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ABSTRACT

In this paper, the electronic circuit realization of the mathematical model of a normalized chaotic permanent magnet
synchronous motor (PMSM) is presented. The mathematical model of a permanent magnet synchronous motor is
remodeled so that it conforms to nonlinear chaotic-algebraic structure. The chaotic PMSM is thus, diffeomorphic to the
canonical Lorenz chaotic system in it simplified form which is a three-dimensional coupled system consisting of the
torque, g-axis current and d-axis currents as state vectors. Robust adaptive control laws are formulated to drive the state
variables of the chaotic PMSM master and slave systems into states of synchrony in finite time while simultaneously
estimating the unknown state parameters of the slave system. The results of the numerical simulations of the
mathematical model of the chaotic PMSM with MATLAB matched those realized through the design of autonomous
electronic circuit using NI Multisim simulation software. The dynamics generated by the chaotic PMSM is suitable for
cross-discipline applications such as secure communications and biometric security amongst others.
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1 INTRODUCTION

Chaos is a phenomenon that occurs in nonlinear dynamic
systems that are highly sensitive to disturbances in their
system’s structures or unexcited states (Kellert, 1993).
Chaos phenomena have been observed widely in natural
and man-made systems, which has inspired engineers and
scientists to utilize them for modelling of real life systems
and management of of the behaviours of sysems. In the
medical fields, chaotic dynamics has been used to study
and  understand  electroencephalography  (Albert,
1992)(Kumar & Hegde, 2012). In finances and economics,
it has been used to study and model prices and stock market
fluctuations (Guegan, 2009). In signal analysis, chaos has
utilized extensively in the design of secure communication
systems and multimedia security systems (Carroll &
Pecora, 1991). In power systems and machines, chaos has
been observed in the dynamics of machines and electric
power cycles (Harb, Batarseh, Mili, & Zohdy, 2012).
Chaos is generally undesirable in systems. However, in
recent studies, chaos has been found to be useful in the
study of power outages (Harb & Smadi, 2004), resulting in
the possibility of anti-synchronizing chaotic dynamics to
counteract power outages (Abbasi, Gholami, Rostami, &
Abbasi, 2011). With particular reference to electric motors,
the presence of chaos can lead to undesirable performances
(Pennacchi, 2009). Several approaches have been proposed
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and applied to control chaos in various dynamic systems
(Moaddy, Radwan, Salama, Momani, & Hashim, 2013;
E.A. Umoh, 2013, 2014; Edwin A. Umoh, 2014a).
Synchronization is a regulating strategy that is used to drive
the trajectories of two or more chaotic systems to achieve
synchrony in finite time (Pecora, 2007). Several
synchronization and antisynchronization techniques have
been reported and used to regulate system dynamics in the
literature (Emadzadeh & Haeri, 2005; E.A. Umoh, 2014,
Edwin A. Umoh, 2014b; Edwin Albert Umoh, 2014). In
recent years, studies on the existence of chaos and
bifurcation in motors has increased in the literature (Gao &
Chau, 2002; Jing, Yu, & Chen, 2004; Li, Park, Joo, Zang,
& Chen, 2002). Chaotic dynamics are exhibited by PMSM
in the presence of disturbances and can lead to
unpredictable behaviours, with dire consequences during
operation. The complex behaviours of motors adds to the
difficult of controlling and synchronizung chaos in them.
However, several works on controlling and synchronizing
the dynamics of PMSM have been reported in recent years
(Ge & Lin, 2007; Zribi, Oteafy, & Smaoui, 2009). In this
paper, the adaptive control of the mormalized model of a
smooth air-gap permanent magnet synchronous motor
(Choi, 2012) with unknown parameters is presented. The
bifurcation diagram of these parameters are generated and
an electronic circuit of the model is realized using discrete
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electronic components, simulated in the virtual
environment of the NI Multisim software is also presented.

GENERAL FORM OF THE NORMALIZED CHAOTIC
PMSM

The basic form of the chaotic PMSM (Choi, 2012)is given
as
w= O'(qus -0)-T,

i =—qu—az,s+y5+r7qs+07q 1)

Ige = —lyg +a1iqs +Vy +d,

Where @ is the electrical rotor angle speed, 7, = q-axis (b)

sl

current, i, = d-axis current, 7, = load torque

o and y are parameters of the motor, I7qs = g-axis

voltage, I7ds = d-axis voltage, Jq and d. , are disturbances

applied the q and d axes respectively. The MATLAB-
based simulated results of the open loop dynamics of the
chaotic PMSM when the load torque, axes voltages and
disturbances are negligible, i.e.

