

 

 

Figure 2: Loss curves due to one missing 
observation for a 3-factor split-plot CCD with two 
whole plot and one subplot variables, nf = 8, nα = 
8, nβ = 2, and nc = 2. 

 

 

 

 

 

3. Three-Factor D(1,2) Split-Plot CCD.  
A three-factor split-plot CCD in one whole plot 
and two subplot variables and with one replication 
of factorial and axial parts consists of nf = 8 
factorial points, nα = 8 whole-plot axial points, nβ = 
4 subplot axial points, and nc = 4 center points. 
There are 6 whole plots each of size 4, and N = 
24 total design points. The losses due to missing 
single observations of these different points are 
studied for range of α from 1.0 to 3.0, and are 
given in the table below. These losses are also 
plotted against α as given in Figure 3 below. 
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Table 3: Losses due to Single Missing Observations of Different Design Points for D(1,2) Split-plot CCD. 

 
α       for 

complete 
design 

Loses due 
to missing 
a Center 

point ( ) 

Loses due to 
missing a 
factorial point 

( ) 

Loses due to 
missing a 
whole- plot 

axial point ( ) 

Loses due to 
missing a 
subplot axial 

point ( ) 

Overall 
maxloss due to 
single missing 
observation 

1.0 0.3019E+7 0.0347 0.7638 0.0451 0.4722 0.7638 

1.20 0.1660E+8 0.0434 0.7385 0.0477 0.5090 0.7385 

1.50 0.1658E+9 0.0578 0.6991 0.0508 0.5670 0.6991 

1.73205 0.9588E+9 0.0624 0.6707 0.0529 0.6150 0.6707 

1.77243 0.1305E+10 0.0623 0.6662 0.0533 0.6234 0.6662 

1.90 0.3465E+10 0.0604 0.6531 0.0543 0.6495 0.6531 

1.912 0.3798E+10 0.0601 0.6520** 0.0544 0.6520** 0.6520** 

2.0 0.7421E+10 0.0578 0.6439 0.0550 0.6689 0.6689 

2.2 0.3293E+11 0.0517 0.6280 0.0563 0.7044 0.7044 

2.5 0.2698E+12 0.0434 0.6086 0.0577 0.7488 0.7488 

3.0 0.6027E+13 0.0347 0.5836 0.0591 0.8046 0.8046 

**Minimaxloss due to one missing observation. 

  

 

 

 

   

     
Figure 3: Loss curves due to one missing observation 
for a 3-factor split-plot CCD with one whole plot and two 
subplot variables, nf = 8, nα = 8, nβ = 4, and nc = 4. 

 
 

 

 

 

 
 

 
4. Four-Factor D(1,3) Split-plot CCD  

 
A four-factor split-plot CCD in one whole-plot and 
three subplot variables, and with single replication 
of factorial and axial parts consists of nf = 16 
factorial points, nα = 16 whole-plot axial points, nβ 
= 6 subplot axial points and nc = 8 center points. 
The design consists of N = 46 total design points 
and 6 whole plots. The losses due to missing 
single observations of these different points are 
studied for range of α from 1.0 to 3.0, and are 
given in the table below. These losses are also 
plotted against α as given in Figure 4 below. 
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Table 4: Losses due to Single Missing Observations of Different Design Points for D(1,3) split-plot CCD. 
 
α       for 

complete 
design 

Losses due to 
missing a 
Center point 

( ) 

Losses due to 
missing a 
factorial point 

( ) 

Losses due to 
missing a whole- 
plot axial point 

( ) 

Losses due to 
missing a 
subplot axial 

point ( ) 

