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Abstract—  

This paper reports on application of bootstrap 

nonlinear regression method to a design of an ex-

periment dataset with fewer experimental runs. 

Design with desired properties was augmented and 

verified using graphical techniques. The augment-

ed design with the desired properties benefited the 

accuracy of the approximated function used.   
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computing nonlinear function and bootstrap was 

also compared. 
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Introduction                                                                     

The beauty of statistics is in its ability to obtain an 

approximation for the function  ( f ),  that is able 

to describe a phenomenon of interest, but often 

time some phenomenon generate little or no data 

(insufficient information or sample size) which 

makes it difficult to obtain sufficient, efficient and 

robust estimates.  Nevertheless, finding an ap-

proximate function to describe the relating varia-

bles in such phenomenon is still of interest. 

Therefore, we need to look for a way around the 

problem. 

1.1 The Problem of Data Sufficiency and the 

Cost of  An Experiment 

 The availability of sufficient information or sam-

ple size about a phenomenon is not always at the 

researcher luxury. Some phenomenon could hard-

ly produce up to ten sample size, and the estimate 

gotten from such small observations could be 

misleading in application. How many of such 

fewer samples will the law of large numbers be 

applicable to?  Phenomenon in discipline such as 

Medical Science, Geotechnical Engineering  

where often data were simulated to assume the 

phenomenon behaviour, while in experimental 

design we are faced with  the problem  of cost of 

experimenting  and large number of experimental 

runs which sometime could be unattainable. Re-

searcher can be interested in studying a relative 

new or rare phenomenon, which there is little or 

no prior knowledge about the phenomenon or da-

ta about the phenomenon, for example- infor-

mation on a newly discovered virus spread, sud-
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den movement of the galaxies or earth crust in 

away it has never done before, the little jot of in-

formation from such newly discovered phenome-

non can be mimic or better still simulated to gen-

erate a much larger datasets. But simulation can 

be highly prone to error because most of the 

simulation methods tell us little or nothing about 

the distribution of such simulated data, if at all it 

does, does the simulated data conform to the true 

distribution of the simulated phenomenon. This 

work shall prefer to re-sample such token infor-

mation or sample to give birth to a much larger 

sample size using the bootstrap re-sampling 

method. The name “bootstrap” incidentally con-

veys the impression of “something for nothing” 

where statisticians idly re-sampling from their 

samples (F.W. Scholz, 2007).  Bootstrap re sam-

pling method cancelled out the problem of large 

variance which usually arises when modelling 

with small set of samples.  

 

1.2   Data Visualization: 

The first step to computing in statistics is to look 

at your data and ask researchable questions on it. 

The method of data visualization can aid in look-

ing indept into the data so as to be able to ask 

necessary questions about the phenomenon of 

study. The failure of taking advantage of the ex-

ploratory data analyses (EDA) or any other meth-

od of data visualization usually results to using a 

correct answer to answer a wrong question. The 

method of data visualization helps to suggest the 

possible relationship existing between variables 

involved and in generality a close and relevant 

function can be approximate. According to Julian 

J. Faraway (2002) “Statistics starts with a prob-

lem, continues with the collection of data, pro-

ceeds with the data analysis and finishes with 

conclusions. It is a common mistake of inexperi-

enced Statisticians to plunge into a complex anal-

ysis without paying attention to what the objec-

tives are or even whether the data are appropriate 

for the proposed analysis. Look before you leap!” 

One important way to look before leaping is to 

visualize your data so you don’t prescribe a linear 

function for a non-linear relationship. 

1.2 Exploratory Data Analysis (EDA): 

This method of analysis uses visualization tools 

and computes synthetic descriptors. EDA is re-

quired at the beginning of the statistical analysis 

of multidimensional data, in order to get an over-

view of the data, transform or recode some varia-

bles orient further analyses (Daniel Borcard et al, 

2011).   Data visualization helps to detect outliers, 

spotting local structures, systematic errors in the 

data, skewed or unusual distributions trends, clus-

ters, and for evaluating modelling output and pre-

senting results. Note, deciding on which graphics 

to use is often research and researchers view de-

pendent. Most importantly, EDA is a major way 

of suspecting a nonlinear dataset in a regression 

problem. 

