
AU J.T. 12(4): 227-234 (Apr. 2009) 

Dynamic Behavior of Compliant Slider Mechanism using the 
Pseudo-Rigid-Body Modeling Technique 

Celestine Ikechukwu Ugwuoke, Sunday Matthew Abolarin and 
Vincent Obiajulu Ogwuagwu 

Department of Mechanical Engineering, 
Federal University of Technology, Minna, Niger State, Nigeria 

E-mail: <ugwuokeikechukwu@yahoo.com; abolarinmatthew@yahoo.com; 
ovogwuagwu@yahoo.com> 

 
Abstract 

 
This work explores the use of the pseudo-rigid-body model to predict the dynamic 

behavior of compliant mechanisms. Based on the principle of dynamic equivalence, a 
simplified dynamic model for the compliant slider mechanism was developed using the 
pseudo-rigid-body modeling technique. Simulation results shows a very interesting 
discovery that there exist a range of frequencies over which the compliant slider 
mechanism exhibits better constant-force behavior than it does statically. For instance, 
at a frequency of 51 rad/s the compliant slider mechanism yields a median force of 
307.62N with a force variance of ±3.9N, which is much better than the ±19.2N the 
device demonstrates statically. 

Keywords: Dynamic behavior, dynamic equivalence, compliant mechanisms, 
simulation, pseudo-rigid-body model. 

 

Introduction 
 

Compliant mechanisms are mechanical 
devices which provide smooth and controlled 
motion guidance due to the deformation of 
some or all of the mechanism's components, 
they rely upon elastic deformation to perform 
their function of transmitting and/or 
transforming motion and force (Her and Midha 
1987). Such mechanisms, with built-in flexible 
segments, are simpler and replace multiple 
rigid parts, pin joints, and add-on springs. 
Compliant mechanisms are relatively new 
class of mechanism (Kota et al. 1999). They 
may be multi-piece devices or monolithic 
(single-piece) devices and do not require 
sliding, rolling or other types of contact 
bearings often found in rigid mechanisms. 

The pseudo-rigid-body model provides 
an easy way to model the complex nonlinear 
deflections of many compliant mechanisms 
(Howell 2001). The model approximates the 
force-deflection characteristics of a compliant 
segment using two or more rigid segments 
joined by pin joints, with torsional springs at 

the joints modeling the segment’s stiffness 
(Jensen and Howell 2003). The usefulness of 
the pseudo-rigid-body model in allowing 
accurate analysis and synthesis of mechanism 
motion and energy storage characteristics has 
been abundantly demonstrated (Opdahl et al. 
1998; Derderian et al. 996; Howell and Midha 
1996; Lyon et al. 1997; Jensen et al. 1997; 
Mattlach and Midha 1996). While the model is 
very useful for the analysis of compliant 
mechanisms, its true power lies in the 
capability it gives for designing original 
compliant mechanisms (Jensen et al. 1997). 
This work explores the use of the pseudo-rigid-
body model to predict the dynamic behavior of 
compliant slider mechanisms. 
 

Dynamic Model Development 
 
Mechanism Description 
 

Figure 1(a) shows the compliant slider 
mechanism which consists of rigid links joined 
by small-length flexural pivots. Dividing the 
mechanism along the line of symmetry shows 
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that it consists of a pair of compliant slider 
mechanisms mounted to the same ground and 
sharing the same slider. Having two 
mechanisms opposite each other is useful 
because each cancels the moment induced by 
the other and the issue of friction between 
slider and ground is eliminated.  
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Fig. 1. (a) The compliant slider mechanism; 
and (b) its pseudo-rigid-body model. 
 
Pseudo-Rigid-Body Model of Mechanism 
 

The pseudo-rigid-body model of the 
compliant slider mechanism is shown in Fig. 
1(b); only half of the symmetric mechanism is 
shown. The mechanism is converted to its 
rigid-body counterpart by using the pseudo-
rigid-body model rule for small-length flexural 
pivots. The most straight forward alteration is 
that every small-length flexural pivot becomes 
a pin and torsional spring combination, 
centered at the middle of the flexible segment. 
The torsional spring constant K for small-
length flexural pivots is given by 

L
EIK = ,      (1) 

where: 
I is the moment of inertia of the cross section 
of the flexible segment; 

E is the modulus of elasticity of the flexible 
segment; 
L is the length of the flexible segment. 