T, = I7qs =V, =d, = d, =0 and the initial conditions

I

= qu =1, =0.01 are depicted in the following figures.
(©)

Figure.1. 2D Phase portraits of the chaotic PMSM

(@ iy vso (b) Lovs @ (¢) iy vs Z]s

(a)

(a)

396



2"d International Engineering Conference (IEC 2017)
Federal University of Technology, Minna, Nigeria

43647
4362}
‘ 4.36F
: w\ M N MMH““M ‘M ‘ ‘h” w 4358
.?0 ‘ ) \ f“ 5 4356
g ”H‘\MM i m ‘ \ W H\M 54.354
: M ‘H ‘UM ‘ ! MH ‘U w J‘ M” 4352
Al ‘
435}
J O S T T RO S B b
0 0 N 4 t(50) 60 70 8 % 10 46005 01 045 02 %25 03 035 04 045 05
s sigma
b) Figure 3. Bifurcation diagram of parameter o
3
%0 18)(10"
! 16}
v f
AT “‘
Il il T{ERN
LUl Il
91%”'1\\ I ”W‘ “M”\M” ‘.n [ “‘ :
[ - \ | R
‘I x Ju JU,,
5 | L R | | | |

0 10 2 0 4 5 60 710 8 9 10

- 1 1 . 1 1 1 . . 1 I
0 005 01 015 02 025 03 035 04 045 05
rho

Figure 4. Bifurcation diagram of parameter

Figure 2. Dynamics of the State trajectories in time space
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The bifurcation plots of parameters o and y are given in

Figure 3 and Figure 4 respectively.

397



o

[ Eawgmad™

2" International Engineering Conference (IEC 2017)
Federal University of Technology, Minna, Nigeria

THEORETICAL
CONTROLLER

ANALYSIS OF THE ADAPTIVE

In this section, the theoretical framework of the adaptive
controller and parameter estimate law are summarized. In
practice, owing to real time uncertainties in dynamic
systems, not all of system’s parameter are always available
during operations. As a result, an adaptive controller which
acts as an observer is essential to infer the parameters from
existing variables. Several methods of designing adaptive
controllers have been utilized to control and estimate
unknown parameters of systems in the literature (Naseh &
Haeri, 2005; Vaidyanathan, Volos, & Pham, 2016). In this
paper, an elegant approach proposed in (Wang & Liao,
2005) is used to stabilize and synchronize the aperiodic
dynamics of the two identical chaotic PMSMs.

Given a chaotic PMSM known as the Master system, of the
form

= f(x) )

Where xe R"is the state vector of the PMSM. f(x) isa

vector field. Eq. (2) can be decomposed into the following
form

=P, (x)+S, (N)a ?3)

P,eR",S, e R™" are nonlinear and linear functions of

the parameters of the PMSM system, « € R!is the vector

of the system parameters o and » and

~m

x=(a", iy i) e R are vectors of the state variables

of the master system. Let the controlled Slave PMSM
system which has the same definition as the master system
be of the form

y=28) “)

be decomposed into the following form

y=F+S,(»na+Ci(x,y) )

Where «ais an estimate of the vector «.

Ci(x,y)e iRl(i =1,2,3) is the adaptive controllers to be
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designed and y = (@', i, iz ) e ' By defining the state

€rror as

e=(e,e,e)=y(t)—x()

) —m s _Tm TS __Tm (6)
=(w" —o Slgg =y s lge — g )
And the parameter estimation error as
p)=al)-a @)

Then, it can be inferred that based on the Lyapunov
stability principle, if an adaptive controller can be designed
such that

lim |¢f| = lim || (1) - x(1)| = 0 8)
X—0 X—>0

Then the master and slave chaotic PMSM can completely
synchronized in finite time and the unknown parameters
can be estimated. From (6), the error dynamic system can
thus be written in the form

e=y-x=F(y)=-F,x)+(S(y)=S,(x))a

©
+S1n (X)¢(f) + Ci (x9 J’)

From (8), the adaptive controller to be designed is
structured in the form

Ci(x)=P(x) =K~ (S, =S, (x))a~-g (10)

Where & e R™™,R' is a positive definite matrix of the

form
S| G
S [=Ale (1n
S &
Where A is a diagonal matrix is whose elements

Ay, Ay, ,Ay; constitutes the positive coefficients of the
adaptive controllers to be designed. By substituting
inserting (10) into (9), the compact form of the error system
and parameter estimation error system are determined as
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e=S; -¢
¢ A(;/)¢() ¢ (12)
a==5; (y)e

APPLICATION TO THE NORMALIZED CHAOTIC
PMSM SYSTEMS

The theory outlined in the previous section is now applied
to the synchronized the state trajectories and estimate the
unknown system parameters of the chaotic PMSMs. The
nonlinear part of the master system of (1) is

0
B, (x)=| —o"ig 13)
o™iy
The nonlinear part is given as
iq"; -o" 0 0
S, (x)= 0 @" 0 (14)
0 0 0

The slave system has the following structures.