1.3 Exactness VS. Approximate Function-The 

Avoidance     Of Nonlinear Problems 

Schabenberger and Pierce (2002) charge that re-

searchers tend to avoid non-linear models because 

of discomfort with the messiness of implementa-

tion. Whereas the limitation of linear models that 

constrained in how the parameters and coeffi-

cients can interact is a big drawback to correct 

modelling of many biological, agro metric and  

many other real life scenarios that are usually 

nonlinear in nature.  
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In a linear model we have had to ensure that the 

normal equations, which are the first derivatives 

of the objective function with respect to the coef-

ficients, were independent of the coefficients. 

This constraint has precluded us from using a 

wealth of biologically realistic model forms. The 

messiness is unavoidable; the avoidance of non-

linear is basically because of its numerous numer-

ical iterations and being highly computer-

intensive in solving the problem. 

However, it is arguably better to get an approxi-
mate answer to a meaningful question than to get 
an exact answer to an approximation to a mean-
ingful question (Tukey, 1962). Despite the passive 
challenges to solving a nonlinear problem we 
should choose model forms that genuinely repre-
sent the phenomenon under study. (See Andrew P. 
Robinson and Jeff D. Hamann; Forest Analytics 
with R- An Introduction pg. 199-203 for details). 

  Advantages of Nonlinear Models 

Nonlinear models are often derived on the basis 

of physical, chemical or biological considerations, 

also, from differential equations, and have justifi-

cation within a quantitative conceptualization of 

the process of interest. 

The parameters of a nonlinear model usually have 

direct interpretation in terms of the process under 

study. 

 Constraints can be built into a nonlinear model 

easily and are harder to enforce for linear models. 

Truly, fitting a nonlinear regression model to data 

is slightly cumbersome but we would usually pre-

fer such a model whenever possible, rather than to 

its alternative, perhaps less realistic linear model. 

 2   METHODOLOGY 

Considering; 

  εβ += )(xfy                      (1) 

Where  ),...,( ,2,1 kxxxx =  β s is the coefficient 

estimates, ε (error term) ~ N (0; 1) and independ-

ent. f is the function that describes the form in 

which the response and the input variable are re-

lated, its mathematical form is not known in prac-

tice. It is often approximated within the experi-

mental region. 

 

2.1 The Design 

Factorial Design is a class of orthogonal design 

used for fitting first order model, this work makes 

use of factorial design with four levels.  The cen-

tral composite design was used to fit the second 

order. Fitting second order model also means 

augmentation of additional points to the initial 

first order design. The full factorial runs with na = 

2k points on the axis of each factor at a distance 

from the center of the design. 

The center runs n0(0,0...,0) without replication. 

The total number of runs N=nf + na + no. 

The practical deployment of a CCD often arises 
through sequential experimentation, as that is, 
when a factorial design has been used to fit a first-
order model, this model has exhibited lack of fit, 
and the axial runs are then added to allow the 
quadratic terms to be incorporated into the model. 
There are two parameters in the design that must 

be specified: the distance  α of the axial runs from 
the design centre and the number of center points 
n0. See Appendix III for the constructed designs 
 

The Desired Properties 

Orthogonality: A design D is said to be orthogonal 

if the matrix XX is diagonal, where X is the mod-

el matrix of εβ += Xy . The elements of  XX ′  

will be uncorrelated because the off diagonal ele-

ments of   )( XXV ′  will be zero. 
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Rotatability: A design D is said to be rotatable if 

the prediction variance 

)()'()](ˆ[ 12 xfXXxyVar −= δ  is constant at all 

points that are equidistant from the design centre. 

The prediction variance remains unchanged under 

any rotation of the coordinate axes. 