As seen in Fig. 1, application of the 
pseudo-rigid-body model rule to the 
mechanism does not result in a significant 
redistribution of its mass. Accordingly, 
dynamic inertial forces on the mechanism are 
reasonably consistent between the compliant 
mechanism and its pseudo-rigid-body model. It 
is assumed that no plastic deformation occurs 
as the mechanism cycles and the flexible 
segment deflects. 
 
Position Analysis of Model 
 

Figure 2 shows the position vector loop 
of model. Using complex number analysis, the 
vector loop equation is given as 

0132 =−+ RRR .     (2) 

 
Fig. 2. Position vector loop of model. 

 
Substituting the complex number 

equivalent for the position vectors, the 
following equation is obtained: 

0132
132 =−+ θθθ jjj ererer .  (3) 

Substituting Euler equivalents, Eq. (3) 
becomes: 
( )222 sincos θθ jr +  

( )333 sincos θθ jr ++  
( ) 0sincos `111 =+− θθ jr . (4) 

Separating real and imaginary components and 
further simplifying, the following relations are 
obtained: 

33221 coscos θθ rrr += ,    (5) 

2
3

2
3 sinsin θθ

r
r

−= ,    (6) 

2
22

2
2

3
3

3 sin1cos θθ rr
r

−= .   (7) 
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Velocity Analysis of Model 
 

Differentiating Eq. (3) with respect to 
time and noting that ,  and 2r 3r 1θ  are constants, 
and  varies with time, the following equation 
is obtained: 

1r

013322
32 =−+

⋅⋅⋅

rejrejr jj θθ θθ ,   (8) 

where:  = linear velocity of the slider. 
⋅

1r
Substituting Euler equivalent, Eq. (8) becomes: 

( )
⋅

+ 2222 sincos θθθ jjr  

( ) 0sincos 13333 =−++
⋅⋅

rjjr θθθ . (9) 
 
Simplifying Eq. (9), gives 

( )
⋅

+− 2222 cossin θθθ jr  

( ) 0cossin 13333 =−+−+
⋅⋅

rjr θθθ . (10) 
Separating real and imaginary components and 
simplifying gives the following relations: 

2
22

2
2

3

222
3

sin

cos

θ

θθ
θ

rr

r

−
−=

⋅
⋅

,   (11) 

2
22

2
2

3

222
2

2
2221

sin

cossin
sin

θ

θθθ
θθ

rr

r
rr

−
−−=

⋅
⋅⋅

. (12) 

Equation (8) is the velocity difference equation 
which is given as: 

0322 =−+ SLIDERVVV ,    (13) 

322 VVVSLIDER += .    (14) 
The absolute velocity of link 2 and the 

velocity difference of link 3 with respect to 
link 2 is obtained from Eq. (13), and given as: 

⋅

= 222
2 θθjejrV ,     (15) 

⋅

= 3332
3 θθjejrV ,     (16) 

⋅⋅

+= 3322
32 θθ θθ jj

SLIDER ejrejrV .  (17) 
The absolute velocity of the centre of 

mass of link 2 is therefore: 
⋅

= 2
2

2
2

2
θθj

C erjV .    (18) 

Substituting Euler equivalent and simplifying, 
Eq. (18) becomes: 

⋅

= 222 2
1 θrVC .     (19) 

The absolute velocity of the centre of mass of 
link 3 is therefore: 

⋅⋅

+= 3
3

223
32

2
θθ θθ jj

C erjejrV .   (20) 

Substituting Euler equivalent and simplifying, 
Eq. (20) becomes: 

( ) .
4
1cos

2
1

2
3

2
3323232

2
2

2
23 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+=

⋅⋅⋅⋅

θθθθθθ rrrrVC

       (21) 
 
Acceleration Analysis of Model 
 

Differentiating Eq. (8) gives an 
expression for the acceleration: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⋅⋅⋅
22 2

22
2

22
θθ θθ jj erjejr  

01
2
33

2
33

33 =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

⋅⋅⋅⋅⋅

rerjejr jj θθ θθ . (22) 

Simplifying, Eq. (22) becomes: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅⋅⋅
22 2

2222
θθ θθ jj erejr  

01
2
3333

33 =−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⋅⋅⋅⋅⋅

rerejr jj θθ θθ . (23) 

Substituting Euler equivalent, the following 
expression is obtained: 

( )

( )

( )3333

22
2
22

2222

cossin

sincos

cossin

θθθ

θθθ

θθθ

jr

jr

jr

+−+

+−

+−

⋅⋅

⋅

⋅⋅

 

( ) 0sincos 133
2
33 =−+−

⋅⋅⋅

rjr θθθ . (24) 
Separating real and imaginary components and 
simplifying: 

2
2
222221 cossin θθθθ
⋅⋅⋅⋅⋅

−−= rrr  
⋅

⋅⋅⋅

−− 3
2
33333 cossin θθθθ rr ,  (25) 

33

3
2
332

2
22222

3 cos
sinsincos

θ
θθθθθθ

θ
r

rrr
⋅⋅⋅⋅

⋅⋅ ++−
= . 

