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ABSTRACT:

Knowledge of how the presence of a bend can change the flow patterns of a gas—liquid mixture is important for the
design of multiphase flow systems, particularly to prevent burn-out and erosion—corrosion. Burn-out and erosion—
corrosion both have serious implications for heat and mass transfer. The objective of this work therefore is to train an
artificial neural network (ANN), a powerful interpolation technique, to predict the effect of a vertical 90° bend on an air-
silicone oil mixture over a wide range of flow rates. Experimental data for training, validation, testing and final
prediction were obtained using advanced instrumentation, wire mesh sensor (WMS) and high speed camera. The
performance of the models were evaluated using the mean square error (MSE), average absolute relative error (MAE),
Chi square test (X?) and cross correlation coefficients (R). The deviation between the ANN predicted and measured data
are basically less than+4% . The well trained ANN is then used to predict the effects of the two input parameters
individually. The predicted results show that for the before the bend scenario, the most effective input parameter that
reflects a change in flow pattern is the gas superficial velocity. On the other hand, the most unfavourable output
parameter to measure after the bend is the average void fraction based on the fact that the flow near the bend is a
developing one. ‘ : ,

Key words: 90° bend, air—silicone oil, WMS, Average void fraction, PDF, ANN, LM algorithm, GDX, modelling

INTRODUCTION:

Pipe fittings such as valves, bends, elbows, tees, reducers, expanders, etc., is an integral part of any piping system. Flow
through piping components is more complex than the straight pipes (Bandyopadhyay and Das [1]). In particular, the
presence of a bend can significantly change the flow patterns immediately downstream with the potential of causing
damage to the pipe. One common flow characteristic observed in flows along bends is the redistribution of the
multiphase flow phases within the bend. This may lead to secondary flows, strongly fluctuating void fractions, flow
excursions, flow separations, pressure pulsations and other unsteady flow phenomena (Abdulkadir et al, [2]). The
requirements for economic design, optimization of operating conditions, and evaluation of safety factors create the need
for quantitative information about such flows [2].

The possibility of using experimental data to train an Artificial Neural Network (ANN) in order to predict the
redistribution of multiphase flows passing through 90° bends, has received little attention in the peer review literature.
Most of the investigations have been restricted to experimental investigation: [2-8] address the issue of gas-liquid
systems but most of the reported experiments are not extended to the application of ANN to predict such flows in bends.
This paper details the studies conducted to extend these investigations, [2], to consider the application of ANN to predict
the redistribution of multiphase flows passing through 90° bends.

All the transport processes such as mass, momentum and heat transfer during two-phase- gas-liquid flow are vastly
influenced by the flow characteristics. For an overall performance and purpose of safety in industrial systems, such as
petroleum and biomedical processing systems, chemical and nuclear reactors, it is essential to monitor the flow
behaviour during normal and transient operations (Ghosh et al.; [9]). According to [9], for any design analysis and
operation, it is important to have knowledge about the flow patterns. Probability density function (PDF) of void fraction
has been successfully in the past to characterise flow patterns [8]-[10], [11]-[14]. A number of studies have been carried
out on the application of ANN for predicting flow characteristics. [15] - [21] applied Artificial Neural Network (ANN)
for the prediction of hydrodynamic parameters in gas-liquid flows. However, these studies were limited to flow through
straight pipes. [22] applied ANN for the prediction of frictional pressure drops in U-bends. They claimed that the ANN
accurately predicted frictional pressure drop across U-bends.

In general, ANN is widely used in function estimation since it is able to estimate virtually any function in a stable and
efficient manner [17]. Therefore, it is expected that the ANN approach can predict the major performance of the effect of
a vertical 90° bend at arbitrary input conditions without too many experiment measurements in more industry relevant
fluids for the optimal, efficient and safe design and operation of the flow systems.

MATERIAL AND METHODS

All experiments were carried out on an inclinable pipe flow rig within the Engineering Laboratories of the Department of
Chemical and Environmental Engineering at University of Nottingham. Details about the experimental apparatus have
been previously reported by [2] and [23]. The experiments were all performed at an ambient laboratory temperature of

20+0.5°C and a pressure of 1 bar. The behaviour of the air— silicone oil mixture was examined using WMS. This
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technology, described by [24-26], can image the dielectric components in the pipe flow phases by measuring rapidly and
continually the capacitances of the passing flow across several crossing points in the mesh.