Overall maxloss 
due to single 
missing 
observation 

1.0 2.4294E+13 0.0083 0.6208 0.0115 0.4680 0.6208 

1.20 2.7483E+14 0.0097 0.6111 0.0121 0.4907 0.6111 

1.50 6.0377E+15 0.0125 0.5954 0.0129 0.5279 0.5954 

1.75 6.0229E+16 0.0147 0.5817 0.0134 0.5613 0.5817 

1.80 9.4006E+16 0.0150 0.5790 0.0135 0.5682 0.5790 

1.856 1.5423E+17 0.0153 0.5761** 0.0136 0.5761** 0.5761** 

2.0 5.4393E+17 0.0156 0.5683 0.0138 0.5965 0.5965 

2.2 3.0477E+18 0.0151 0.5583 0.0141 0.6249 0.6249 

2.5 3.7102E+19 0.0133 0.5447 0.0144 0.6649 0.6649 

3.0 1.6952E+21 0.0104 0.5255 0.0147 0.7220 0.7220 

**Minimaxloss due to one missing observation. 
 
 

 

 

 

 

  

 

Figure 4: Loss curves due to one missing 
observation for a 4-factor split-plot CCD with 
one whole plot and three subplot variables, nf = 
16, nα = 16, nβ = 6, and nc = 8. 

 
 
 

 
5. Four-Factor D(3,1) Split-plot CCD. 

 
A four-factor split-plot CCD with three whole-plot 
and one subplot variables, and with one  
replication of factorial and axial parts consists of 
nf = 16 factorial points, nα = 12 whole-plot axial 
points, nβ = 2 subplot axial points and nc = 2 
center points. The losses due to missing single 
observation of these various design points are 
studied for values of α ranging from 1.0 to 3.0 and 
are given in the table below. These losses are 
also plotted against α as given in Figure 5 below. 
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Table 5: Losses due to Single Missing Observations of Different Design Points for D(3,1) Split-plot CCD. 
 
α       for 

complete design 

Losses due to 
missing a 
Center point 

( ) 

Losses due to 
missing a 
factorial point 

( ) 

Losses due 
to missing a 
whole- plot 
axial point 
( ) 

Losses due to 
missing a 
subplot axial 

point ( ) 

Overall 
maxloss due 
to single 
missing 
observation 

1.0 3.2469E+11 0.0564 0.5642 0.1446 0.3118 0.5642 

1.25 5.2007E+12 0.0801 0.5510 0.1529 0.3439 0.5510 

1.50 4.9939E+13 0.1264 0.5362 0.1599 0.3742 0.5362 

1.75 3.6328E+14 0.2017 0.5190 0.1654 0.4026 0.5190 

2.0 2.8115E+15 0.2500 0.5017 0.1736 0.4444 0.5017 

2.2007 1.7478E+16 0.2210 0.4921** 0.1832 0.4921** 0.4921** 

2.25 2.7763E+16 0.2086 0.4903 0.1856 0.5040 0.5040 

2.5 2.8261E+17 0.1483 0.4832 0.1961 0.5588 0.5588 

3.0 1.8541E+19 0.0838 0.4708 0.2098 0.6404 0.6404 

**Minimaxloss due to one missing observation. 
 

 
 

 

   

 

Figure 5: Loss curves due to one missing 
observation for a 4-factor split-plot CCD with three 
whole plot and one subplot variables, nf = 16, nα = 
12, nβ = 2, and nc = 2.  

 

 

 

 

 

 
 

6. Four-Factor D(2,2) Split-plot CCD. 
 
A four-factor split-plot CCD with two whole-plot 
and two subplot variables, and with one  
replication of factorial and axial parts consists of 
nf = 16 factorial points, nα = 16 whole-plot axial 
points, nβ = 4 subplot axial points and nc = 2 
center points. There are 10 whole plots and N = 
38 total design points. The losses due to missing 
single observations of these different points are 
studied for range of α from 1.0 to 3.0, and are 
given in the table below. These losses are also 
plotted against α as given in Figure 6 below. 
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Table 6: Losses due to Single Missing Observations of Different Design Points for D(2,2) Split-plot CCD. 

