THE EFFECT OF FARMERS' SOCIO-ECONOMIC FACTORS ON NET CATFISH FARMERS IN SELESCTED LOCAL GOVERNMENT AREAS OF KWARA STATE, NIGERIA

Ojo A. O, Ojo M. A.and Ajayi O

- Atricultural Economics and Extension Technology, Federal University of Technology, P.M.B. 65, Minna, Niger State'

Received 22 ${ }^{\text {nd }}$ December, 2015, Accepted 25 ${ }^{\text {th }}$ August, 2016

Lulyed the effect of farmers' socio-economic attributes on the net farm income of catfish farmers in - Mgeria. Primary data were collected from selected catfish farmers with the aid of well-structured and a multistage sampling technique was used to select 102 catfish farmers in the area. The -iniques involved the use of descriptive statistics and multiple regression analysis. The findings Un 5046 of the catfish farmers in the study area were male, with mean age of 47 years, mean household $\square \mathrm{c}$ persons while the mean year of fishing experience was five years. The result also revealed that stock
24.2 labour $\left(\mathrm{X}_{4}\right)$ and accessibility to credit $\left(\mathrm{X}_{7}\right)$. were the main determinants of catfish productivity in adtition farmer's sex, household size, no of ponds, distance of the farm from market and access to $=$ the main socio-economic factors influencing the net farm income of the catfish farmers in the area. \square market, inadequate credit facilities and inadequate skilled labour needed for daily production routine. $m e$ endings, it was therefore recommended that, to reduce the mortality rate of catfish, extension agents methe training workshops on improved methods and techniques of raising catfish right from juvenile to Bit ine

- Net income, credit, mortality, catfish production

Fish plays a vital role in feeding the population and contributes to the dietary protein intake of - +5 of millions of the populace on a global $\geq \geq$ Is it accounts for about one fifth of world $=i$ supply of animal protein (Ideba et al.,

According to FAO (1991), its supply Eren five folds over the last forty years from
ion metric tons to 98 million metric tons
393 and projected to exceed 150 million -ric tons by the year 2010. Currently, the per consumption stands at 13.5 - thy person while the projected fish mobection and demand are 730, 248 tons and 75,000 tons, respectively leaving the fish gap deficit at 1,444,752 tons. Nigeria चpuires about 2.66 million metric tons of fish mally to satisfy the dietary requirement of its Eficens. However, the total aggregate domestic Sth supply is less than 0.7 million metric tons per annum, hence, Nigeria has to import about 17 million metric tons of fish, valued at about $\$ 500$ million annually to augment the shortfall. This massive importation of frozen fish has anked Nigeria
the largest importer of frozen fish in Africa (Gamal, 2011). In order to reduce the importation of frozen fish in country, a lot of efforts have been directed into the production of catfish (Clarias spp) and other culturable fish species such as Tilapia and Carp. Among these, catfish is most preferred because it adapts well in diverse environments and could survive on natural or artificial food. It can be cultured in different culture systems such as ponds, cages, tanks and water re-circulatory system. In addition, its growth is rapid and can be crossbred to enhance certain favourable traits such as better body conformation (smaller head, more flesh), more hardiness, higher fecundity, improved survival of fry, and adaptation to supplementary feed. It has a higher market value when compared to other species (Oguntola, 2008 and Tsue et al., 2012). In areas where land for agricultural use is scarce, catfish and other fishes can be produced conveniently because it requires smaller portion of land when compared to other livestock.

The importance of catfish and other fish species in the diet of an average Nigerian cannct be overemphasized. Fish protein is amajor source of food for the human race which has put an end to the unsavoury outbreak of anaemia.
According to Olagunju et al. (2007), it guards against kwashiorkor which is prevalent among the poorest of the people in the rural areas and has low cholesterol component compared to other animal protein sources. It is a cheap and safest source of animal protein when compared to beef, chicken, pork and mutton and serves as a source of employment and income for many Nigerians. It also allow for protein improved nutrition in that it has a high biological value in terms of high protein retention and assimilation in the body as compared to other animal protein sources (Olagunju et al., 2007). Therefore, for Nigerians to continue to enjoy the benefits accruing from catfish production and for importation to be reduced, there is the need to investigate various socio-economic characteristics of fish farmers and how they affect their net income. This is believed to assist the policy makers to improve the welfare package of the farmers to boost their morale on increased local catfish production in order to reduce unemployment, increase accessibility of Nigerians to cheap protein source, improved health status, income and, living standards thereby alleviating poverty among the rural and urban dwellers. It is against this backdrop that this study attempted to examine the effect of socio-economic factors on the net income of farmers, the determinants of catfish production and the constraints militating against catfish production in the study area.

