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a b s t r a c t 

Knowledge of how the presence of a bend can change the flow patterns of a gas–liquid mixture is impor- 

tant for the design of multiphase flow systems, particularly to prevent burn-out and erosion–corrosion. 

Burn-out and erosion–corrosion both have serious implications for heat and mass transfer. The objective 

of this work therefore is to train an artificial neural network (ANN), a powerful interpolation technique, 

to predict the effect of a vertical 90 ° bend on an air–silicone oil mixture over a wide range of flow rates. 

Experimental data for training, validation, testing and final prediction were obtained using advanced in- 

strumentation, wire mesh sensor (WMS) and high speed camera. The performance of the models were 

evaluated using the mean square error (MSE), average absolute relative error (MAE), Chi square test ( X 2 ) 

and cross correlation coefficients ( R ). The performance discriminator X 2 for prediction of average void 

fraction is 2.57e-5 and that for probability density function (PDF) of void fraction MAE is 0.0028 for best 

performing models. The well trained ANN is then used to predict the effects of the two input parameters 

individually. The predicted results show that for the before the bend scenario, the most effective input 

parameter that reflects a change in flow pattern is the gas superficial velocity. On the other hand, the 

most unfavorable output parameter to measure after the bend is the average void fraction based on the 

fact that the flow near the bend is a developing one. 

© 2017 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved. 
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. Introduction 

Pipe fittings such as valves, bends, elbows, tees, reducers, ex-

anders, are integral parts of any piping system. Flow through pip-

ng components is more complex than in straight pipes [1] . The

resence of a bend can significantly change the flow patterns im-

ediately downstream with the potential of causing damage to

he pipe. One common multiphase flow characteristic observed in

ows is the redistribution of the flow phases within the bend. This

ay lead to secondary flows, strongly fluctuating void fractions,

ow excursions, flow separations, pressure pulsations and other

nsteady flow phenomena [2] . The requirements for economic de-

ign, optimization of operating conditions, and evaluation of safety

actors create the need for quantitative information about such

ows [2] . 
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The possibility of using experimental data to train an Artificial

eural network (ANN) in order to predict the redistribution of mul-

iphase flows passing through 90 ° bends, has received little atten-

ion in the peer review literature. Most of the investigations have

een restricted to experimental investigation: [2–8] address the is-

ue of gas–liquid systems but most of the reported experiments

re not extended to the application of ANN to predict such flows

n bends. This paper extends experimental investigation [2] to con-

ider the application of ANN to predict the redistribution of multi-

hase flows in 90 ° bends. 

Transport processes such as mass, momentum and heat transfer

uring two-phase gas–liquid flow are vastly influenced by the flow

haracteristics. For an overall performance and purpose of safety in

ndustrial systems, such as petroleum, biomedical processing sys-

ems, chemical and nuclear reactors, it is essential to monitor the

ow behavior during normal and transient operations [9] . Accord-

ng to [9] , accurate knowledge of flow pattern is necessary in de-

ign analysis and rig operation. Probability density function (PDF)

f void fraction has been successfully used in the past to charac-

erize flow patterns [8–14] . A number of studies have been carried
ights reserved. 
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out on the application of ANN for predicting flow characteristics.

[15–21] applied ANN for the prediction of hydrodynamic parame-

ters in gas-liquid flow. These studies were limited to flow through

straight pipes, however [22] applied ANN for the prediction of fric-

tional pressure drops in U-bends. They claimed that the ANN ac-

curately predicted frictional pressure drop across U-bends. 

In general, ANN is widely used in function estimation since it

is able to estimate virtually any function in a stable and efficient

manner [17] . Therefore, it is expected that the ANN approach can

predict the major performance of the effect of bends at arbitrary

input conditions without experiment measurements in more in-

dustry relevant fluids for the optimal, efficient and safe operation

of the flow systems. 

2. Material and methods 

All experiments were carried out on an inclinable pipe flow rig

available within the Engineering Laboratories of the University of

Nottingham. Details about the experimental apparatus have been

previously reported by [2,23–25] . The experiments were all per-

formed at an ambient laboratory temperature of 20 ± 0.5 ◦C and

a pressure of 1 bar The behavior of the air– silicone oil mixture

was examined using WMS. This technology, described by [26–28] ,

can image the dielectric components in the pipe flow phases by

measuring rapidly and continually the capacitances of the passing

flow across several crossing points in the mesh. 