 
α       for 

complete 
design 

Losses due to 
missing a Center 

point ( ) 

Losses due to 
missing a 
factorial point 

 ( ) 

Losses due to 
missing a 
whole- plot 
axial point 

 ( ) 

Losses due to 
missing a 
subplot axial 

point ( ) 

Overall 
maxloss due 
to single 
missing 
observation 

1.0 2.1955E+12 0.0817 0.5813 0.0406 0.4288 0.5813 

1.20 2.3611E+13 0.1030 0.5718 0.0431 0.4516 0.5718 

1.50 4.5928E+14 0.1575 0.5565 0.0462 0.4870 0.5565 

1.75 4.0784E+15 0.2186 0.5428 0.0482 0.5182 0.5428 

1.85 9.6361E+15 0.2379 0.5373 0.0490 0.5322 0.5373 

1.875 1.1965E+16 0.2415 0.5359** 0.0493 0.5359** 0.5359** 

2.0 3.5860E+16 0.2500 0.5295 0.0503 0.5555 0.5555 

2.2 2.1775E+17 0.2319 0.5205 0.0520 0.5892 0.5892 

2.5 3.2216E+18 0.1771 0.5098 0.0541 0.6371 0.6371 

3.0 1.9267E+20 0.1142 0.4953 0.0565 0.7013 0.7013 

**Minimaxloss due to one missing observation. 

 

 

 

 

 

 
Figure 6: Loss curves due to one missing 
observation in a 4-factor split-plot CCD with 2 
whole plot and 2 subplot variables, nf = 16, nα = 
16, nβ = 4, and nc = 2. 
 

 
 
 
 
 
 

 
(2)  Designs With Half Replication Of 

Factorial Part And Complete Replication 
Of Axial Part  

 
 

7. Five-Factor D(1,4) Split-plot CCD  
A five-factor split-plot CCD with one whole-plot 
and four subplot variables consists of nf = 16 
points from half replicate of factorial part with 
highest-order interaction as the defining contrast,  
 
 
 
 
 
 
 

 
 
 
 
 
nα = 16 points of whole-plot axial part, nβ = 8 
points of subplot axial part and nc = 8 center 
points. There are 6 whole plots and N = 48 total 
design points. The losses due to missing single 
observations of these different points are studied 
for range of α from 1.0 to 4.5, and are given in the 
table below. 
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Table 7: Losses due to Single Missing Observations of Different Design Points for D(1,4) Split-plot CCD. 

 
Α       for 

complete 
design 

Losses 
due to 
missing a 
Center 
point ( ) 

Losses due 
to missing a 
factorial 

point ( ) 

Losses due 
to missing a 
whole- plot 
axial point 
( ) 

Losses due 
to missing a 
subplot axial 

point ( ) 

Overall 
maxloss due 
to single 
missing 
observation 

1.0 7.6092E+19 0.0080 0.9647 0.0116 0.4924 0.9647 

1.20 1.9017E+21 0.0090 0.9522 0.0122 0.5150 0.9522 

1.50 1.1011E+23 0.0111 0.9321 0.0130 0.5515 0.9321 

2.0 3.0447E+25 0.0150 0.8975 0.0139 0.6151 0.8975 

2.5 4.5981E+27 0.0149 0.8658 0.0144 0.6775 0.8658 

3.0 4.6119E+29 0.0122 0.8397 0.0147 0.7318 0.8397 

3.424 1.5751E+31 0.0102 0.8215 0.0149 0.7699 0.8215 

3.8947 5.3909E+32 0.0087 0.8047** 0.0151 0.8047** 0.8047** 

4.0 1.1301E+33 0.0085 0.8013 0.0151 0.8115 0.8115 

4.5 3.0535E+34 0.0076 0.7874 0.0152 0.8401 0.8401 

**Minimaxloss due to one missing observation. 

 
 
 

Figure 7: Loss curve due to one missing 
observation for a 5-factor D(1,4) split-plot CCD 
with nf = 16 points from half replicate of factorial 
part with highest-order interaction as defining 
contrast, nα = 16, nβ = 8, and nc = 8 points, 
plotted against α. 
 