Methodology

Study Area

The study was conducted in Kwara State, Nigeria. Kwara State is in the Northcentral zone of the country with a population of $2,591,555$ which reached $3,080,544$ in 2013 at an annual growth rate of 2.5% (World Bank, 2014). Kwara State covers a total land area of 332,500 square kilometres and lies within latitude $7^{\circ} 45^{\prime} \mathrm{N}-9^{\circ} 30^{\prime} \mathrm{N} 45^{\prime}$ and longitude $2^{\circ} 30^{\prime} \mathrm{E}-6^{\circ} 2^{\prime} \mathrm{E}(\mathrm{Ojo}, 2014)$. It is bordered in the north by Niger State, Kogi State in the east; Oyo, Osun and Ekiti States in the south and the Republic of Benin along its north-western part. The model for the determinants of catfish production was specified explicitly as:

[^0]The climatic condition of Kwara State \quad 장 divided into wet and dry seasons with temperature ranging from $33^{\circ} \mathrm{C}$ to 37 C Agriculture is the predominant economit activity in the State and the major type of crops grown are majorly yam and cassava. The main cities in Kwara State are Ilorin, Afon, Iponrin Jebba, Kaima, Lafiagi, Iloffa, Offa, Omu-aram and Patigi. The main ethnic groups in Kwan State are the Nupe, Fulani, Bariba and Yorube people even though the yorubas were the early settlers in the State. Seven languages are spoken in Kwara State; of these, Ebira, Nupe ant Yoruba are the major ones. Christianity and Islam are the main religions in Kwara State although a fair amount of traditional religion is practised. It consists of sixteen Local Government Areas (LGAs) which are Baruteen Edu, Ekiti, Ifelodun, Ilorin East, Ilorin South Ilorin West, Irepodun, Isin, Kiama, Moro, Offe Oke-Ero, Oyun and Patigi.

Sampling Techniques

A multistage sampling technique was used to select the catfish farmers in the study area. The first stage involved the random selection two out of the sixteen LGAs in the State. The selected LGAs were Ilorin west and Ilorin south. The second stage involved the random selection of three towns from each of the LGAs while the third stage involved the random selection of seventeen catfish farmers from each town making a total of one hundred and two cat fish farmers in the State.

Method of Data Collection

Primary data were collected with the aid of a structured questionnaire for a one year period to elicit information from the targeted catfish farmers on relevant information regarding catfish production in the State.

Data Analytical Techniques

These were achieved using descriptive statistics such as mean, frequency distribution, percentages and mean to describe the socioeconomic characteristics as well as the constraints facing the catfish farmers in the study area. Multiple regression model was adopted in the analysis of the determinants of catfish production and the effect of socioeconomic factors on the net income of the farmers in the study area.

wara Stan

seasons

$3^{\circ} \mathrm{C}$ to

or type of are
sava. The min
Afon, Ipotern
ffa, Omz-and oups in $\mathrm{K}=$ ba and Yont were the
ges are spoli
ra, Nupe hristianity
Kwara Sta onal religion ixteen Laci h are Barutem , Hlorin Souti a, Moro, Offir

technique wz

 s in the stud the random LGAs in lorin west and involved the from each involved the atfish farmen f one hundrai ate.ected with the for a one year n the targeted information te State.
ng descriptive y distribution be the sociowell as the armers in the 1 model was terminants of ect of socioncome of the

```
        am
        -x-mc,-(5)
        leg Fanction
```



```
        lat-lm\mp@subsup{\varepsilon}{1}{\ldots(...(6)}
        Gamemertal
```



```
            (7)
        C4.2x}x\mathrm{ , and }X\mathrm{ ,are as defined in the implicit form
        =~m
```