[1] Uniform Precision: A rotatable design is said 
to have the additional uniform precision prop-
erty if Var [ yˆ (x)] at the origin is equal to its 
value at a distance of one from the origin. 
This helps in producing some stability in the 
prediction variance in the vicinity of the de-
sign centre. For details on RSM, Design and 
properties See; Andre I Khuri et al (2010), 
Khuri, AI, Cornell (1996)  , Bello O.A. 
(2014). “Modeling Cassava Yield: A Response 
Surface Methodology Approach.”, Un-
published M.Sc Thesis, University of Ibadan 
Nigeria, and  Bello O. A. ( 2014) International 
Journal on Computational Sciences & Appli-
cations (IJCSA) Vol.4, No.3, June 2014, 63  
for details. 

 

3     THE INVERSE POLYNOMIAL – A NONLINEAR 

FUNCTION 

The Inverse Polynomial –A Nonlinear Function 

The general forms of Inverse Polynomials of 

(Nelder, 1966; Nduka, 1994; Holger Dette, 2007) 

are family of non-linear function and it is intrinsi-

cally nonlinear. 

)...( 1
1

2
210

11

−
−

==

++++= ∏∏ p

iipiiii

k

i

k

i

i xxx
q

x
ββββ     (2)    

  Where, k = number of factors    q = the yield per 

unit area. 

               p = number of levels of factor i.          

Intrinsically Nonlinear Model: This is when there 

is nonlinearity in parameters and linearity cannot 

be achieved through transformation.  

The First Order Model; 

1

2100

1

210

1

10111

1 )( −−−− +++++= xxxxy ββββ         (3) 

 The Second Order Model; 

1

2100

1

2120

1

1202

1

210

1

10111

1 )( −−−−−− +++++= xxxxxxxxy ββββββ

                                                                            (4)   

For details on properties of the nonlinear model 

[See Nduka, E. C. 1994, 1997]. 

3.1  Parameter Estimation Of A Nonlinear                 

Function 

When the normal equation is extremely difficult 

to solve, it may happen to have multiple solution 

to multiple stationary values of function of S(θ). 

It is said to have no closed form solution. Thereby 

the procedure of iterative method must be ap-

proached in order to manoeuvre the mathematical 

intractable problem (Bello O.A. 2014). 

3.2  Nonlinearity of the Model. 

Considering the parameterθ , the estimate (θ̂ ) of 

θ   is obtained by differentiating equation S( θ̂ ) 

and equated to zero, resulting to p-1 normal equa-

tions. Also, considering the nonlinear model in 

(4).  The sum of square error for our nonlinear 

model follows the definition;  

          2

1

]),([)( ∑
=

−=
n

i

jii xfyS θθ   (5)                                    

2111

2

102

2

220201110
21 xxxxxx

y

xx
oo ββββββ +++++=

 

Taking inverse of 1−y  

11

2100

1

1202

1

2120

1

210

1

10111 ])([ −−−−−− +++++= xxxxxxxxy ββββββ

 jj θβ =Let   

11

2100

1

1202

1

2120

1

210

1

10111 ])([),( −−−−−− +++++= xxxxxxxxxf θθθθθθθ                                                     

                                                         (6)   
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Recall the sum of square 

),()(,)ˆ()(
1

2 θθ xfyEyyS
n

i
=−=∑ =

  

0)(   =εEgiven  , thereby; 

]))(([)( 11

2100

1

1202

1

2120

1

210

1

10111

1

−−−−−−

=

+++++−=∑ xxxxxxxxyS i

n

i

θθθθθθθ

                                                                            (7)                                                                                                             

The estimation of parameters jθ  is obtained by 

differentiating equation )(θS  for ijψ  equated to 

zero and solving for the 'sθ  respectively. 

j

i

n

i

xf
xxxxxxxxyS

θ

θ
θθθθθθθ

∂

∂
+++++−= −−−−−−

=

∑
),(

]))(([)( 11

2100

1

1202

1

2120

1

210

1

10111

1

                                                                                                              

                   (8) 

When the normal equation contains parameters 

that are depending on each other, we have a non-

linear problem which can be solved iteratively 

using computer software. 
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The normal equation in (9) is produced by the dif-

ferentiation of )(θS  which involved model param-

eters that are nonlinear in relationship, the equa-

tion is mathematically intractable, cannot be 

solved analytically but could only be solved itera-

tively. 