2.1. Artificial neural network (ANN) modeling 

In this work, three different training algorithms from commer-

cial application (MATLAB) were used to configure the network and

three different transfer functions (tansig, logsig and purelin) were

tested for each training algorithm. The network topography con-

sists of an input layer IL , a hidden layer HL and an output layer OL .

The three training algorithms used are; Gradient descent with vari-

able step size and momentum term (GDX); Levenberg Marquardt

(LM) algorithm and Resilient back-propagation (RP). Through reli-

able training and testing using experimental data, the trained ANN

can predict the performance of the effect of a bend on air–silicone

oil flow. When the ANN is applied to predict the performance of

the effect of a bend, it can reveal the highly non-linear relation-

ship between the two input parameters and two output param-

eters, by searching for optimum weights in its weighting space.

Searching for optimal weights or training the ANN aims to min-

imize a cost function with respect to the training data set. The

mathematical background can be found in [12,21,22] . It is worth

mentioning that different network topologies are available in ANN

but for this work, the back-propagation network with feed-forward

algorithm was chosen as this has performed satisfactorily well in

previous works [16,18,20,29,30] . 

3. Results and discussion 

3.1. Variation of MSE with number of processing elements in the HL 

Table 1 presents the optimum number of processing elements

for average void fraction and PDF of void fraction before and after

the bend. The number of processing elements which gives the least

value of minimum cross-validation MSE is chosen as optimum. 

3.1.1. Objective function and performance of ANN 

The objective function provides the basis for performance eval-

uation and network algorithm selection. In this work, sum of

squares of error is used as the objective function and is given by
q. (1) . 

 = 

1 

2 

i =1 ∑ 

N 

( O i − t i ) 
2 (1)

Eqs. (2 )–( 5 ) are used to check the overall performance of the

etwork. Mean Square Error (MSE), given by; 

SE = 

1 

N 

N ∑ 

i =1 

( O i − t i ) 
2 (2)

Mean Absolute Error (MAE), given by; 

AE = 

1 

N 

N ∑ 

i =1 

| O i − t i | (3)

Chi square test 

 

2 = 

N ∑ 

i =1 

( O i − t i ) 
2 

t i 
(4)

Correlation Coefficient 

 = 

∑ N 
i =1 

(
O i − Ō 

)(
t i − t̄ 

)
√ ∑ N 

i =1 

(
O i − Ō 

)2 ∑ N 
i =1 

(
t i − t̄ 

)2 
. (5)

The maximum validation test is chosen as six (6) as this pro-

uced good results for the problems tested. Network configuration

as based on minimum cross validation MSE. It is worth men-

ioning that the model with the least value of Chi square ( X 

2 ) is

aken as the model with best performance when predicting aver-

ge void fraction. On the other hand, the prediction of PDF of void

raction model performance is based on the Mean Absolute Error

MAE). Thus, the model with the least value of MAE is chosen as

he model with the best performance. 

.2. Performance for test and prediction data sets 

In this work, test and prediction data sets are used for testing

odel performance. However, it is worthy of note that while test

ata set was part of the original network configuration, the pre-

iction data set was not. Since the prediction data set is not in-

luded during network configuration, results obtained from it can

e used reliably to validate model results obtained from test data,

hus minimising the risk of randomization error. While the test

ata is used here to choose the best performing model, the pre-

iction data set serves as a check for generalization properties of

he model. 

It can be observed from Table 2 (test data) that all the ANN

odels tested for the prediction of average void fraction before

he bend performed very well. This is seen in the small values of

AE and closeness to unity of R . However, Chi square test confirms

hat the ANN model based on LM algorithm with logsig transfer

unction and 8 neurons in the hidden layer performed best for

he prediction of average void fraction before the bend. Results

f Table 2 (prediction data) are a confirmation that all the mod-

ls tested performed satisfactorily and that the models have good

eneralization properties. 

Table 3 gives performance results for best ANN models for pre-

iction of PDF of void fraction before the bend. It is observed that

he ANN model based on LM algorithm with sigmoid transfer func-

ion in the HL performed very well as can be seen by the small

alues of MAE and the closeness of R to unity. This is further vali-

ated by similar results obtained for prediction data. 



P.O. Ayegba et al. / Journal of the Taiwan Institute of Chemical Engineers 74 (2017) 59–64 61 

Table 1 

Optimum number of neurons. 