Lanets and Discussions

```
= mai-economic characteristics of catfish - were as presented in Table 1. The Table -is that 60 percent of the catfish farmers in -aty area were males, while 40 percent of - were females. It was revealed that male \(\square\) dominated fish production activities in =aty area. Tsue et al. (2012) corroborated - im a study conducted on the profit efficiency g catfish farmers in Benue State, Nigeria \(\square=\) it was discovered that catfish production \(=\) primarily a male dominated ( 89.5 percent) -rprise in the area. Distribution of the Bers by age showed that the catfish farmers antio \(31-50\) years of age had the highest peontage of 57 percent. The mean age was 47 ears. This implied that majority of the farmers were in their economically active age, full of life and vigour and could contribute positively at the production and productivity of catfish in
```

```
\(\mathrm{X}_{3}=\) Stock capacity (No.)
\(X_{4}=\) Labour (man-days)
\(X_{5}=\) Lime (kg)
\(\mathrm{Y}=\mathrm{Net}\) income ( N )
\(\mathrm{X}_{1}=\operatorname{Sex}\) (Male \(=1,0\) otherwise)
\(\mathrm{X}_{2}=\) Age (Years)
\(\mathrm{X}_{3}=\) Household size (No.)
\(\mathrm{X}_{4}=\) Level of education (Years)
\(\mathrm{X}_{5}=\) Experience (Years)
\(\mathrm{X}_{6}=\mathrm{No}\). of ponds (No.)
\(\mathrm{X}_{7}=\) Distance of farm to market \((\mathrm{km})\)
\(\mathrm{X}_{8}=\) Access to credit (access \(=1,0\) otherwise)
\(\varepsilon_{i}=\) Error term
```

the study area. This was supported by Joshua et al. (2012) who reported that majority of the fish farmers in Nassarawa State, Nigeria were between $41-50$ years accounting for (56.7 percent) which they attributed to the fact that fish farming requires patient which could mostly be provided by the old people above forty years.The results of the analysis of the marital status of the farmers revealed that 97 percent of the catfish farmers in the study area were married, while three percent were divorced. The study also revealed that singles in the study area were not into catfish production.This result of the analysis of the marital status could be advantageous where hired labour is in short supply and family labour is willing and available to partake in the production process. The non involvement of the singles in catfish production as an enterprise may probably be because it is capital intensive and needed a lot of expertise. However, they might have been useful as hired labour to compound feeds, feed the fish or harvest as the case may be. This study was corroborated by Oluwasola and Ajayi (2003) in the study on the socio economic and policy issues in determining the sustainable fish farming in Ileife, Osun State, Nigeria. It was reported that 98 percent and 2 percent of the catfish farmers in the study area were married and singles, respectively. The distribution of household size as shown in Table 1 revealed that 58 percent of the farmers had one to five household size while 42 percent had between six to ten household sizes. The mean household size was five. The result of the household size revealed that the farmers may not need much of the assistance of hired labour if the members of the household were willing to engage in the production process. This finding is similar to the study conducted by Oluwasola and Ajayi (2003) who reported that 65% of the catfish farmers in his study area had one to five household size. The
analysis of the educational level of the farmers revealed that 50 percent had primary education, secondary 26 percent, post-secondary 11 percent while 14 percent had tertiary education. This result revealed that all the farmers had formal education at various degrees of educational level which may help in the adoption of innovation on improved methods of catfish production in the study area. This may also reduce drudgery of labour and increase productivity of the farmers. This research finding confirmed the opinion of Ideba et al. (2013) ina research on the economic analysis of fish farming in Calabar, Cross River State where it was revealed that 100 percent of the catfish farmers in the study area were educated. Furthermore, it was revealed that 76 percent of the catfish farmers had one to ten years of experience in catfish production while 24 percent had 11 years and above. The mean year of experience was five.

The more the years of experience especially $=$ fishing techniques, breeding and fish culture the better their understanding of the business at fish production This will assist in generation more revenue, reduce cost of production ant eventual increase in profit levels of the farmens To a certain extent, years of experience will also assist in risk management whenever the need arises. This finding also conforms to that of Tsue et al. (2012) who discovered the mean years of experience of 5 . The results of their analysis showed that 76 percent of the respondents had about one to ten years experience in catfish farming. This implied that the ability to manage fish pond efficiently depended on the level of experience of the catfish farmers which is also directly related 1 the total productivity of the catfish farmer in the study area.