(26) 
Equation (23) is the acceleration difference 
equation which is given as: 

0322 =−+ SLIDERAAA .    (27) 
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The absolute acceleration of link 2 and 
the acceleration difference of link 3 with 
respect to link 2 is obtained from Eq. (27), and 
given as: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=+=

⋅⋅⋅
22 2

2222222
θθ θθ jjnt erejrAAA , 

(28) 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=+=

⋅⋅⋅
33 2

3333323232
θθ θθ jjnt erejrAAA , 

(29) 

3221 AArASLIDER +==
⋅⋅

.   (30) 
The absolute acceleration of the centre of 

mass of link 2 is therefore: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⋅⋅⋅
22 2

2
2

2
2

2 22
θθ θθ jj

C ererjA .  (31) 

Substituting Euler equivalent and simplifying, 
Eq. (31) becomes: 

2
1

4
2

2
222 2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

⋅⋅⋅

θθrAC .    (32) 

The absolute acceleration of the centre of 
mass of link 3 is therefore: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⋅⋅⋅
22 2

22223
θθ θθ jj

C erejrA  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

⋅⋅⋅
33 2

3
3

3
3

22
θθ θθ jj e

r
e

r
j .  (33) 

Substituting Euler equivalent and simplifying, 
Eq. (33) becomes 

( )

( )

( )

( )
⋅⋅

⋅⋅⋅

⋅⋅⋅

⋅⋅⋅⋅⋅⋅⋅

−+

−−

−+

−+⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2
3

2
23232

3
2
23232

2
323232

323232
4
2

2
2

2
23

cos

sin

sin

cos

θθθθ

θθθθ

θθθθ

θθθθθθ

rr

rr

rr

rrrAC

 

2
1

4
3

2
3

2
34

1
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

⋅⋅⋅

θθr . (34) 

 
Potential Energy Formulation for Model 
 

Using the pseudo-rigid-body model, the 
potential energy equation can easily be found 
(Jensen and Howell 2003). For a segment 
modeled using a torsional spring and a pin 

joint, the potential energy V stored in the 
segment is given by: 

2

2
1

KKV θ= ,     (35) 

where K is the torsional spring constant and 
Kθ  is the pseudo-rigid-body angle or the angle 

of deflection of the compliant segment. 
The total potential energy in the 

mechanism is therefore the sum of the 
potential energy stored in each compliant 
segment: 

(∑∑
==

==
n

i
Kii

n

i
i KVV

2

2

2 2
1 θ ),   (36) 

where i = 2, 3,…, n enumerates all torsional 
springs. 

For the model, the potential energy 
equation is given as: 

( )2
33

2
22

2
112

1
KKK KKKV θθθ ++= ,  (37) 

where ,  and  are the torsional spring 
constants and

1K 2K 3K

1Kθ , 2Kθ  and 3Kθ  are the relative 
deflections of the torsional springs given as: 

21 θθ =K ,      (38) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= −

2
3

21
22 sinsin θθθ

r
r

K ,   (39) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

2
3

21
3 sinsin θθ

r
r

K .    (40) 

 
Kinetic Energy Formulation for Model 
 

As shown in Fig. 3, the centre of mass of 
each link is moving with linear velocity and 
the link is also rotating about the centre of 
mass with angular velocity. The total kinetic 
energy for any given link is therefore, the sum 
of the translational and rotational kinetic 
energies: 
Ttotal for each link = Ttranslation + Trotation 

⋅

+= 22

2
1 θCC ImV .    (41) 

For any mechanism, the total kinetic 
energy is given by: 

∑∑
=

⋅
⋅

= ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+==

n

i
iCiCii

n

i
i IVmTT

2

22

2 2
1 θ ,  (42) 

where i = 2, 3,…, n enumerates all moving 
links. 
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Fig. 3. Translational and rotational motion of 
the mechanism link. 
 

