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Abstract— This paper presents the non-trivial synchronization 

and parameter estimation of identical 5-dimensional 

hyperchaotic systems based using adaptive controllers.  The 5-

dimensional hyperchaotic system exhibits extremely complex 

attractors with corresponding hypersensitivity to 

perturbations in their system and algebraic structures. An 

elegant adaptive control technique was used to synchronize the 

dense state trajectories in finite time and also estimate the 

unknown parameter vectors of the response system as the 

parameter update law satisfies some stringent Lyapunov 

stability criteria whose solutions are asymptotically stable in 

the sense of Lyapunov. Numerical confirmation via MATLAB 

proved the effectiveness of the method. 

Keywords-adaptive synchronization; hyperchaotic system; 

Lyapunov stability; parameter estimation 

I. INTRODUCTION 

A hyperchaotic system is a nonlinear dynamic system 
which has two or more positive Lyapunov exponents, in 
addition to a null exponent along the chaotic flow and one or 
more negative exponent that ensures boundedness of the 
solution. A continuous-time hyperchaotic flow has a 
minimum of four dimensions, although there are reported 
cases of three-dimensional systems exhibiting hyperchaotic 
behaviours [1], [2]. Since the proposition of the first 
hyperchaotic system [3], extensive research has been focused 
on hyperchaotic phenomena, resulting in the evolution of 
several 4D hyperchaotic systems with varying topological 
characteristics in the literature [4]–[11]. Five-dimensional 
systems [12], six-dimensional system [13], seven-
dimensional system [14], eight-dimensional system [15] and 
nine-dimensional experimental system[16] have also been 
evolved. Corollary to this development, plethora of works 
have appeared on the control and synchronization of the 
dynamics of 3D and 4D chaotic systems using various 
control strategies [17], [18], leading to widespread 
applications in non-engineering and engineering systems 
[19]–[21] . Chaos synchronization occurs when two identical 
or non-identical chaotic systems are coupled such that, in 
spite of exponential divergence of their nearby trajectories, 
synchrony can be achieved in finite time or as t  . 

Synchronization depend on a number of conditions such as 

the coupling strength, parameter region of the system and the 
degree of divergence of the two chaotic systems while the 
necessary condition for master-slave synchronization is that 
the non-driven slave subsystem must be asymptotically 
stable in the sense of Lyapunov. Various control strategies 
have been used to synchronize chaotic systems. These 
include adaptive control [22], sliding mode control [23], 
nonlinear control [24], active control [18] , feedback and 
hybrid feedback control strategies among others [25], [26]. 
Different approaches to adaptive controller design for 
control, antisynchronization and synchronization of chaotic 
systems have been proposed in the literature and applied to 
nonlinear chaotic systems by various researchers. Although 
some of these methods are effective in tackling the control 
and synchronization objectives, they are often 
computationally complex. Hence, the justification for the use 
of the method proposed in [27]. This method bye-passes the 
rigorous mathematical analysis associated with the design of 
many controllers for adaptive control and synchronization of 
complex chaotic systems.   

II. THE 5D HYPERCHAOTIC SYSTEM 

The 5D hyperchaotic [28] evolves extremely complex 
attractors with corresponding hypersensitivity to 
perturbations in their system and algebraic structures. The 
algebraic structure of the system is given by  
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Where 

1 2 3 4 5[ , , , , ] [37,14.5,10.5,15,9.5]      positive constants 

are, whose values determines the evolution of the chaotic 
attractors and trajectories in time space. A sample of the 
chaotic attractors evolved from the positive constants are 
given in Figure 1 and Figure 2.  
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Figure 1.  Phase portraits of the 5D hyperchaotic system 

 
 

III. THEORETICAL ANALYSIS OF THE ADAPTIVE 

CONTROLLER 

In this section, the master and slave systems, adaptive 
controllers and parameter estimation subsystem are designed 
according the method proposed in [23]. Let a Master chaotic 

system of the form ( )x F x  , where ( ) : n nF x R R   is 

the vector field, be decomposed into the following form: 
 

                               
( ) ( )m mx A x B x  

                         
(2) 

mA  and mB  are parameters of the Master system and   

is a vector of the system parameter, 
1

1 2( , ,... )Tnx x x x R  are vectors of the state variables and 

n  is the dimension of the system.  Similarly, Let a 

controlled Slave system  ( )y G y  , where ( ) : n nG y R R  

is the vector field,  
1

1 2( , ,... )Tny y y y R   are vectors of 

the state variables, be decomposed into the following form: 
 

                 ˆ( ) ( ) ( , )s s iy A y B x L x y  
                          

(3) 

n
sA R  and n m

sB R   are nonlinear and linear 

functions in matrix decomposition forms. ̂  is the estimate 

of the parameter   and ( , ) m
iK x y R  are adaptive 

controllers to be designed. Let the synchronization error be 
given as  

 

