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ABSTRACT 

In this paper, we propose a family of Hybrid Backward Differentiation Formulas (HBDF) 

for direct solution of general second order Initial Value Problems (IVPs) of the form

.  The method is derived by the interpolation and collocation of the 

assumed approximate solution and its second derivative at and 

knxx   respectively, where k is the step number of the methods. The interpolation and 

collocation procedures lead to a system of (k+1) equations, which are solved to determine 

the unknown coefficients. The resulting coefficients are used to construct the approximate 

continuous solution from which the Multiple Finite Difference Methods (MFDMs) are 

obtained and simultaneously applied to provide the direct solution to IVPs. A specific 

methods for k=4 is used to illustrate the process. The methods is shown to be zero stable, 

consistence and hence convergence. Numerical examples are given to show the efficiency 

of the method.   

 

Keywords: Hybrid method, Backward differentiation Formulas, Collocation, 

Interpolation, Second order.  

INTRODUCTION 

In recent times, the integration of Ordinary Differential Equations (ODEs) are investigated 

using some kind of block methods. This paper discusses the family of implicit Linear 

Multistep Method (LMM) for numerical integration of general second order ODEs which 

arise frequently in  the  area  of  science  and  engineering  especially  mechanical  system,  

 yyxfy  ,,

1,.....2,1,   kjxx jn
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control theory and celestial mechanics and are generally written as: 

      00 ,,,,  ayyayyyxfy
   (1) 

In practice the problems are reduced to systems of first order equations and any 

method for first order equations is used to solve them see Awoyemi (1999).                                                                                       

It has been extensively discussed that due to the dimension of the problem after it has been 

reduced to a system of first order equations also, more often the reduced systems of 

ordinary differential equations (ODEs) is not well posed,  unlike the given problem. The 

approach waste a lot of Computer time and human efforts, hence there is a need to develop 

algorithms to handle these classes of problems directly without any reduction to system of 

first order ODEs. 

Development of LMM for solving ODE can be generated using methods such as 

taylor’s series, numerical interpolation, numerical integration and collocation method, 

which are restricted by an assumed order of convergence. This paper considers the 

contribution of multi step collocation technique  introduced by Onumayi et al (1994) by 

deriving our new method. Some researchers have attempted the solution of directly using 

linear multistep methods without reduction to system of first order ordinary differential 

equations these include Mohammed et al (2011), Yusuph and Onumayi (2002) and 

Onumayi et al (1999). 

Block methods for solving ODEs have initially been proposed by Milne (1953). 

The Milne’s idea of proceeding in blocks was developed by Rosser (1967) for Runge-

Kutta method. Also block Backward Differentiation Formulas (BDF) methods are 

discussed and developed by many researchers (Ibrahim et al., 2007; Majid and Suleiman, 

2007; Yahaya and Mohammed, 2009; Mohammed and Yahaya, 2010; 

Yahaya and Mohammed, 2010; Mohammed, 2011; Akinfenwa et al., 2011; Akinfenwa et 

al., 2013; Semenov et al.,2013). The method of collocation and interpolation of the power 

series approximate solution to generate continuous LMM has been adopted by many 

researchers among them are (Houwen et al.(1991), Fatunla (1991), Jiaxiang (1995). In this 
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paper we are suggested a construction of four step Hybrid Backward Differentiation 

Formulas (HBDF) method, it is self-starting and can be applied for the numerical solution 

of IVPs (Cauchy problem) for second-order ODEs. 

Development of the Method 

We seek an approximation of the form 

  j
sr

j

j xxY 





1

0


             (2) 

Where j  are unknown coefficients to be determined and  and  are the 

number of interpolation and collocation points respectively. We then construct our 

continuous approximation by imposing the following conditions 

             (3) 

                                                                  (4) 

We note that  is the numerical approximation to the analytical solution      

. 