 

3.3 The Gauss Newton Method. 

   Choice of iterative algorithm is to minimize the 

sum of square error of the parameter estimates. 

The nonlinear least square surface is approximat-

ed based on the linear approximation, until no fur-

ther improvement can be made, using the result of 

linear least squares in successive stages.  At that 

point of no further improvement in decrease of 

sum of squared error, we say the steps have con-

verged to a nonlinear least square solution. Unfor-

tunately, one cannot always guarantee that such a 

least square solution will be achieved; in some 

cases the iteration can converge to a local mini-

mum or ‘pocket’, and not the global least square 

solution but with good initial values, nonlinear 

least square algorithms will not perform well but 

if the initial estimates are far from the optimum 

point, it may perform well. The analyst must 

therefore provide intelligent, accurate starting 

values whenever employing iterative optimization 

algorithms. 

    In this work, we considered the SAS system 

search grid function to aid in selecting good ini-

tially value, also a self starter function in R-

language can be use to generate initial parameters 

values.  We also compare the performance of the 

two software in use. Furthermore, we shall seek to 

know if our iteration has generated a local mini-

mum or global minimum estimates.For details on 

iterative algorithm methods, See (Analyzing En-

vironmental Data W. W. Piegorsch and A. J. 

Bailer 2005 John Wiley & Sons, Ltd ISBN: 0-

470-84836-7 (HB) page 40-46; Applied Linear 

Statistical Models Fifth Edition Michael H. 

Kutner, Emory University Christopher J. Ch 13; P 

g). 

 Using Gauss Newton method; let  o

p

oo

o 12 ,...,, −ϑϑϑ  

be our stating values for parameters  

110 ,...,, −pθθθ  through intelligent guess or default 

search grid in SAS or R-self starter function. The 

starting values s is supplied and we approximate 

the mean response  ),( θxf  for n-case and using 
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the first order of the Taylor series expansion 

of ),( θxf ; 
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o
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θ

θ
ϑθ ϑθ −
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+= =  (10)                                                  

By substitution; εθ += ),(xfy  

εϑθ
θ

θ
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∂
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          (11)                                                                                            

For k parameters and n cases, i=1, 2... p 
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                               (12) 

For simplicity purpose, let  ),( )0()0( ϑii xff =   

and  )( 0)0(

kkk ϑθβ −=  and )0(]
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θ
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∂
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for ith observation for equation (12)  
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For i=1,2,…,n 
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Writing the above in Matrix form; 



































+

























































ΨΨΨ

ΨΨΨ

=























−

−

−

−

−

n

i

p

o

pn
o

n

o

n

o

p

oo

nn

o

i

fy

fy

ε

ε

ε

β

β

β

.

.

.

.

.

.

.....

..

.......

.......

....

.

.

.

2

)0(

1

)0(

1

)0(

0

)(

1,
)(

2

)(

0

)(

11

)(

11

)(

10

0

1

(14) 

 11

0

11][ ××−×× +=− n

o

npnn

o
fY εβψ  

ofY −  is our column vector, 
0

1−× pnψ  is the de-

terminant matrix of known coefficients and  1×nε  

is the disturbance. 

 To be able to make use of each result of the linear 

least squares in successive stages we use the least 

square estimates )1(
ˆ

×nβ  of β  written by; 
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           ).()(ˆ 1' ooooo
fy −= − ψψψβ                  

oβ̂  is the least square estimates. The starting val-

ues are supplied for the parameters inψ . The val-

ue of θ  s that minimized the sum of square )(θS  

is of interest, it’s the point where we can be as-

sured of a global minimum estimates. 