For the model, the kinetic energy 
equation is given as: 

2
33

2
22 2

1
2
1

CC VmVmT +=  
⋅⋅⋅

+++ 2
33

2
22

2
1 2

1
2
1

2
1 θθ CCs IIrm , (43) 

where: 
im = mass of links 2 and 3; 

CiV = velocity of the center of mass of links 2 
and 3; 

CiI = mass moment of inertia of links 2 and 3 
about the center of mass; 
⋅

iθ = angular velocity of links 2 and 3; 
⋅

1r  = velocity of the slider. 
The first three terms of the kinetic energy 

expression represent the translational energy of 
the system, and the last two represent the 
rotational energy. The mass moments of inertia 
of links 2 and 3 about the center of mass is 
given by: 

2

12
1

iiCi rmI = .     (44) 

 
Lagrange’s Equation Formulation 
 

Lagrange’s method is one of the most 
useful techniques in generating equations of 
motion of mechanisms, especially when 
internal forces and reactions are not of interest 
(Sandor and Erdman, 1988). The compact 
form of Lagrange’s equation is given as 

rq

r
r

r

F
q

K
qqdt

d
=

∂

∂
+

∂
∂

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∂

∂
⋅⋅

ll ,   (45) 

where: = Generalized position coordinates. rq

There are as many Lagrange’s equations 
of motion as there are degrees of freedom in 
the system. The uniform standard form of 
these equations holds no matter how 
complicated the relation between the 
kinematics constraints and the generalized 
coordinates. Infact, one can strategically 
choose a set of coordinates to facilitate 
algebraic manipulation due to the invariance of 
the form of the equations with respect to the 
choice of generalized coordinates. Taking 2θ as 
the generalized position coordinate and 
neglecting the effect of damping on 
mechanism, Lagrange’s equation becomes 

2
2

2

θθθ
M

dt
d

=
∂
∂

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∂

∂
⋅

ll .   (46) 

Assuming a conservative system, the 
Lagrangianl given below is formed by taking 
the difference of the scalar quantities of kinetic 
energy T and potential energy V of the system: 

VT −=l .      (47) 
Because 2θ  is the only independent 

coordinate in a single-degree-of-freedom 
mechanism, the velocity of the centre of mass 
and the angular velocity for the ith link is a 

function only of 2θ and  (Sandor and 
Erdman, 1988). The following equations recast 

the variables in T and V in terms of

•

2θ

2θ and : 
⋅

2θ
2

2
2

2
2
2 4

1 ⋅

= θrVC ,     (48) 

⋅⋅

−
+= 2

2
2

22
2

2
3

2
22

3
2

22
22

22
2

2
3 sin

cos
4
1sin θ

θ
θ

θθ
rr

rr
rVC  

⋅

−
+ 2

2

2
22

2
2

3

22
23

2

sin

cossin
θ

θ

θθ

rr

r ,  (49) 

2
22

2
2

3221 sincos θθ rrrr −+= ,  (50) 
⋅⋅⋅

−
−−= 2

2
22

2
2

3

22
2

2
2221

sin

cossin
sin θ

θ

θθ
θθ

rr

r
rr , (51) 

⋅⋅⋅

−
+= 2

2
2

22
2

2
3

2
2

2
24

22
22

22
2

2
1 sin

cossinsin θ
θ
θθ

θθ
rr

rrr  

⋅

−
+ 2

2

2
22

2
2

3

22
23

2

sin

cossin2
θ

θ

θθ

rr

r , (52) 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

2
3

21
3 sinsin θθ

r
r

,   (53) 

⋅⋅

−
−= 2

2
22

2
2

3

22
3

sin

cos
θ

θ

θ
θ

rr

r ,   (54) 

⋅⋅

−
= 2

2
2

22
2

2
3

2
22

22
3 sin

cos
θ

θ
θ

θ
rr

r .   (55) 

The Lagrangianl for the model is therefore 
⋅

++= 2
1

2
33

2
22 2

1
2
1

2
1 rmVmVm sCCl  

2
11

2
33

2
22 2

1
2
1

2
1

KCC KII θθθ −++
⋅⋅

 

2
33

2
22 2

1
2
1

KK KK θθ −− .  (56) 

Lagrange’s formulation requires that the 
partial derivatives of the Lagrangianlwith 
respect to the generalized coordinate 2θ and its 

time derivative be carried out to form the 
equation of motion for the system. When the 
derivatives of the Lagrangian are expanded out 
and simplified, the dynamic equation of 
motion for the system is obtained which is 
given as: 

⋅

2θ

( ) ( )

( )

( )