Table1: Socio-economic Characteristics of Catfish Farmers

Variables	Frequency	Percentage (\%)
Sex		
Male	61	59.8
Female	41	40.2
Total	102	100.0
Age		1.0
<30	4	1.0 39.2
31-40	40	39.2
41-50	17	16.7
51-60	26	25.5
>60	18	17.6
Total	102	100.0
Mean	47	
Marital status		
Married	99	97.1
Divorced	3	2.9
Total	102	100.0
Houschold size		
1-5	59	
6-10	43	42.2
Total	102	100.0
Mean	5	
Educational level		50.0
Primary	51	25.5
Secondary	26	25.5 10.8
Post secondary	11	10.8
Tertiary	14	13.7
Total	102	100.0
Years of experience		
1-5	51 26	
6-10	26	25.5 10.8
11-15	11	10.8
Total	102	100.0
Mean	5	

Determinants of catfish production in the study area

The result of the determinants of catfish production in the area was as presented in Table
2. Of the four functional forms tried, linear model was chosen because thesigns and magnitude of the coefficients, the number of significant variables, the value of the coefficientof determinations $\left(\mathrm{R}^{2}\right)$ and the signi

f the busines
st in genera production s of the farm experience it whenever conforms to overed the results of percent of to ten years g. This impli pond efficiem perience of irectly related fish farmer in
$p=0.01$ level while labour $\left(\mathrm{X}_{4}\right)$ was negatively related to level of output at $p=0.05$ level. The result implied that a unit increase in X_{3} and X_{7} led to an increase in the level of output while a unit increase in X_{4} resulted in decrease in level of output of the farmers. This finding concurred with the study conducted by Ele (2008) in a study conducted on the economic analysis of catfish production in Calabar, Cross River State, Nigeria. It was discovered that factors such as stock capacity and accessibility to credit were those factors affecting catfish production in the study area.

Coefficients af catfish production in the study area	t-values
6345.961	$2.872^{* *}$
1.235	0.765
-4.921	-1.397
0.908	$3.913^{* * *}$
-1.691	$-2.478^{* *}$
13.642	0.488
17.489	1.427
(x)	$-2.875^{* * *}$

F-ratio $=10.44^{* * *}$

- Al woi-economic factors on the net The the catfish farmers

T- multivariate analysis of the $=$ mexsion models was used to lite effect of socio-economic factors $==$ monme of the catfish farmers in the $=$ Out of 8 included predictors, $\mathrm{X}_{1}, \mathrm{X}_{3}$, I- were significant at $p=0.01$ alpha $=\mathrm{X}_{\mathrm{s}}$ was significant at $p=0.05$ alpha
level. The coefficient of determination $\left(\mathrm{R}^{2}\right)$ was 0.53 which implied that 53% of the variability in the net income of the farmers were explained by the included predictors. The Fratio of 12.857 showed that the whole model was significant at $p=0.01$ alpha level. The coefficient of farmer's sex, household size, no of ponds, distance of the farm from market were positive and significant ($p=0.01$).

2 Effect of socio-economic characteristics on the net income of the farmers

$\underline{\square}$	Coefficients	Standard error	t-values
\square	14.830	1.565	9.471
menilir	0.873	0.166	5.244***
enta	-0.651	0.487	-1.337
Puntill sure (X_{3})	1.128	0.375	$3.007 * * *$
$\underline{-3}$	-0.133	0.247	-0.541
- uf aparience (X_{5})	-0.081	0.131	-0.618
forif ponds (X_{5})	0.810	0.183	4.422***
Iure of catfish farm from market (X_{7})	0.285	0.096	2.973***
$\underline{\sim}$	-0.633	0.275	$-2.295 * *$
	$\mathrm{R}^{2}=0.525$	F-ratio $=12.857^{* * *}$	

orms tried, linear ecause thesigns ients, the number ne value of the $\left(\mathrm{R}^{2}\right)$ and the signi
explained by the included predictors. The F-ratio of 12.857 showed that the whole model was significant at one percent level. Also, the more the household size and the number of ponds possessed by the farmers and, the closer the
distance of the farm to the market, the higher the net income accrued to the farmers. In addition, the type of gender involved could have great influence on the net income of the farmers. The greater the farmers' access to credit, the lower the net income of the farmers. This could occur if the farmers divert the loan to other non productive venture or default in the repayment of the accessed loan. This could pose a great threat to the survival of the business when it becomes bad debt.
Constraints faced by Catfish Farmers in the Study Area

The most serious constraint militating against catfish production in the study area was high mortality rate, insufficient market, inadequate credit facilities/ finance and inadequate skill labour needed for daily production routine which ranked $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ and

4th, respectively. These were followed unavailability of fingerlings, high cost of fer and inadequate water availability. The result the constraints hindering increased catf production revealed that farmers still do nit possess adequate knowledge and skill to redaur the mortality rate of the fish. Also inadequan access to loan/finance could probably be the main reason why singles have not taken up fist farming as an occupation. This result is in line with the findings of Ele (2008) on the economi analysis of catfish production in Calabar, Cros River State, Nigeria who reported that the major constraints affecting increment of output in the area were high cost of inputs, lack of adequate finance, access to credit facilities, securit? and farm labour problems.