  
∑

=

−=
n

i

o

ii

o xfySSE
1

2)()( )],([ ϑ
  

At the end of the first iteration we would have 

coefficient )1(ϑ  and the criterion measures  as; 
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=

−=
n
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The iteration should terminate where the SSE* 

becomes negligible or unchanging at point; 
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3.4 The Gauss-Newton Application to IPM 

Second Order Model 
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Given n-observations, (19) is re-written in col-

umn-row matrix form; 
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Equation (20) follows (14) thereby (15) is applied 

to solve for .ˆ sβ  The starting values for the sθ is 

supplied for the 1st iteration re-

calling )( 0)0(

kkk ϑθβ −=  and 

])([( 1
2100

1
1202

1
2120

1
210

1
10111

−−−−− +++++= xxxxxxxx θθθθθθϕ

 

If )S(θ  is increasing in successive iterations, new 

initial parameter value will be selected. Equation 

(17) is considered for convergence condition. 

 

3.5    Softwares for Computer-Intensive  Statistics. 

The Computer-intensive statistics is just statistical 
methodology which makes use of a large amount 
of computer time though tedious but we have 
greater benefits of easily working with larger da-
tasets, we can now use more realistic models than 
settling for linear model when relationship is not 
truly linear. Statistical software has revolutionized 
the way we approach data analysis. (For details 
see Brian D. Ripley, Professor of Applied Statis-
tics University of Oxford: How Computing has 
Changed Statistics (and is Changing) rip-
ley@stats.ox.ac.uk 
http://www.stats.ox.ac.uk/ripley) 

 

   The iterative algorithm and bootstrap re sam-
pling method are by nature computer-intensive. 
Many packages and programs exist for perform-
ing nonlinear optimizations, and in particular 
bootstrap nonlinear least square regression. We 
considered the SAS System and the R-
programming language for this work. The SAS 

system is a popular set of industrial and educa-
tional use software tools, which allow you to ac-
cess, manage, present, and analyze data. It runs on 
many different computer platforms and is de-
signed to work similarly on different operating 
systems. While the R-programming language is 
available at CRAN: http://cran.r-
project.org/web/packages/nlrwr/index.html.  The 
codes used for computation in this study will be 
active upon loading nlrwr of function nls ( ) tools 
and nsltools. All the above softwares has brought 
to us a computer-intensive statistics which is ca-
pable of putting us over various barriers to many 
statistical method such as the ones applied in this 
work.       
(For details see; Introduction to SAS 
1http://help.unc.edu/statistical/applications/sas/int
rosasprog.html and R,; CRAN: http://cran.r-
project.org/web/packages/nlrwr/index.html) 

. 

3.6 Bootstrap Re-Sampling Method 

Bootstrapping methodology has become a recog-

nised technique for dealing with data with ex-

tremely non-normal distribution. When faced with 

the problem of small sample sizes, the failure of 

normality assumption, non-linear relation of vari-

ables. They prove particularly useful where very 

limited sample data are available (Nancy Barker, 

2002). When we do not have the knowledge of 

the distribution, the standard parametric tech-

niques cannot be reliably executed, thereby an 

alternative is required. Bootstrapping, a data-

based simulation method for assigning measures 

of accuracy to statistical estimates helps to tackle 

any of the above cases. Many conventional statis-

tical    methods of analysis make assumptions 

about normality but when these assumptions are 

violated, such methods may fail. Bootstrapping, a 

data-based simulation method, is a good alterna-

tive.  Through the method of Bootstrap an estima-

tor bias is reduced, the method also gives the dis-

tribution of the statistic under consideration [(See 

Nancy Barker, 2002]. 
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3.7 Gauss Newton-Bootstrap Re-Sampling 

Method. 