Equations (3) and (4) lead to a system of (k+1) equations which is solved by Cramer’s rule 

to obtain . Our continuous approximation is constructed by substituting the values  

into equation (2). After some manipulation, the continuous method is expressed as 

            (5) 

Where  and  x  are continuous coefficients.  We note that since the general 

second order ordinary differential equation involves the first derivative, the first derivative 

formula 

             (6) 

 

kr 1 0s

  1,...,.2,1,0,   kjyxY jn

  knkn fxY  
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j fxhyxyxxY 





  
2

1

0
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                   (7) 

  0 aY
                   (8) 

Specification of Methods 

Four Step Methods with One-off-step Point at Interpolation. 

To derive this methods, we use Eq.(5)  to obtained a continuous  4-step HBDF 

method with the following specification : 4,1,5  ksr  We also express    xxj  ,  

and  xk  as functions of t, where 
h

xx
t n
  to obtain the continuous form as follows: 

  44

2

2

7

2

73322110 


  n
n

nnnn fhyyyyyxy          (9) 

where 

  5432

0
405

4

2835

401

5670

4357

2835

5566

1890

4397
1 tttttt   

  5432

1
135

7

270

187

270

907

135

946

45

238
tttttt   

  5432

2
405

46

405

572

810

4969

405

4342

270

1589
tttttt   

  5432

3
401

61

810

1429

810

5659

405

4402

135

742
tttttt   

  5432

2

7
405

32

567

512

567

1952

567

2944

945

2432
tttttt   

   5432

4 219648942
270

1
tttttt   

Evaluating (9) at 4 nxx  yields Hybrid Four step implicit method 

   xxY 
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4

2

2
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135
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8

945

23



  n

n
nnnnn fhyyyyyy            (10) 

Taking the second derivative of equation (9), thereafter, evaluating the resulting 

continuous polynomial solution at 
2

732 ,,


 
n

nn xxxxxx  we generate three additional 

methods 

4

2

2
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    (11) 
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      (12) 
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 (13) 

Since our method is design to simultaneously provide the values of 

4

2

7321 ,,,, 


 n
n

nnn yyyyy at a block point
4

2

7321 ,,,, 


 n
n

nnn xxxxx , the three equations  

(10)-(13) are not sufficient to provide the solution for three unknown
3

2

521 ,,, 


 n
n

nn yyyy . 

Thus, we obtain an additional method from (8), given by 

(10)-(13) are not sufficient to provide the solution for three unknown
3

2

521 ,,, 


 n
n

nn yyyy . 

Thus, we obtain an additional method from (8), given by 

4

2

2

732100 29448641038811123999643971890 fhyyyyyh n              (14) 

The derivatives are obtained from (7) by imposing that 

    ,4,...0,,,   jvjx nn   thus, we have 
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Error Analysis and Zero Stability 

Following (Fatunla, 1991) and (Lambert, 1973) we define the local truncation error 

associated with the conventional form of (5) to be the linear difference operator 

         jhxyhvhxyjhxyhxyL v

k

j

vj 



0

2;

       (15) 

Assuming that y(x) is sufficiently differentiable, we can expand the terms in (15) as a 

Taylor series about the point x to obtain the expression 

       ...,...,; 10  xyhCyhCxyChxyL qq

q         (16) 

where the constant coefficients ,...1,0, qCq   are given as follows: ,...1,0, qCq  
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
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According to (Henrici, 1962), method (5) has order p if 

0,0... 2110   PPP CCCCC
 

In order to analyze the methods for zero stability, we normalize the HBDF 

schemes and write them as a block method from which we obtain the first characteristic 
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polynomial  given by 

          (17) 

Where is the identity matrix of dimension k+1, is the matrix of dimension k+1 

Case k=4. It is easily shown that (19)-(23) are normalized to give the first characteristic 

polynomial  given by  

 

Where is an identity matrix of dimension five and  is a matrix of dimension five 

given by 

 

Following (Fatunla, 1991) the block method by combining k+1 HBDF is zero-stable, since 

from (17),   0R satisfy  and for those roots with =1, the 

multiplicity does not exceed 2. The block method by combining k+1 HBDF is consistent 

since HBDF have order . According to (Henrici, 1962), we can safely ascertain the 

convergence of HBDF method. 