 
 
 
 
 
 
 
 
 
 

 
8. Five-Factor D(2,3) Split-plot CCD. 

 
A five-factor split-plot CCD with two whole-plot 
and three subplot variables, consists of nf = 16 
points from half replicate of factorial part with 
highest-order interaction as defining contrast, nα = 
16 points of whole-plot axial part, nβ = 6 points of  

 
subplot axial part and nc = 4 center points. There 
are 10 whole plots and N = 42 total design points. 
The losses due to missing single observations of 
these different points are studied for range of α 
from 1.0 to 5.0, and are given in the table below. 
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Table 8: Losses due to Single Missing Observations of Different Design Points for D(2,3) Split-plot CCD. 
 

Α       for 

complete 
design 

Losses 
due to 
missing a 
Center 
point ( ) 

Losses due 
to missing a 
factorial 

point ( ) 

Losses due 
to missing a 
whole- plot 
axial point 
( ) 

Losses due 
to missing a 
subplot axial 

point ( ) 

Overall 
maxloss due 
to single 
missing 
observation 

1.0 7.0957E+18 0.0235 0.9633 0.0410 0.4723 0.9633 

1.20 1.7531E+20 0.0274 0.9508 0.0436 0.4953 0.9508 

1.50 9.8195E+21 0.0365 0.9309 0.0469 0.5319 0.9309 

2.0 2.4753E+24 0.0581 0.8967 0.0509 0.5949 0.8967 

2.236 2.7729E+25 0.0624 0.8812 0.0525 0.6261 0.8812 

2.5 4.0076E+26 0.0577 0.8661 0.0541 0.6612 0.8661 

3.0 4.9255E+28 0.0405 0.8434 0.0564 0.7203 0.8434 

4.0711 2.6058E+32 0.0230 0.8089** 0.0590 0.8089** 0.8089** 

4.45 4.5837E+33 0.0203 0.7989 0.0596 0.8341 0.8341 

5.0 9.5340E+35 0.0183 0.7891 0.0601 0.8581 0.8581 

**Minimaxloss due to one missing observation. 
 

 
Figure 8: Loss curve due to one missing observation 
for a 5-factor D(2,3) split-plot CCD with nf = 16 points 
from half replicate of factorial part with highest-order 
interaction as defining contrast, nα = 16, nβ = 6, and nc 
= 4 points, plotted against α. 
 
 
 
 
 
 
 
 
 
 
 

 
 

9. Six-Factor D(2,4) Split-plot CCD. 
 
A six-factor split-plot CCD with two whole-plot and 
four subplot variables, consists of nf = 32 points 
from half replicate of factorial part with highest-
order interaction as defining contrast, nα = 32 
points of whole-plot axial part, nβ = 8 points of 
subplot axial part and nc = 8 center points. There 
are 10 whole plots and N = 80 total design points. 
The losses due to missing single observations of 
these different points are studied for range of α 
from 1.0 to 3.5, and are given in the table below. 
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Table 9: Losses due to Single Missing Observations of Different Design Points for D(2,4) Split-plot CCD. 
 

Α       

for complete 
design 

Losses 
due to 
missing a 
Center 
point ( ) 

Losses due 
to missing a 
factorial 

point ( ) 

Losses due to 
missing a 
whole- plot 

axial point ( ) 

Losses due to 
missing a 
subplot axial 

point ( ) 