Considering the observation nYYYY1 ,...,3,2,  b 

e i.i.d from an experimental design with unknown 

distribution.  

              n1,2,...,i1  ],...,,[ ==′
kiii XXYZ                 (21)                 

the observation in equation[above] can be sam-

pled B times with replacement to have bootstrap 

samples BZZZ ′′′ ,...,, 21  through the  use of com-

puter intensive bootstrap re sampling method. 

Bootstrap observation *

iZ′  is produced. 

            B1,2,...,i1

*     ],...,,[ ==′
kiii XXYiZ         (22)

             

Where 
kXX ,...,1 is treated as fixed because the 

data of interest in this research work is derived 

from an experimental design. Having the sX fixed, 

to compute the nonlinear estimates for bootstrap 

re sampled samples, the Gauss- Newton Method 

is submerged into the Bootstrap re sampling 

method at this point. Recall (14) and (20) for i-

observation per each *
*

i
B′ cases where i=1,2,...,n 

and 1000,...,2,1* =i i.e B =1000; starting values is 

supplied to obtained  the bootstrapped esti-

mates *
*bi

θ ′  . 

4444 84444 76 cases B

**

2

*

0

*

**
2

*
0

*

2

**
2

*
0

*

1

i

*

*

],...,,[

.              .      .            .

.              .      .           .

.             .      .            .

],...,,[

],...,,[

bnbb

bnbbb

bnbbb

θθθθ

θθθθ

θθθθ

=′

=′

=′

b100   

                                                  (23) 

The bootstrapped estimates *
*

bi
θ ′ is obtained at the 

point where SSE* is minimum. See section (3.3).  

The estimates in (23) is used to estimate the fitted 

values and residuals for each observation in *

iZ′ . 

                       ),(ˆ
iii xfY θ=                 (24) 

Where ii YYE ˆ−=i  are the residuals. The next 

procedure is to sample residual n-times for each 

bootstrap samples B, and each residuals of the 

bootstrap samples  ],...,,[' **

2

*

0

*

1* bnbbb
εεε=E  is at-

tached to the deterministic component of the 

model 
),( iixf θ
 to obtain the bootstrapped obser-

vations. 

                                             

B1,2,...,i

**

2

*

1

*
    ],,...,,[ == bnbbbi YYYY      (25) 

Where   
bibibi EY += ˆ*

Y . 

This is followed by regressing each bootstrapped 
*

biY  on the fixed siX  to obtained the boot-

strapped regression coefficients *
*bi

θ ′   It worth not-

ing that the functional form of our model in this 

work is a non-linear approximation (recall section 

3.2), thereby, all estimation is carried out itera-

tively , which is also computer demanding. The re 

sampled bootstrap coefficients *
*

bi
θ ′ is now used to 

construct bootstrapped standard error, confidence 

interval and other graphical techniques to be used 

in drawing our inference. 

 

3.8 Bootstrapped Standard Error (Std Error) 

The bootstrapped values *
*bi

θ ′  for ith observation 

and B cases are used to estimate the standard error 

calculated by: 
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∑
=

−=
B

i

ib
B

Se
1

2** )ˆˆ(
1

)( θθθ
 

3.9 Bootstrapped Confidence Interval (C.I) 

The bootstrapped estimates of the Std error and 

normality assumption arbitrary will be use to con-

struct an interval in form; 

            )]ˆ(ˆ[ *

2

* θθ α Sei−Ζ±           (27) 

Where αΖ  denote the  α  quantile of standard 

normal distribution. This is IC.)1( α−  for θ̂ . 

4 DATA PRESENTATION, CODES AND RESULTS 

    

 

                                      Figure 1. 

4.1 Graphical Analyses 

      Prediction Plots 

 

Figure 2. 

Variance Function (varfcn) Plots for Design Prop-

erties Check: 

The helpful tool in ‘rsm’ R-package is the varfcn 

function, which helps to see the variance of the 

predictions we will obtain making use of scaled 

variance defined by )](ˆ[2 xyVarN
δ

and )(ˆ xy is the pre-

dicted value at the design  point x  . The varfcn 

function can also help to verify if any two of the 

cube blocks plus the axis block is sufficient to es-

timate a second-order response surface. The y-

axis is the scaled prediction variance and the x-

axis measured as distance from the centre. For 

details see Response-surface illustration,[20]. 