Algorithm Transfer function Optimum number of processing elements 

Average void fraction ( ε) PDF of void fraction 

Before the bend After the bend Before the bend After the bend 

GDX Tansig 4 8 12 11 

Logsig 9 10 12 11 

Purelin 16 2 18 13 

LM Tansig 17 20 12 11 

Logsig 8 6 12 27 

Purelin 6 2 18 16 

RP Tansig 10 14 12 5 

Logsig 8 3 12 14 

Purelin 3 2 11 16 

Table 2 

Performance of ANN models for prediction of average void fraction before the bend. 

Algorithm Transfer function Measurement type (Test data) Measurement type (Prediction data) 

MSE MAE R Chi square MSE MAE R Chi square 

Average void fraction GDX Tansig 0.0014 0.1915 0.9864 0.0089 0.0015 0.0527 0.9907 0.0021 

Logsig 0.0034 0.2616 0.9902 0.0181 0.0016 0.0521 0.9714 0.0025 

Purelin 0.0107 0.5894 0.9189 0.1113 0.0078 0.1237 0.9542 0.0125 

Tansig 2.50e −4 0.0414 0.9991 5.36e −4 0.0100 0.1119 0.8060 0.0136 

LM Logsig 9.82e −6 0.0057 0.9999 2.57e −5 5.56e −4 0.0313 0.9674 8.13e −4 

Purelin 0.0110 0.5970 0.9189 0.1156 0.0076 0.1216 0.9541 0.0122 

Tansig 0.0061 0.4141 0.9479 0.0457 4.50e −4 0.0277 0.9694 6.31e −4 

RP Logsig 0.0014 0.1602 0.9949 0.0067 0.0025 0.0610 0.9410 0.0038 

Purelin 0.0114 0.6143 0.9148 0.1113 0.0130 0.1675 0.9465 0.0204 

Table 3 

Performance of best ANN models for prediction of PDF of void fraction before the bend. 

Algorithm Transfer function Measurement type (Test data) Measurement type (Prediction data) 

MSE MAE R MSE MAE R 

GDX Tansig 3.5041e −4 0.0106 0.5287 2.3702e −4 0.0113 0.5556 

Logsig 2.7497e −4 0.0094 0.6202 1.4472 0.0091 0.5718 

Purelin 3.3954e −4 0.0098 0.4922 1.6428 0.0096 0.4187 

LM Tansig 5.8107e −5 0.0028 0.9335 8.4041e −6 0.0019 0.9750 

Logsig 7.0600e −5 0.0029 0.9189 1.5103e −5 0.0026 0.9550 

Purelin 3.1843E −4 0.0077 0.5413 1.0143e −4 0.0067 0.6441 

RP Tansig 2.0835e −4 0.0065 00.730 1.9297e −4 0.0063 0.6372 

Logsig 2.6266e −4 0.0072 0.6506 1.0159e −4 0.0052 0.7614 

Purelin 2.9992e −4 0.0074 0.5768 1.1360e −4 0.0075 0.5987 
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.2.1. Comparison between experimental and predicted PDF of void 

raction before the bend 

According to [14] , a single peak at low void fraction represents

ubbly flow whiles a single peak at low void fraction accompanied

y a broadening tail represents spherical cap bubble. On the other

and a double peak feature with one at low void fraction and the

ther at high void fraction represents slug flow. However, a single

eak at high void fraction with a broadening tail represents churn

ow. 

Fig. 1 shows the comparison between experimental and pre-

icted PDF of void fraction before the bend at liquid and gas su-

erficial velocities of 0.14 ms −1 (0.05–2.84) ms −1 , respectively. 

From the plot, at liquid and gas superficial velocities of

.14 ms −1 and 0.05 ms −1 , respectively, both the experimental and

redicted PDF of void fraction presents a single peak at low void

raction with a broadening tail extending to a high value of 0.4.

his defines a spherical cap bubble flow as in [14] . The flow pat-

ern has been confirmed by the reconstructed images of gas–liquid

ow patterns and images of high speed video as shown in Fig. 1 a.

hus the degree of agreement between experimental and predicted

NN is good. 

When the gas superficial velocity increases to 0.54 ms −1 , the

pherical cap bubbles coalesce into bullet-shaped Taylor bubbles
nd a slug regime is formed. Both the experiment and ANN model

predicted) gives two main peaks at the values of 0.20 and 0.70, re-

pectively. These peaks are the signature of the aerated liquid slugs

nd the Taylor bubbles with the different sizes. This is also con-

rmed by the analysis of the reconstructed images of two-phase

ow pattern and video images as depicted in Fig. 1 b. 

At 2.84 ms −1 gas superficial velocity, both the experimental and

redicted PDF of void fraction shows a single peak at void fraction

f about 0.80 with broadened tails, down to 0.3 and 0.92. This is

he typical feature of churn. 