Table 1: Order and Error Constants for the HBDF methods. 

Step number Method Order Error constant 

4 (10) 4 

 
 (11) 4 

 
 (12) 4 

 
 (13) 4 

 
 (14) 4 

 

 R

        1det 10  RRARAR k

 0A  1A

 R

        1det 410  RRARAR

 0A  1A

 
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

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
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
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
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
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We notice from the table above that our proposed methods has uniform order and small error 

constant which make it a suitable candidate to hand second order differential equations. 

Numerical Example 

The HBDF methods are implemented as simultaneous numerical integration for 

IVPs without requiring starting values and predictors. We proceed by explicitly obtaining 

initial conditions at , n=0,k,….,N-k using the computed values   knkn yxY   and 

 
knknx   _  over sub-intervals    NKNk xxxx ,,...,,0   which do not overlap. We give 

examples to illustrate the efficiency of the methods. 

We report here a numerical example taken from the literature (Jator and Li, 2007 and 

Mohammed, 2011). 

Problems 1 

    1.0,11,11,2 3  hyyyy  

Exact Solution  
x

xy
1


 

Problems 2 

    1.0,10,10,0  hyyyy  

Exact Solution   )sin()cos( xxxy 
 

Problems 3 

    1.0,10,10,010001001  hyyyyy  

Exact Solution   xexy 
 

Source:  Jator  (2007) 
 

Problems 4 

    1.0,10,00,0  hyyyy  
 

Exact Solution   xexy 1

Source:  Mohammed (2011)
 

knx 
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Table 2:  Showing exact solutions and the computed results from the proposed methods for 
problem 1 

X Exact 

Solution 

K=4 Error in K=4 

1 1 1 0.000000000E+00 

1.1 0.9090909091 0.9089159003 1.750088000E-04 

1.2 0.8333333333 0.8328649894 4.683439000E-04 

1.3 0.7692307692 0.7684626550 7.681142000E-04 

1.4 0.7142857143 0.7132183146 1.067399700E-03 

1.5 0.6666666667 0.6655746535 1.092013200E-03 

1.6 0.6250000000 0.6238664477 1.133552300E-03 

1.7 0.5882352941 0.5870592595 1.176034600E-03 

1.8 0.5555555556 0.5543371121 1.218443500E-03 

1.9 0.5263157895 0.5250919992 1.223790300E-03 

2.0 0.5 0.4987671511 1.232848900E-03 

 
Table 3: Showing exact solutions and the computed results from the proposed methods for 

problem 2 

X Exact 

Solution 

Proposed  

Method 

Error in Proposed 

Method 

 

0 1 1 0.000000000E+00 

0.1 1.094837582 1.094838951 1.369000000E-06  

0.2 1.178735909 1.178739619 3.710000000E-06  

0.3 1.250856696 1.250862769 6.073000000E-06  

0.4 1.310479336 1.310487706 8.370000000E-06  

0.5 1.357008100 1.357018004 9.904000000E-06  

0.6 1.389978088 1.389990556 1.246800000E-05  

0.7 1.409059874 1.409074849 1.497500000E-05  

0.8 1.414062800 1.414080127 1.732700000E-05  

0.9 1.404936878 1.404955651 1.877300000E-05  

1.0 1.38177329 1.381794415 2.112500000E-05  
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Table 4:  Showing exact solutions and the computed results from the proposed methods 

for problem 3 

X Exact Solution K=4 Error in K=4 Error in K=2 (BDF) 

Jator(2007) 

Error in K=3(BDF) 

Jator(2007) 