Artificial neural network (ANN) modellmg s
In this work, three different training algorithms from commercial application (MATLAB) were used to configure the
network and three different transfer functions were tested for each training algorithm. The network topography consists
of an input layer, a hidden layer and output. The three training algorithms used are; Gradient descent with variable step
size and momentum term (GDX); Levenberg Marquardt (LM) algorithm and Resilient back-propagation (RP).
According to [12], ANN method is good at many-to-many relationship analysis. Through reliable training and testing
using experimental data, the trained ANN can predict the performance of the effect of a bend on air-silicone oil flow.
When the ANN is applied to predict the performance of the effect of a bend, it can reveal the highly non-linear
relationship between the two input parameters and two output parameters, by searching an optimum weight in its
weighting space. The optimal weights of ANN model store the information, which can best represent such highly non- -
linear relationships. Mathematically, searching the optimal weight or training the ANN aims to minimize a cost function
with respect to the training data set. The mathematical background can be found in [12, 21, 21] and will not be
represented here for simplicity. It is worth mentioning that different network topologies are available in ANN but for this
work, the back-propagation network with feed-forward algorithm was chosen as this has performed satisfactorily well in
previous works such as [16], [18], [20], and [27-28] among others.

RESULTS AND DISCUSSION

Variation of MSE with number of processing elements in the hidden layer

Table 1 presents the optimum number of processing elements for average void fraction and PDF of void fraction before
_and after the bend. The number of processing elements which gives the least value of minimum cross-validation MSE is
chosen as optimum.

Objective function and performance of ANN

The objective function provides the basis for performance evaluation and network algorithm selection. In this work, sum
of squares of error is used as the objective function and is given by equation (1).

TABLE 1: OPTIMUM NUMBER OF NEURONS

Algorithm Transfer function Optimum number of processing elements
Average void fraction (¢) PDF of void fraction
Before After the bend Before the After the bend
the bend
bend
GDX Tansig 4 8 12 11
Logsig 9 10 12 11
Purelin 16 2 18 13
LM Tansig 17 20 12 : 11
Logsig 8 6 12 27
Purelin 6 2 18 16
RP Tansig - 10 14 12 5 -
Logsig 8 3 12 14 -
Purelin 3 2 11 16
E=— N (0, —t)* ¢))
Equatlons (2—5) are used to check the overall performance of the network. Mean Square Error (MSE), given by;
MSE=23Y (0,-t)? 2
Mean Absolute Error (MAE), given by; \ =
MAE = —Z"" ile, — ¢t , ®3)
Chi square test
X2 =3y @)

£

Correlation Coefficient

&)

The maximum validation test is chosen as six (6) as this provides good results for the problems tested. Network
configuration was based on minimum cross validation MSE. It is worth mentioning that the model with the least value of
Chi square ( (X?) is taken as the model with best performance when predicting average void fraction. However. the
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prediction of PDF of void fraction model performance is based on the Mean Absolute Error (MAE). In this case, the
model with the least value of MAE is chosen as the model with the best performance.

b. Performance for test and prediction data sets

In this work, test and prediction data sets are used for testing model performance. However, it is worthy of note that
while test data set was part of the original network configuration, the prediction data set was not. Since the prediction
data set is not included during network configuration, results obtained from it can be used reliably to validate model
results obtained from test data, thus minimising the risk of randomization error. While the test data is used here to choose
the best performing model, the prediction data set serves as a check for generalization properties of the model.

It can be observed from Table 2 (test data) that all the ANN models tested for the prediction of average void fraction
before the bend performed very well. This is seen in the small values of MAE and closeness to unity of R. However, Chi
square test confirms that the ANN model based on LM algorithm with logsig transfer function and eight neurons in the
hidden layer performed best for the prediction of average void fraction before the bend. Results of Table 2 (prediction
data) are a confirmation that all the models tested performed satisfactorily and that the models have good generalization
properties.