It is worth mentioning that during the course of carrying out

he experimental campaign, it was observed that, the structure

f churn flow becomes unstable with the fluid travelling up and

own in an oscillatory fashion but with a net upward flow. The

nstability can be attributed to the relative parity between grav-

ty and shear force acting in opposing direction to the thin film

f liquid of Taylor bubbles. Thus, the question begging for an an-

wer therefore here is can the ANN model successfully mimic

hurn flow and the transition from slug to churn flow (unstable

lug flow) with confidence? This section, aims to provide an an-

wer to this interesting question which has serious implications for

eat and mass transfer using the PDF of void fraction presented in

ig. 2 . 
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Fig. 1. Experimental and predicted PDF of void fraction before the bend at liquid superficial velocity of 0.14 and gas superficial velocity (ms −1 0.14) of: (a) 0.05 (b) 0.54 and 

(c) 2.84. R.I. represents reconstructed images of two-phase flow pattern. The dash line (a) Represents bubble flow whiles the thick line spherical cap bubble. On the other 

hand, the thick line in (b) represents Taylor bubble whiles the dash line liquid slug. The thick line in (c) represents churn flow. 

Fig. 2. Experimental and predicted PDF of void fraction at liquid superficial velocity of 0.14 and gas superficial velocity (ms −1 0.14) of: (a) 0.95 (b) 1.40 and (c) 1.89. 



P.O. Ayegba et al. / Journal of the Taiwan Institute of Chemical Engineers 74 (2017) 59–64 63 

Fig. 3. Comparison of variation of average void fraction with gas superficial velocity obtained from experiments and that predicted using the ANN model based on LM 

algorithm at liquid superficial velocity (ms −1 0.14): (a) 0.14 and (b) 0.38. 

Table 4 

Summary of comparison between experimental and predicted PDF of void fraction before the bend for both test and prediction data sets. 

Flow condition Test data Flow condition Prediction data 

Experimental Predicted Experimental Predicted 

U SL = 0.05ms −1 0.14 U SG = 0.34ms −1 0.14 Slug flow Slug flow U SL = 0.05ms −1 0.14 U SG = 1.42ms −1 0.14 Churn flow Churn flow 

U SL =0.14ms −1 0.14 U SG =0.05ms −1 0.14 Spherical cap bubble Spherical cap bubble U SL = 0.05ms −1 0.14 U SG = 1.89ms −1 0.14 Churn flow Churn flow 

U SL =0.14ms −1 0.14 U SG =0.54ms −1 0.14 Slug flow Slug flow U SL =0.05ms −1 0.14 Churn flow Churn flow 

U SL =0.14ms −1 0.14 U SG = 2.84ms −1 0.14 Churn flow Churn flow U SL =0.14ms −1 0.14 U SG =0.95ms −1 0.14 Unstable slug flow Developing slug flow 

Table 5 

Performance of best ANN models for prediction of average void fraction after the bend. 

Algorithm Transfer function Measurement type (Test data) Measurement type (Prediction data) 

MSE MAE R Chi square MSE MAE R Chi square 

GDX Tansig 0.0485 0.9778 0.9886 0.2171 0.0106 0.1199 0.9995 0.0123 

Logsig 0.0438 0.9611 0.9993 0.2140 0.0047 0.0659 0.7381 0.0060 

Purelin 0.1055 1.5623 0.8477 0.6016 0.0084 0.0970 0.7477 0.0096 

LM Tansig 0.0346 0.9091 0.9402 0.2647 0.0205 0.1520 0.3408 0.0255 

Logsig 0.1151 1.4591 0.5549 0.5957 0.0147 0.1196 0.3619 0.0166 

Purelin 0.0893 1.3884 0.9047 0.4743 0.0064 0.0736 0.6506 0.0073 

RP Tansig 0.0164 0.2137 0.9972 0.0211 0.0113 0.1001 0.6951 0.0130 

Logsig 0.0841 1.4519 0.9911 0.4972 0.0036 0.0647 0.9901 0.0041 

Purelin 0.1013 1.5486 0.8797 0.5890 0.0042 0.0550 0.6941 0.0047 
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Interestingly, the ANN model is able to replicate both the un-

table slug and churn flows as shown in Fig. 2 . At gas superficial

elocity of 0.95 ms −1 , two peaks appear on both the experimen-

al and predicted PDF graph of void fractions. The high value of

as flow rate of 0.95 ms −1 brings out an increase in Taylor bubbles

nd the shrinkage of the liquid slugs and as a consequence more

nd more bubbles are entrained in the liquid slugs. This pattern

ccording to [14] is defined as unstable slug flow. 

