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Abstract

In this research work, the Taylor’s series expansion of two variables was used to develop a
scheme of the second order heat equation using the finite difference method. The stability
analysis carefully analysed proved the scheme.
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1.0 Introduction
Partial Differential Equations (PDE) offer a convenient tool for modeling heat equation

mathematically (Shehu, e al., 2014). In Mathematics, a PDE is a differential equation that
contains unknown multivariable functions and their partial derivatives. PDEs are used to
formulate problems involving functions of several variables, and are either solved by hand or
used to create a computer model. A PDE for the function u(xy x;, ..., ;) is modeled by an
equation of the form

ou ou ou ou d%*u  0%u 0’u
0x,’ 0x,” " 0x, 0xy 0x,0x, 0x,0x, Ox,0x,

f(x1 x5 o, Xy,

=0 (1)

Consider a Partial Differential Equation of one dimensional heat equation:

Up = Tlyy; 0<x<I, t>0 2)

where u = u(x, t), is the temperature at the time () and at position (x) along a thin rod, and t
is a positive constant of the thermal diffusivity, the symbol u, signifies the partial derivatives
of the function u with respect to the time variable (7). Similarly, u,, is the second partial

derivative with respect to space/position variable (x).
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Equation (2) describes the variation of temperature in a given region over time. It can be used
to express the heat flow with diffusion tu,, along the rod, where the coefficient 7 is the
thermal diffusivity and L is the length of the rod.

The solution of a partial differential equation thus provides a solution to the physical problem
it represents. However, it offers a much more challenging problem compared to the solution

of ordinary differential equations (Ndanusa, 2002).

2. Literature Review

In Mathematics, the finite difference methods are numerical methods for approximating the
solutions to differential equations using finite difference equations to approximate
derivatives. The growth in computing power has transformed the use of realistic
mathematical models in science and engineering and thereby intelligent numerical analysis is
required to implement the details of the world model. Numerical methods have become a
vital tool used for solving ordinary differential equations (ODEs) because of the complex
nature of the problem which cannot be solved by analytical method. Over the years, there had
been discovery and derivation of methods in respect to numerical solution of differential

equations.

In Richmond (2006), the author develop the analytical solutions of non-trivial examples of a
well-known class of initial-boundary value problems which, by the choice of parameters, can
be reduced to regular or singular Sturm-Liouville problems.

In (Sweilam et al., 2012) the authors present the Crank-Nicolson-Finite Difference Method to
solve the linear time fractional diffusion equation. They claimed that the Crank-Nicolson-
Finite Difference Method is applicable, simple and efficient for solving problems.

The author (Juan, 2006) studied the Spectral methods for solving the one dimensional
parabolic heat equation. In (Hikmet ez. al, 2010), the authors claimed that the Adomian

Decomposition Method (ADM) is more accurate. In (Subir et. al., 2012), the optimal
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Homotopy Analysis Method (HAM) is used to obtain approximate analytic solutions of the
time-fractional nonlinear diffusion equation in the presence if and external force and an
absorbent term. The fractional derivatives are considered in the Caputo sense to avoid
nonzero derivative of constants. Unlike usual HAM, this method contains at the most three
convergence control parameters which determine the fast convergence of the solution through
different choices of convergence control parameters. Effects of proper choice of parameters
on the convergence of the approximate series solution by minimizing the averaged residual
error for different particular cases are depicted through tables and graphs.

According to Hirt (2009), numerical solution schemes are often referred to as being explicit
or implicit. When a direct computation of the dependent variables can be made in terms of
known quantities, the computation is said to be explicit. When the dependent variables are
defined but coupled sets of equations and either a matrix or an iterative technique is needed to
obtain the solution, the numerical method is said to be implicit.

3. Methodology

Derivation of Finite Difference Method from Taylor's Polynomial

First, assuming the function whose derivatives are to be approximated is properly-behaved,

by Taylor’s theorem we can create a Taylor’s series expansion

' @ @
f(x+Ax)=f(x)+mAx+f (X)A 2+m+f )

n
1 2 X o A

+ Ry (%) (3)

Where n! denotes the factorial of » and R,,(x) is a remainder term, denoting the difference
between the Taylor polynomial of degree n and the original function. We will derive an
approximation for the first derivative of the function "f' by first truncating the Taylor

polynomial:

41



ICCDMS 2021 - Book of Proceeding

f')
1!

flx+Ax) = f(x)+ Ax + R{(x) (4)

Dividing across byAx:

fx+Mx)  fx) (%) Ry(x)
Ax  Ax + Ax Ax+ Ax ®)

Solving for f'(x):

fx+Ax) - f(x) Ri(x)
Ax Ax

fo= (6)

Assuming that R, (x) is sufficiently small, the approximation of the first derivation of f'(x)

1s:

o A —f(0)
o~ =——— ™)

The Finite Difference Method (FDM)

Finite difference methods (FDMs) are numerical methods for approximating the solution to
differential equations using finite difference equations to approximate derivatives (Wazwaz,
2002). FDMs are thus discretization methods. The reduction of the differential equations
makes the problem of finding the solution to a given ODE ideally suited to modern
computers, hence the widespread use of FDMs in modern numerical analysis. FDMs are the

dominant approach to the numerical solutions of partial differential equations.