TABLE 2: PERFORMANCE OF ANN MODELS FOR PREDICTION OF AVERAGE VOID FRACTION BEFORE
THE BEND

T e Measurement Type (Test data) Measurement Type (Prediction data)
thm function MSE MAE R Chi MSE MAE R i
square square

Tansig 0.0014 0.1915 0.9864 0.0089 0.0015 0.0527 0.9907 0.0021
GDX Logsig 0.0034 0.2616 0.9902 0.0181 0.0016 0.0521 0.9714 0.0025

Purelin 0.0107 0.58%4 0.9189 0.1113 0.0078 0.1237 0.9542 0.0125

Tansig 2.50e-4 0.0414 0.9991 5.36e-4  0.0100 0.1119 0.8060 0.0136
LM Logsig 9.82e-6  0.0057 0.9999 2.57e-5 5.56e-4 0.0313 0.9674 8.13e-4

Average void fraction

Purelin 0.0110 0.5970 0.9189 0.1156 0.0076 0.1216 0.9541 0.0122
Tansig 0.0061 0.4141 0.9479 0.0457 4.50e-4  0.0277 0.9694 6.31e-4

RP Logsig 0.0014 0.1602 0.9949 0.0067 0.0025 0.0610 0.9410 0.0038
Purelin 0.0114 0.6143 0.9148 0.1113 0.0130 0.1675 0.9465 0.0204

Table 3 gives performance results for best neural network models for prediction of PDF of void fraction before the bend.
It can be observed from Table 3 that the neural network models based on LM algorithm with sigmoid transfer function in
the hidden layer performed very well as can be seen by the small values of MAE and the closeness of R to unity. This is
further validated by similar results obtained for prediction data.

TABLE 3: PERFORMANCE OF BEST ANN MODELS FOR PREDICTION OF PDF OF VOID FRACTION BEFORE
THE BEND

Algorithm Transfer Measurement Type (Test data) Measurement Type (Prediction
function data)
MSE MAE R MSE MAE R
GDX Tansig 3.5041e-4 0.0106  0.5287 2.3702e-4 0.0113  0.5556
Logsig 2.7497e-4 0.0094  0.6202 1.4472 0.0091  0.5718
Purelin 3.3954e-4 0.0098  0.4922 1.6428 0.0096  0.4187
LM Tansig 5.8107e-5 0.0028  0.9335 8.4041e-6 0.0019  0.9750

Logsig 7.0600e-5 ~ 0.0029  0.9189 1.5103e-5 0.0026  0.9550
Purelin 3.1843E-4 0.0077  0.5413 1.0143e-4 0.0067  0.6441
RP Tansig 2.0835e-4 0.0065  00.730 1.9297e-4 0.0063  0.6372
Logsig 2.6266e-4 0.0072  0.6506 1.015%e-4 0.0052  0.76014
Purelin 2.9992e-4 0.0074  0.5768 1.1360e-4 0.0075  0.5987

Comparison between experimental and predicted PDF of void fraction before the bend

The PDF of time varying void fractions has been used to classify the flow patterns in the same manner as [2], [14] and
[29]. According to them, a single peak at low void fraction represents bubbly flow whiles a single peak at low void
fraction accompanied by a broadening tail represents spherical cap bubble. On the other hand a double peak feature with
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one at low void fraction whiles the other at high void fraction represents slug flow whiles a single peak at high void
. fraction with a broadening tail represents churn flow.

The experimental and predicted PDF of void fraction before the bend data at liquid superficial velocity of 0.14 ms™ and
variable gas superficial velocities from 0.05 to 2.84 ms™ .are shown in Figure 1.
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Figure 1: Experimental and predicted PDF of void fraction before the bend at liquid superficial velocity of 0.14 and gas
superficial velocity (ms™) of: (a) 0.05 (b) 0.54 and (c) 2.84. R.L represents reconstructed images of two-phase flow
pattern. The dash line (a) Represents bubble flow whiles the thick line spherical cap bubble. On the other hand, the thick
line in (b) represents Taylor bubble whiles the dash line liquid slug. The thick line in (c) represents churn flow.

At liquid and gas superficial velocities of 0.14 ms™ and 0.05 ms’, respectively, both the experimental and predicted PDF
of void fraction presents a single peak of the void fraction with a broadening tail extending to a high value of 0.4. This
defines a spherical cap bubble flow as in [14]. The flow pattern has been confirmed by the reconstructed images of gas—
liquid flow patterns and images of high speed video as shown in Figure 1 a. Thus the degree of agreement between
experimental and predicted ANN is good.

When the gas superficial velocity increases to 0.54 ms™, the spherical cap bubbles coalesce into bullet-shaped Taylor
bubbles and a slug regime is formed. Both the experiment and ANN model (predicted) gives two main peaks at the
values of 0.20 and 0.70, respectively. These peaks are the signature of the aerated liquid slugs and the Taylor bubbles
with the different sizes. This is also confirmed by the analysis of the reconstructed images of two-phase flow pattern and
video images as depicted in Figure 1 b.