( )
⋅

⋅⋅

⎥
⎥
⎦

⎤

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

−
+⎟

⎟

⎠

⎞
+

−
−

−
+

−
+

−
−

−
+

⎜
⎜

⎝

⎛

−
+⎟⎟

⎠

⎞
+

−
−

−
+

⎢
⎢
⎣

⎡

−
−

−⎜
⎜

⎝

⎛
+

−
+

⎥
⎦

⎤

−
++⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
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−
+

−
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
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−
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−
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⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

2
2

2
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2
2

3

22
2

2
2

2
22

2
2

3

2
3

2
4

2
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2
2

2
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2
2

3

2
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2

2
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2
2

3

2
2

2
3

2

2
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2
2

3

2
3

2
4

2

2
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2
2
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2
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2
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2
2
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2
2

2
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2
2
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2
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2
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2
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2
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3
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2
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2
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2
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2

3
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2
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2
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2
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2
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2
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2
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2
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2
2
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2

2
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2
2

3

2
2

2
24

2

2
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2
2
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2

2
3
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3
2
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2
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2
2
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r
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2

2
22

2
2

3

222
3
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3

2
22

2
2

3
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2

3

21
2221
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cossinsin
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1sinsin θ

θ

θθ

θ

θ
θθθ M
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r
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r

K
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r
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r

KK =
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
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+⎟

⎟
⎠

⎞
⎜
⎜
⎝
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⎠
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−

− .(57) 

Torque Mθ2 is transformed to 
mechanism’s output force F using the power 
relationship given as: 

⋅⋅

= 221 θθMrF ,     (58) 
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where:  
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Equations (57)–(60) represent the 
dynamic model of the compliant slider 
mechanism. Note that the equation of motion 
was derived from the pseudo-rigid-body model 
of the mechanism, rather than the actual 
compliant mechanism. 
 

Results and Discussion 
 

Table 1 shows the mechanism parameters 
used for the simulation. Position plot 
representing the sinusoidal input and position 
force diagram are shown in Figs. 4 and 5. 

Regular Paper 232



AU J.T. 12(4): 227-234 (Apr. 2009) 

Table 1. Mechanism parameters. 

Mechanism 
Parameters 

Parameter 
Value 

r2 90 mm 
r3 120 mm 
m2 0.026kg 
m3 0.037 kg 
ms 0.087kg 
b 30 mm 
h 0.65 mm 
I 6.866 x 10-13 m4 
E 207 Gpa 

 

 
Fig. 4. Position plot representing the sinusoidal 
input. 
 

 
Fig. 5. Position force diagram. 

 
In the evaluation of the dynamic model, 

three useful plots are analyzed, the mean force, 
the median force and the peak-to-peak force 
difference of the dynamic model as a function 
of frequency, this is shown in Figs. 6, 7 and 8. 
The frequency assumes a sinusoidal position 
input with amplitude equal to 40% mechanism 
deflection with a slight pre-displacement to 
give a pre-load at full expansion. Notice that 
the curve in the peak-to-peak force plot first 
curves down, before it starts to increase. 

 
Fig. 6. The mean force as a function of 
frequency. 
 

 
Fig. 7. The median force as a function of 
frequency. 
 

 
Fig. 8. The peak-to-peak force difference as a 
function of frequency. 
 

This is a very interesting discovery of the 
peak-to-peak force plot which shows that there 
is a range of frequencies over which a 
compliant slider mechanism exhibits better 
constant-force behavior. This interesting 
discovery will significantly improve the 
likelihood that the compliant slider mechanism 
could be viable in industry for constant-force 
applications. For instance, at a frequency of 51 
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rad/s as demonstrated in Fig. 8, the compliant 
slider mechanism will yield a median force of 
307.62N with a force variance of ±3.9N as 
demonstrated clearly in Fig. 9, which is much 
better than the ±19.2N the device demonstrates 
statically. This better constant-force behavior is 
likely due to inertial effects. 

 
Fig. 9. Predicted force for sinusoidal input of ω 
= 51 rad/s. 
 

Conclusion 
 

Much work is actually needed for a 
further study on the dynamic analysis of 
compliant mechanisms to improve on their 
operational performance. Based on the 
principle of dynamic equivalence, a simplified 
dynamic model for the compliant slider 
mechanism was developed using the pseudo-
rigid-body modeling technique. Simulation 
results shows a very interesting discovery that 
there exist a range of frequencies over which a 
compliant slider mechanism exhibits better 
constant-force behaviour than it does statically. 
This interesting discovery will significantly 
improve the likelihood that the compliant slider 
mechanism could be viable in industry for 
constant-force applications. 
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