When the gas superficial velocity reaches 1.40 ms −1 , the PDF of

oid fraction for both the experimental and predicted have a single

eak with broadened tails down to 0.2 and 0.9. This is the typical

eature of churn flow. 

At gas superficial velocity of 1.89 ms −1 , the flow pattern for

oth the experiment and predicted remain unchanged, churn flow.

Table 4 presents a summary of comparison between experimen-

al and predicted PDF of void fraction before the bend. It can be

oncluded therefore that the model can be used to predict unsta-

le slug and churn flows before the bend with confidence. 

Results of Tables 5 and 6 indicate that all the ANN models

ested performed poorly and showed weak generalization proper-

ies. This can be attributed to the fact that the flow immediately

ownstream of the bend is not fully developed. It is interesting,

hough, to observe from Table 6 that the ANN model based on

radient descent algorithm with logsig transfer function and

leven neurons in the HL performed better than all the other ANN
odels tested. It surmises to say that the ANN models cannot be

sed reliably in the prediction of average void fraction and PDF

f void fraction immediately after the bend where the flow is not

ully developed. 

Tables 5 give performance results of the models tested for the

rediction of average void fraction after the bend. 

.2.2. Comparison of experimental and ANN predicted average void 

raction over the entire experimental range of gas superficial 

elocities 

An interesting observation made here is that ANN models are

ble to successfully predict the variation in average void fraction

ith gas superficial velocity. It can be concluded based on the plots

hat the best degree of agreement between experiment and pre-

icted average void fraction is observed at liquid superficial veloc-

ty of 0.14ms −1 , followed by at 0.38 ms −1 . 

Fig. 3 (a) and (b) shows that both the experimental and pre-

icted average void fraction changes with the gas superficial ve-

ocity whilst on the other hand decreases with liquid superficial

elocity. From the plots, low void fraction values can be observed

o be associated with spherical cap bubble and are seen to in-

rease rapidly to slug, unstable slug and churn flows with an in-

rease in gas superficial velocity. This observed trend with re-

ards to average void fraction is consistent with the observations of

31–33] . 
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Table 6 

Performance of best ANN models for prediction of PDF of void fraction after the bend. 

Algorithm Transfer function Measurement type Measurement type (Prediction data) 

MSE MAE R MSE MAE R 

GDX Tansig 0.0034 0.0195 0.4048 9.3338e −4 0.0155 0.2448 

Logsig 0.0030 0.0186 0.6248 9.5071e −4 0.0149 0.2379 

Purelin 0.0039 0.0209 0.1724 5.2901e −4 0.0167 0.1876 

LM Tansig 0.0048 0.0190 −0.3178 0.0015 0.0109 0.3937 

Logsig 0.0040 0.0211 0.1105 0.0017 0.0145 0.3728 

Purelin 0.0036 0.0189 0.3791 3.6641e −4 0.0099 0.5667 

RP Tansig 0.0039 0.0213 0.1984 2.0884e −4 0.0080 0.7803 

Logsig 0.0038 0.0217 0.2287 7.3632e −4 0.0157 0.2845 

Purelin 0.0037 0.0194 0.3156 3.3291e −4 0.0104 0.5769 
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4. Conclusion 

In this work, the applicability of the use of ANN for estimating

the performance of the effect of a vertical 90 ° bend on an air–

silicone oil mixture was demonstrated. A well trained and tested

ANN using measurement data is employed to predict its perfor-

mance at off-design conditions. Especially, the effect of two input

parameters (liquid and gas superficial velocities) has been exam-

ined. The performance discriminator X 

2 for prediction of average

void fraction is 2.57e-5 and that for PDF of void fraction MAE is

0.0028 for best performing models. This indicates that there is a

good agreement between experimental and ANN predicted results.

The predicted results show that the most effective positive influ-

ence on the bend is the gas superficial velocity. An increase in gas

superficial velocity triggers a change in flow pattern from spheri-

cal cap bubble to slug flow then to churn flow and then finally to

annular flow. Due to the capability of the neural networks to inter-

polate, it was applied successfully to predict void fraction outside

the range of liquid and gas superficial velocities considered by the

experimental work. Therefore, the void fraction and PDF of void

fraction including the flow pattern can be predicted with a high

degree of accuracy just by knowing the values of liquid and gas

superficial velocities using ANNs. 
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