Overall 
maxloss due 
to single 
missing 
observation 

1.0 1.3467E+26 0.0063 0.6375 0.0103 0.4646 0.6375 

1.20 6.8184E+33 0.0071 0.6335 0.0109 0.4774 0.6335 

1.50 9.1339E+35 0.0088 0.6268 0.0118 0.4991 0.6268 

2.0 6.4030E+37 0.0131 0.6144 0.0128 0.5400 0.6144 

2.449 9.9419E+40 0.0156 0.6028 0.0135 0.5812 0.6028 

2.5 1.7259E+41 0.0155 0.6015 0.0135 0.5861 0.6015 

2.626 6.6580E+41 0.0152 0.5984** 0.0137 0.5984** 0.5984** 

3.0 3.2322E+43 0.0125 0.5897 0.0141 0.6345 0.6345 

3.5 3.9053E+45 0.0091 0.5791 0.0144 0.6787 0.6787 

**Minimaxloss due to one missing observation. 

 

 

 
 
Figure 9: Loss curve due to one missing observation 
for a 6-factor D(2,4) split-plot CCD with nf = 32 points 
from half replicate of factorial part with highest-order 
interaction as defining contrast, nα = 32, nβ = 8, and 
nc = 8 points, plotted against α. 
 
 
 
 
 
 
 
 

 
 
 
 
CONCLUSIONS 
 
From the various types of split-plot central 
composite designs we have constructed based on 
their losses when a single observation is missing, 
the designs robust to a single missing observation 
are given in Tables 10 and 11 below for different 
configurations. Table 10 consists of the designs 
with single replication of factorial and axial parts. It 
can be seen from this table that the 5-factor split-
plot CCD with 3 whole plot and 1 subplot variables 
and α = β = 2.2007 has the minimum value of the 
maximum loss when an observation is missing, 
while a 3-factor split plot CCD with 1 whole plot 
and 2 subplot variables and α = β = 1.9120 has 
the maximum loss for a single missing 
observation.  
 

Table 11 consists of those with half replication of 
factorial part and complete replication of axial 
part. The losses due to one missing observation 
are given in the last column of each of the tables 
and these losses are the minimaxlosses for that 
configuration. We can see from this table that the 
6-factor split-plot CCD with 2 whole plot and 4 
subplot variables and α = β = 2.626 has the 
minimum value of the maximum losses when an 
observation is missing, while a 5-factor split plot 
CCD with 1 whole plot and 4 subplot variables 
and α = β = 3.424 has the maximum loss for 
missing a single observation.  
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Table 10: Split-plot Central Composite Designs with Single Replication of Factorial and Axial Parts 
Robust to a Single Missing Observation. 

 
wp k w s nf nα nβ nc N α (= β)  Minimaxloss1 

6 2 1 1 4 4 2 2 12 1.5946 0.66133E+4 0.6200 

10 3 2 1 8 8 2 2 20 2.0320 0.12829E+9 0.5977 

6 3 1 2 8 8 4 4 24 1.9120 0.37980E+10 0.6520 

6 4 1 3 16 16 6 8 46 1.8560 0.15423E+18 0.5761 

16 4 3 1 16 12 2 2 32 2.2007 0.17478E+17 0.4921 

10 4 2 2 16 16 4 2 38 1.8750 0.11965E+17 0.5359 

  

 
Table 11: Split-Plot Central Composite Designs with Half Replication of Factorial Part and Complete 

Replication of Axial Part Robust to a Single Missing Observation. 
 

wp K W s nf nα nβ nc N α (= β)  Minimaxloss1 

6 5 1 4 16 16 8 8 48 3.424 0.46033E+31 0.8221 

10 5 2 3 16 16 6 4 42 4.0711 0.26058E+33 0.8089 

10 6 2 4 32 32 8 8 80 2.626 0.66580E+42 0.5984 

 
 
 
 
Our computations have shown that the loss due to 
missing an observation in these designs is robust 
to changes in the ratio of the two variance 
components, and also that, for a given k-factor 
split-plot central composite design, the loss 
corresponding to a missing point depends on the 
design’s configuration, that is, on the number of 
whole plot and subplot factors. Therefore, if there 
is risk of a single missing observation in the 
experiment, then we hereby recommend for the 
practitioner, the minimaxloss1 designs developed 
for each configuration. 
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