0 1 1 0.000000000E+00 0.000000000E+00 0.000000000E+00 

0.1 0.9048374180 0.9048374018 1.619999990E-08 2.940180000E-04 1.111124000E-05 

0.2 0.8187307531 0.8187307576 4.500000039E-09 5.571550000E-04 5.749050000E-05 

0.3 0.7408182207 0.7408182184 2.300000079E-09 7.512790000E-04 9.210130000E-05 

0.4 0.6703200460 0.6703200484 2.400000088E-09 9.202740000E-04 4.078390000E-05 

0.5 0.6065306597 0.6065306479 1.179999998E-08 10.29514000E-04 2.530190000E-05 

0.6 0.5488116361 0.5488116388 2.699999890E-09 11.26415000E-04 4.725860000E-05 

0.7 0.4965853038 0.4965853031 7.000000024E-10 11.80252000E-04 1.893470000E-05 

0.8 0.4493289641 0.4493289646 4.999999859E-10 12.27376000E-04 4.288120008E-05 

0.9 0.4065696597 0.4065696509 8.799999951E-09 12.42326000E-04 7.966800000E-05 

1.0 0.36787944   .3678794421  2.100000007E-09 12.54553000E-04 2.941190000E-05 

 

Table 5: Showing exact solutions and the computed results from the proposed methods for   
problem 4 

x Exact Solution K=4 Error in K=4 Error in K=5(BDF) 

Mohammed(2011) 

0 0 0 0.000000000E+00 0.000000000E+00 

0.1 -0.105170918 -0.1051694677 1.450300000E-06 2.198000000E-05 

0.2 -0.221402758 -0.2213988084 3.949600000E-06 6.070400000E-06 

0.3 -0.349858808 -0.3498522957 6.512300000E-06 1.005100000E-05 

0.4 -0.491824698 -0.4918156294 9.068600000E-06 1.402530000E-05 

0.5 -0.648721271 -0.6487100379 1.123310000E-05 1.799340000E-05 

0.6 -0.822118800 -0.8221038376 1.496240000E-05 2.161620000E-05 

0.7 -1.013752707 -1.013733921 1.878600000E-05 2.799300000E-05 

0.8 -1.225540928 -1.225518326 2.260200000E-05 3.456100000E-05 

0.9 -1.459603111 -1.459577282 2.582900000E-05 4.111400000E-05 

1.0 -1.718281828 -1.718250438 3.139000000E-05 4.765600000E-05 
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Table 5: Showing exact solutions and the computed results from the proposed methods for   

problem 4 

x Exact 

Solution 

K=4 Error in K=4 Error in K=5(BDF) 

Mohammed(2011) 

0 0 0 0.000000000E+00 0.000000000E+00 

0.1 -0.105170918 -0.1051694677 1.450300000E-06 2.198000000E-05 

0.2 -0.221402758 -0.2213988084 3.949600000E-06 6.070400000E-06 

0.3 -0.349858808 -0.3498522957 6.512300000E-06 1.005100000E-05 

0.4 -0.491824698 -0.4918156294 9.068600000E-06 1.402530000E-05 

0.5 -0.648721271 -0.6487100379 1.123310000E-05 1.799340000E-05 

0.6 -0.822118800 -0.8221038376 1.496240000E-05 2.161620000E-05 

0.7 -1.013752707 -1.013733921 1.878600000E-05 2.799300000E-05 

0.8 -1.225540928 -1.225518326 2.260200000E-05 3.456100000E-05 

0.9 -1.459603111 -1.459577282 2.582900000E-05 4.111400000E-05 

1.0 -1.718281828 -1.718250438 3.139000000E-05 4.765600000E-05 

 

CONCLUSION 

A Collocation technique which yields a method with Continuous Coefficients has 

been presented for the approximate Solution of second Order ODEs with initial 

conditions. Four test examples have been solved to demonstrate the efficiency of the 

proposed method and the results compare favorably with the exact Solution, a desirable 

feature of good numerical methods. Interestingly, all the discrete schemes used in the 

Block formulation were from a single continuous formulation (CF). 
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