Forward Difference in Time:

_ulx t+A) —u(x,t)  du(x,t)
Ue = At ot

+ 0(At) ()
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Backward Difference in Time

ulxt) —ulx,t —Ax)  du(x,t) Atazu(x, t)  Ou(x,t)
e = At Y atz ot

— 0(AY)

Forward Difference in Space

o Jule + Ax, ) —ulx, t) — Axuy | 0%u(x,t)
Uyy = 2 [ Ax? = Ax2 + O(AX)
Backward Difference in Space

= Ax ) —ulx, t) + Axuy ] 0%ulx,t)
Uy = 2[ Ax? ==z 0(Ax)

Derived Solution of Heat Equation Using Finite Difference Method

Using the FDM, the heat equation is given thus:
At
ulx, t+At) =ulx,t)+1 (A_xz) (u(x + Ax, t) — 2u(x, t) + u(x — Ax, t))

And upon Discretizing equation (12), the heat equation turns:

u(Xp, tyr1) = ulxy, ty)

At
T (A_xz> (u(xn+1, tie) — 2u(xn, tie) + ulxn-1, tk))

The Stability Analysis

The stability solution to the discretized heat equation (13) is:
Urll( — ¢kein9Ax

Where ¢, is a function in time variable and e02%j
Thus;

k+1 _ in6Ax
Ui™ = ¢rsre

(15)
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Uk+1 — ¢kein9Ax eiGAx
n .
(16)

kK _ infAx ,—ifAx
Un 1= ¢ke -€

(7)
Substituting equations (14), (15), (16) and (17) into (13) gives:

¢k+lein9Ax —

¢k mBAx + T( At

>(¢ lnHAx lBAx _ 2¢ emBAx
Ax?

+ ¢kein9Ax. e—iGAx) (18)

infAx _ infAx
dr+1€ = ¢re

At
+T<A )(eLBAx_2+e LGAx)d) emBAx

For stability purpose 7(constant) =1

infAx At i6Ax —i6Ax infAx
(Brwr = B0 = () (8% = 2+ €795 pe
(B = 000 = () (€0 = 2.4 e7085)gs,

At 6A 0A
Bos = P+ (1) (€955 = 2 + 70 g

bror = [1 +< )(elGAx _o4e lHAx)]¢

Using the Trigonometry Identity:
e 108x = ¢o5(9Ax)? isin(OAx)

Substituting (24) into (23):
brs1 = [1 + ( ) (2 cos(8Ax)

_ 2)] i (25)
But using the trigonometry identity
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cos(fAx) — 1 = —2sin? (%) (26)

Equation (25) becomes
At /8Ax
brs = |1 =tz sin? ()| o @7)
For stability, it is required that:
|Pre+1l < il
So that;

|Pr+1l
1Pr+1l
bl — 11

(28)
i.e

(29)

— 4B gip2 (98
1] < |1 4= sin (2)

— 42 g2 (9A%) <
1<1 4szsm(2)s 1
(30)

At . 2 O0Ax
0=—4-5sin? () < 2 G1)

. . (O0Ax
Since: sin (T) <1 (32)
This condition is satisfied for all 8 provided:
—47 < -2 (33)

1
2 (34)

At < — ; (Stability Proved)

4. Results and Discussion
In this thesis, the finite difference method was introduced for the solution of a dimensional
second order heat problem with boundary and initial value problem. Several methods had

been developed and used to solve diverse form of heat problem with accuracy better to the
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exact solution. The setback with those methods was inability to meet the higher continuity
requirement for the approximate functions. One advantage of the finite difference method is
that it allows the use of higher degree basis functions which meet the continuity requirements

of heat problems.

5. Conclusion

One advantage of the finite difference method is that it allows the use of higher degree basis
functions which meet the continuity requirements of heat problems. Therefore, it concludes
that, the finite difference method gives a closer approximation to the solution of heat problem
while compared with its exact solution and also, the computational technique is easier and
direct in manipulating as to finite volume method and finite element method.
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