At 2.84 ms™ gas superficial velocity, both the experimental and predicted PDF of void fraction shows a single peak at
about 0.80 with broadened tails, down to 0.3 and 0.92. This is the typical feature of churn.
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Figure 2: Experimental and predicted PDF of void fraction at liquid superficial velocity of 0.14 and gas superficial
velocity (ms") of: (a) 0.95 (b) 1.40 and (c) 1.89.
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It is worth mentioning that it was observed during the course of carrying out the experimental campaign that the structure
of churn flow becomes unstable with the fluid travelling up and down in an oscillatory fashion but with a net upward
flow. The-instability can be attributed to the relative parity of the gravity and shear force acting in opposing direction on
the thin film of liquid of Taylor bubbles. Thus, the question begging for an answer therefore here is can the ANN model
successfully mimic churn flow and the transition from slug to churn flow’ (unstable slug flow) with confidence? This
section, aims to provide an answer to this interesting question which has serious implications for heat and mass transfer
using the PDF of void fraction presented in Figure 2.

Interestingly, the ANN model is able to replicate both the unstable slug and churn flows as shown in Figure 2.

At gas superficial velocity of 0.95 ms™, two peaks appear on both the experimental and predicted PDF graph of void
fractions. The high value of gas flow rate of 0.95 ms™ brings out an increase in Taylor bubbles and the shrinkage of the
liquid slugs and as consequence more and more bubbles are entrained in the liquid slugs. This pattern according to [14]
is defined as unstable slug flow.

When the gas superficial velocity reaches 1.40 ms™, the PDF of void fraction for both the experimental and predicted
have a single peak with broadened tails down to 0.2 and 0.9. This is the typical feature of churn flow.

At gas superficial velocity of 1.89 ms™, the flow pattern for both the experiment and predicted remain unchanged, churn
flow.

Table 4 presents a summary of comparison between experimental and predicted PDF of void fraction before the bend. It
can be concluded therefore that the model can be used to classify flow patterns, unstable slug and churn flows before the
bend with confidence.

TABLE 4: SUMMARY OF COMPARISON BETWEEN EXPERIMENTAL AND PREDICTED PDF OF VOID
FRACTION BEFORE THE BEND FOR BOTH TEST AND PREDICTION DATA SETS

Flow condition Test data Flow condition Prediction data
: Experimental Predicted - Experimental ~ Predicted

Usg = 0.05 ms™ Slug flow Slug flow Ug.= 0.05 ms™ Churn flow Churn flow
Usg= 0.34 ms™ Usg=1.42 ms™

Ug = 0.14 ms™ Spherical cap  Spherical cap Ug=0.05 ms” Churn flow Churn flow
Usg= 0.05 ms™ bubble bubble Usg=1.89 ms™

Ug= 0.14 ms™ Slug flow Slug flow U= 0.05 ms™ Churn flow Churn flow
Usg=0.54 ms’ Ugg =2.84 ms™

Ug=0.14 ms’ Churn flow Churn flow Ug=0.14 ms'l Unstable slug Developing

Usg=2.84 ms™ Usg=0.95 ms’ flow slug flow
g

Results of Tables 5 and 6 indicate that the all the ANN models tested performed poorly and showed weak generalisation
properties. This is attributed to the fact that the flow immediately downstream of the bend is not fully developed. It is
interesting, though, to observe from Table 6 that the ANN model based on gradient descent algorithm with logsig
transfer function and eleven neurons in the hidden layer performed better than all the other ANN models tested. It
surmises to say that the ANN models cannot be used reliably in the prediction of average void fraction and PDF of void
fraction immediately after the bend where the flow is not fully developed.