   1 2 1 1 2 2( , ,... ) ( , ,..., )T T
n n ne e e e y x y x y x    

         
(4) 

While the parameter estimate error be ˆ( ) ( )t t     to 

be determined.  If there exist some adaptive 

controllers ( , ) m
iK x y R , 1,2...i n  such that  

 

                       
0 0

lim lim ( ) ( ) 0
t t

e y t x t
 

  
                      

(5) 

then the master and slave systems can be synchronized 
and the uncertain parameters can be estimated 
simultaneously for 0t  . From (1) and (2), the error 

dynamic system can be given as: 
 

ˆ( ) ( ) ( ( ) ( )) ( ) ( , )s m s m m ie y x A y A x B y B x B x K x y                                                                                                            

                                                                              (6)                               

And the adaptive controller will be of the form: 
                                                                                     

ˆ( ) ( ) ( ( ) ( ))m s s mK A x A y B y B x     
                     

(7) 

 

Where 
1 ; , 1,2,... ; 5iR i n n     is a matrix of the 

synchronization error variables and is of the form: 
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is a diagonal matrix whose diagonal elements 

11 22 55[ , ,..., ]diag    constitutes the positive coefficients of 

the adaptive controller, such that 
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(9) 

 
By substituting (7) into (6), the synchronization error 

system and parameter estimate error system is obtained as 
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ˆ ( )

m
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                                   (10) 

 

 
Where  

T
mB  is the transpose of mB .  

Theorem [23]: 
 By appropriate selection of the controller coefficients of 

(8), the Slave system (3) can be regulated by the adaptive 
controller (7) to achieve synchrony with the Master system 
(1), such that the parameter estimate error system (10) 
satisfies  
                                                                                     

 
0 0

ˆlim ( ) lim ( ) ( ) 0
t t

t t t  
 

  
                       

(11) 

 
Proof: 
Adopt a Lyapunov function candidate  
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By making use of (10) 
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It can be inferred from (13), based on the Lyapunov 

stability criteria [21], that the parameter estimation error 

system and synchronization error system are globally 
asymptotically stable for 0t  . 

 
 

IV. APPLICATION TO THE 5D HYPERCHAOTIC SYSTEM  

In this section, the theory discussed above is applied to 
synchronize two identical 5-D hyperchaotic systems with 
different initial conditions. Let (1) and (2) be the master and 
controlled slave systems respectively. Firstly, the nonlinear 

part mA  and linear parts mB  of the Master system are 

separated into matrix decomposition forms as follows: 
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Secondly, the matrix (15) is transposed as follows: 
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     (16) 

 
By using (10), the parameter update law was then 

computed and reduced to the matrix structure given by (17). 
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The adaptive control law is then solved by using (7) and 

(9) and presented in the following matrix form:                                
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          (18) 
 

Where 11 22 55, ..., 0   
 
are appropriately chosen. 

V. NUMERICAL SIMULATION RESULTS 

The numerical confirmation of the control strategy was 
carried out in the MATLAB numerical simulation 
environment, for the following initial conditions: Master 
system, 

1 2 3 4 5(0), (0), (0), (0), (0)
(0) [1.0,2.0,3.0,4.0,5.0]T

x x x x x
x   and 

the Slave system, 

1 2 3 4 5(0), (0), (0), (0), (0)
(0) [2.0,3.0,4.0,5.0,6.0]T

y y y y y
y   

which gives 

1 2 3 4 5(0), (0), (0), (0), (0)
(0) [1.0,1.0,1.0,1.0,1.0]T

e e e e e
e   and the 

parameter estimate system 

1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ(0), (0), (0), (0), (0)

ˆ(0) [1.0,2.0,3.0,2.0,1.0]T

    
  .  

The results are depicted in the following plots of Figure 
2. 

The adaptively synchronized dynamics of the controlled 
master-slave systems are depicted in Figure 2. 

The synchronized dynamics of the controlled master and 
slave systems are depicted in Figure 3. 