Inspecting the plots in fig 2 above, the variance 

function plot for properties check for the 1st [FO 

(fert, spacin)] and 2nd [SO (fert, spacin)] order 

designs respectively; variance will increases as 

we go farther away from the centre, this means 

making estimation at or closer to the centre will 

give accurate predictions. The closer the predic-

tion from the centre, the more accurate the pre-

dicted values. In fig 2 of ‘FO (fert, spacin)] ‘, the 

predicted variance dotted line is exactly on the red 

line representing the center of the surface from all 

direction, this assures the same variance in all di-

rection and the  contour plots  circular formation 

shows  rotatability properties is achieved with the 

chosen designs. The second plot [SO (fert, spa-

cin)] in fig 2  shows the black line is not too far 

from the centre (red line) and it shows a little less 

perfect circle for the augmented second order de-

sign. With this we can at least augment the design 

to fit a second-order model close enough to fulfil 

the uniform precision and rotatability conditions. 

This implies we can go ahead and fit our model. 

See appendix III for the constructed designs. 
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4.2 EDA Plots for Cassava Plantation 

Experimental Data. 

 

                                                      Figure 3. 

The exploratory data analysis(EDA) of our da-

taset in fig 3 suggest a nonlinear function as the 

relationship describing the plant-yield phenome-

non, having fertilizer(fert) and crop spac-

ing(spacing) as the explanatory variables. 

 

 

Table1 

 

4.3 Discussion Of Results 

 Model Adequacy 

 The underlying assumptions of normality, inde-

pendent, constant variance and homogeneity of 

the model error were used to verify the adequacy 

of our function used to describe the dataset.  

    The QQ-plot shows a good agreement between 

the distribution of the model residual and that of 

the standard normal distribution. This shows the 

adequacy and fitness of the model to the data; see-

ing the pattern is linear and the points falling 

within straight line of the plot i.e. points are clos-

er to the straight line (See appendix I). The plot 

does not suggest any serious departure from our 

model assumptions of normality.  The plot of the 

residual against the predictors, appendix II, show 

a non-systematic or random pattern in the model 

residual plots, therefore variance homogeneity 

assumption is intact.  The various plots as pre-

sented in the appendix gave a basis to submit that 

error variance of our function is normal, inde-

pendent, constant and there is consistency of vari-

ance of error term. 

The choice of starting value is vital with Gauss-

Newton method in order to achieve quick conver-

gence and a global minimum estimate. An ap-

proximated estimate from linear least square 

method and grid search values were used as start-

ing values for the parameters and the final result 

(estimate values, SSE of the model) for both R 

and SAS were found to be in agreement. The SAS 

System Iteration converges after 9 iterations with 

the model sum of square error (SSE) 2.3600. The 

R-nls() Iteration  also converges after 9 iterations 

with sum of square error (SSE)  2.247653[See 

appendix IV and V]. In both cases the five param-

eters values falls within our confidence interval 

range. Also to see if we are able to achieve a 

global minimum estimate, we re-introduced the 

obtained estimates values as the starting values 

into our nonlinear regression model and the same 

estimate values were obtained with their sum of 
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square error unchanged, a global minimum esti-

mates were achieved, see appendix VI. 

5 CONCLUSION 

The computer intensive method-bootstrap re sam-

pling method gives an access over many statisti-

cal barriers involving fewer observation or sample 

size, such as demonstrated in this work. It has 

helped us in this work to evaluate the precision of 

the obtained estimates and we can confidently 

present the model with reliable estimates that re-

late the non-linear relationship between cassava 

yields to various amount of fertilizer applied and 

crop spacing. The accompanied model is adequate 

and sufficient for the non-linear response surface. 

5.1 Appendices 

 

 

                                                                                           

Appendix III 
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