Tables 5 give performance results of the models tested for the prediction of average void fraction after the bend.
TABLE 5: PERFORMANCE OF BEST ANN MODELS FOR PREDICTION OF AVERAGE VOID FRACTION
AFTER THE BEND '

Algorithm  Transfer Measurement Type (Test data) Measurement Type
function : (Prediction data) -
MSE MAE R Chi MSE MAE R Chi
square square
GDX Tansig 0.0485 0.9778 09886 0.2171 0.0106 0.1199 0.9995 0.0123
Logsig 0.0438 09611 0.9993 0.2140 0.0047 0.0659 0.7381 0.0060
Purelin ~ 0.1055 1.5623 0.8477 0.6016 0.0084 0.0970 0.7477 0.0096 -
LM Tansig 0.0346 09091 0.9402 0.2647 0.0205 0.1520 0.3408 0.0255
Logsig 0.1151 1.4591 0.5549 0.5957 0.0147 0.1196 0.3619 0.0166
Purelin ~ 0.0893 1.3884 0.9047 0.4743 0.0064 0.0736 0.6506 0.0073
RP Tansig 0.0164 0.2137 09972 0.0211 0.0113 0.1001 0.6951 0.0130
Logsig 0.0841 1.4519 09911 0.4972 0.0036  0.0647 0.9901 0.004]
Purelin ~ 0.1013 15486 0.8797 0.5890 0.0042 0.0550 0.6941 0.0047
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TABLE 6: PERFORMANCE OF BEST ANN MODELS FOR PREDICTION OF PDF OF VOID FRACTION AFTER
THE BEND

Algoritiim  Transfer . Measurement Type ‘ ‘Measurement Type (Prediction data)
s function MSE . MAE R MSE MAE R . 4
GDX Tansig 0.0034 0.0195 0.4048 9.3338e-4 0.0155 0.2448

Logsig 0.0030 0.0186 0.6248 9.5071e-4 0.0149 0.2379
Purelin - 0.0039 0.0209 0.1724 5.2901e-4 0.0167 . 0.1876
LM Tansig 0.0048 0.0190 -0.3178 0.0015 0.0109 0.3937
Logsig 0.0040 0.0211 0.1105 0.0017 0.0145 0.3728
Purelin 0.0036 0.0189 0.3791 3.6641e-4 0.0099 0.5667
RP Tansig 0.0039 0.0213 0.1984 2.0884e-4 0.0080 0.7803
Logsig 0.0038 0.0217 0.2287 7.3632e-4 0.0157 0.2845
Purelin 0.0037 0.0194 0.3156 3.3291e-4 0.0104 0.5769

Comparison of experimental and ANN predicted average void fraction over the entire experimental range of gas
superficial velocities

An interesting observation made here is that the model is able to successfully predict the variation in average void
fraction with gas superficial velocity. It can be concluded based on the plots that the best degree of agreement between
experiment and predicted average void fraction is observed at liquid superficial velocity of 0.14 ms™', followed by at 0.38

ms;l, liquid superficial velocity.
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Figure 4: Comparison of variation of average void fraction with gas superficial velocity obtamed from experiments and
that predicted using the ANN model based on LM algorithm at liquid superficial velocity (ms’ 1: (a) 0.14 and (b) 0.38.

Figure 4 (a-c) shows that both the experimental and predicted average void fraction changes with the gas superficial
velocity whilst on the other hand decreases with liquid superficial velocity. From the plots, low void fraction values can
be observed to be associated with spherical cap bubble and are seen to increase rapidly to slug flow, unstable slug flow
and churn flow regimes with an increase in gas superficial velocity. This observed trend with regards to average void

fraction is consistent with the observations of [30-33].

4. CONCLUSION
In this work, the applicability and feasibility of the use of Artificial Neural Network (ANN) for estimating the

performance of the effect of a vertical 90° bend on an air-silicone oil mixture was demonstrated. A well trained and
tested ANN using a lot of measurement data is employed to predict its performance at off-design conditions. Especially,
the effect of two input parameters (liquid and gas superficial velocmes) has been examined individually by keeping the
other parameter constant. The coefficients ‘of determination value (R’) are found to be 0.9999 and 0.9907 for test and
predicted data, respectively. It indicates that there is a good agreement between experimental and predicted results by
ANN. The predicted results show that the most effectively positive influence on the bend is the gas superficial velocity.
An increase in gas superficial velocity triggers a change in flow pattern from spherical cap bubble to slug flow then to
churn flow and then finally to annular flow. Due to the capability of the neural networks at interpolation, it is expected
that this trained network has also the capability to predict the void fraction and PDF of void fraction outside the range of
liquid and gas superficial velocities considered by the experimental work. Therefore, the void fraction and PDF of void
fraction including the flow pattern can be predicted with a high degree of accuracy just by knowing the values of liquid

and gas superficial velocities using artificial neural networks.
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