The Nonlinear part is given as

0
R(y)=|-a"ig (15)
@iy
The nonlinear part is given as
=@ 0 0
S=| 0 o' (16)
0 0 0

The transposition of (16) gives
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=@ 0 0
SSm=| 0 @ 0 (17)
0 0 0

Based on (12), the parameter estimate error system is given
as

5 =@ 0 0 °
a;z—SST(y)ez 7|=-| 0 o 0lle
0 0 0 0]e
- (18)
(a)s - Z;S )el
= —CT)Sez
0

The adaptive controllers are derived from (10) and (11) as

G (e —¢)—Ape
—X X3+ Y V3 —0e —Aye,

G XX =Ny, —Asze

(19)

2 RESULTS AND DISCUSSION

The results obtained from numerical simulation of the
master and slave system and the controller and error
systems for the following initial conditions using
MATLAB software, are depicted in the following figures.

Master PMSM system, @" =1y = i,' = 0.01
Slave PMSM system, @° =i =1, i;; =10

Parameter estimate error system, o= 77 =1
The controller coefficients
A=Ay =Ay =10.

were  selected as
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Figure 7. Dynamics of the estimated parameters &, }7

Figure 10. Synchronized dynamics of state variables Zii and l_d;n
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ELECTRONIC CIRCUIT REALIZATION OF THE
NORMALIZED CHAOTIC PMSM

Autonomous electronic circuits comprising basic circuit
components such as resistors, capacitor and analogue
integrated circuits such as operational amplifiers can be
built to mimic the behaviours and dynamics of a nonlinear
chaotic system. The behaviours of the chaotic system —
quasi-periodic, periodic and transient behaviours can be
captures as the parameters of the circuits are varied
accordingly. The essence of constructing an electronic
chaotic system is to authenticate the chaoticity of a
proposed system because stochastic noise often have the
same dynamic as a deterministic chaotic system (Kenedy,
1995). In the literature, almost all chaotic systems are
provides with their electronic circuit equivalent. In this
section, the electronic circuit is realized and simulated in
the virtual environment of NI MultiSim software. The time
constant of the ideal simulation environment and the ideal
components are not compatible and are therefore rescaled.
In this section, the mathematical model of chaotic PMSM
(1) is transformed into electronic circuit through
appropriately selected parameters of the components.
Basically, the operational amplifier provides the means to
perform addition, subtraction, differentiation and
integration of the coupled differential equations that
constitutes the mathematical model of the system. The
multiplier produces the nonlinear combination of two
variables which introduces nonlinearities into the algebraic
structure of the model. The model circuit equation is given
as

- R (i @
R B
RSCI RZ Rl

ZS =£ _éf_s_%+i (20)
RyGy Ry Ry Ry

= R, 7 —
= _ R (_ﬂwJ
R17C3 RlS RIS

The circuit diagram of equation of (1) is of the form
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Figure 11. Chaotic Electronic PMSM

The time constant ¢=r7,, where 7,=0.01. The

multiplier voltage gain is fixed at 10V / V. Therefore, using

operational amplifier circuit theory,

parameter values were selected.

the following

For the value of o0=546, R =R,=183K,
Ry =Ry =Ry = Ry = Ris = Rig = Rig =100K,
Ry=R,=10K, Ry=R,=5K. C,=C, =C; =100nF
. Using Multisim software, the following captures were
observed.
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Figure 12. 2D phase portraits of the electronic chaotic PMSM circuit Figure 13. Dynamics of the state trajectories in time space
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3 CONCLUSION

This paper has demonstrated how the dynamics of a
permanent magnet synchronous motor can be modelled
with electronic circuits. This approach makes the unwanted
dynamics of the motor to be suitable for application in such
areas as secure communication, cryptography and related
fields where the dynamics can be used to hide information
on transmission channels. It can also be seen that the
designed adaptive controller robustly synchronized the
chaotic orbits and estimated the unknown parameters of the
slave system. The electronic circuit of the chaotic PMSM
mimics the chaotic dynamics of the mathematical model,
thus validating the existence of chaos in the normalized
chaotic PMSM.
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