 

Remark 1 

Figure 2 shows the stabilized error state dynamics of the 
synchronized master and slave systems. It is known in 
control system design that the error state dynamics will 
converge asymptotically at the origin as the systems 
synchronize in finite time. Figure 3 depicted the 
synchronized dynamics of the two systems. All the five state 
variables synchronized in finite time. Figure 4 shows how 
the states of the slave system settle to the estimated values of 
the unknown parameters. A closer look at the plot shows that 
the unknown parameters were accurately estimated, as they 
share the same values with the known parameters of the 
master system. By implication, the designed controller is 
robust in the presence of uncertainty. 
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Figure 2.  Asymptotically stable synchronization error dynamics 
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Figure 3.  Synchronized trajectories of the master-slave systems 

 

 

 

The trajectories of the estimated parameters of the slave’s 
error system are plotted collectively in Figure 4. 
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Figure 4.  Converged parameter estimates of the slave system 

VI. APPLICATION TO SYSTEM MODELLING 

Chaos relate to the notion of nonlinearity, which imply a 
loss of causality relationship between perturbation and effect 
propagated over time. Thus, it provides an alternate method 
that explains the random behaviours of complex systems. 
Chaos plus mathematical tools is a framework for studying 
different models from different fields. Although the use of 
chaos in the field of computing has a short history, however, 
it has led to a new way of thinking computing among 
computer sciences.  

A. Chaos computing 

Chaos challenges the precision of mathematics and 
computing in general, by introducing a new computing 
technique that uses a network of chaotic elements to produce 
solutions, without the precision inherent in conventional 
computing. [29]. Chaos computing is the idea of using 
chaotic systems for computing. Modern computers perform 
computation based upon digital logic operations which are 
implemented with logic gates. Chaos can be used to produce 
logic gates where the dynamic characteristics of chaos are 
used for switching functions. For example, the sensitive 
dependence of chaos on initial conditions has been used as 
switching functions to generate patterns (change of states, 
analogous to “ON” and OFF”) [30].  Logic gates in 
conventional computers uses logic elements tp perform 
singular or combinational functions which are predictable 
and limited. However, chaotic elements could assume an 
infinite number of behaviours that can be used to represent 
different values. This flexibility will allow a single chaotic 
computer to perform a variety of computations, using its 
inherent self-organization, in contrast to conventional 
computer in which computing is more specialized. [39]. A 
“ChaoGate” is a chaos variant of the popular digital logic 
gate and consists of a generic nonlinear circuit that exhibits 
patterns that are caused by chaotic dynamics [31].  

B. Computer vision 

Chaos has been applied to improve computer vision 
algorithms for “smart” autonomous machines such as mobile 
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robots, drones and submersibles. This has increased the 
viewing field of these machines [36]. 

C. Economic and financial models 

Chaos  is increasingly finding relevance in modelling of  
complex economic and financial phenonmena that defies 
linear solution paradigms [32]. For example, in currency 
exchange, chaos has been applied to model and simulate 
volatile behaviours of currency exchange rates and stock 
market dynamics. The purpose is to derive control strategies 
that can stabilize the volatile behaviours and possibly 
synchronizes the tumbling rates with the realities in the 
markets. [33]. In addition, chaos has been embedded in the 
modelling of the nonlinear feedback mechanisms of profits 
of firms where spending do not always depend on profits 
[34]. 

D. Manufacturing information systems 

The increasingly complex challenges confronting 
manufacturing systems nowadays, caused by uncertain 
structural and dynamic complexity in industrial markets, has 
pedestalled chaos as an alternate solution paradigm to 
convention approaches. Thus, chaos has been applied to 
enhance the response and performance characteristics of 
manufacturing information systems. [38]. 

E. Data traffic in computer networks 

Computer scientists have applied chaos to construct 
mathematical models of the dynamics of traffics in networks, 
for the purpose of analyzing bottlenecks in the structure of 
the system and provide guaranteed quality of service (Q0S) 
[37]. 

F. Secure communication systems 

Synchronization of chaos first found application in the 
modelling of secure communication systems, where the 
chaotic dynamics were used to mask information as they 
stream through public communication network. The 
broadband characteristics of chaos, coupled with its features 
are useful in communication systems.  

G. Chaos-based cryptosystems 

Chaos has found numerous applications in the design of 
cryptographic systems. Chaotic dynamics are used in the 
shuffling and ciphering of text or multimedia information.  

VII.  CONCLUSION 

The numerical confirmation of the effectiveness of the 
designed controller shows that the synchronized error 
dynamics quickly converged asymptotically at 20t s , 

while the controlled trajectories of the master-slave systems 
coupled in synchrony at 5t s . This is a measure of the 

effectiveness of the controller. The parameter estimates 
equally converged to the true values of the system parameter 
measured with reference to the master system. The dynamics 
of two identical 5D hyperchaotic systems have been 
synchronized and the uncertain parameters of the controlled 
slave system were accurately estimated via the designed 
adaptive controllers. The simulated results confirmed that the 

error systems satisfy the Lyapunov stability criteria. It is 
worth noting that the hyperchaotic system can find 
applications in the modeling of various engineering and non-
engineering systems such as in image processing, secure 
communications, robot mobility and in complex medical 
science modeling and control.  
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