Table 4: Constraints faced by Catfish Farmers in the Study Area

Constraints	*Frequency	Percentage
Mortality rate	100	98.0
Insufficient market	80	78.4
insufficient credit	65	63.7
Inadequate Labour supply	60	58.8
unavailability of fingerlings	47	46.1
insufficient of feed	30	29.4
insufficient water	21	20.6
insufficient transport	15	14.7
insufficient land	*Multiple response	2

Conclusion and Recommendations

The study analyzed the effect of farmers' socio-economic attributes on the net farm income of catfish farmers in selected LGAs of Kwara State, Nigeria. The result of the farmers' socio-economic characteristics of catfish farmers reveals that 60% of the catfish farmers in the study area were male gender, mean age was 47 years, mean household size was 5 while the mean year of experience was 5 . The result also revealed that stock capacity $\left(\mathrm{X}_{3}\right)$, accessibility to credit $\left(\mathrm{X}_{7}\right)$ and labour $\left(\mathrm{X}_{4}\right)$ were the main determinants of catfish production in the area. In addition, farmer's sex, household size, no of ponds, distance of the farm from market, access to credit were the main socio-economic factors influencing the net farm income of the catfish farmers in the area. The most serious constraints militating against catfish production in the study area were high mortality rate, insufficient demand,
inadequate credit facilities/ finance and inadequate skilled labour needed for daily production routine. Based on the findings, it is therefore recommended that farmers should be encouraged to form co-operative to increase their access to credit facilities. Furthermore, to reduce the mortality rate of catfish, extension agents should organize training workshops on improved methods and techniques of raising catfish right from juvenile to market size and finally, government should encourage young graduates to participate actively in the establishment of catfish farms to bring expertise into catfish business.

In Enpincal Analysis of Fish d skill to rell Also inadenno Birer Basin, Nigeria. PhD probably be $=$ not taken H 표 result is in in
on the econiry (1991). n Calabar, $\mathrm{C}=$ ed that the mand of output in lack of adequ cilities, securt

ercentage

98.0	3M5. $542-549$
78.4	M. Abari and M. Usman
63.7	Economic Viability of Cat Fish
58.8	Nasarawa State Production
46.1	and Technology Journal

=ang in Nigeria. Nigerian Tribune evpuper Wednesday 20 February, Inww.tribune.com.ng/20022008/ag $x+m$
10. (2014). Analysis of Spatial and es/ finance ant needed for daily n the findings, it farmers should be erative to increas es. Furthermore, catfish, extension ning workshops ou hniques of raising to market size and encourage young actively o in the ns to bring expertise

Agricultural Economics and Extension Technology Federal University of Technology, Minna, Nigeria. 44 pp .
Olagunju F. I., I. O. Adesiyan and A. A Ezekiel (2007). Economic Viability of Cat Fish Production in Oyo State, Nigeria J. of Human Ecol. 2007; 21(2): 121-124
Olayide S. O. and E. O. Heady (1982). Introduction to Agricultural Production Economics. University of Ibadan Press, Ibadan: 67pp
Olayide S. O., J. K. Olayemi and J. A. Eweka (1981). Perspectives in Benin-Owena River Basin Development by Centre for Agricultural and Rural Development Department of Agricultural Economics. University of Ibadan, Ibadan, Nigeria. 25-50pp.
Oluwasola O. and D. Ajayi (2013). Socio Economic and Policy Issues in Determining the Sustainable Fish Farming in Nigeria, International Journal of Livestock Production 4(1): 18
Tsue P. T., W. L. Lawal and V. O. Ayuba (2012). Profit Efficiency among Catfish Farmers in Benue State, Nigeria, African Journal of Food, Agriculture, Nutrition and Development 12(6): 6759-6755
World Bank World Bank indicators-NigeriaPopulation.
http://www.tradingeconomics.com/nigeria/pop ulation-growth-annual-percent-wbdata.html. Accessed January, 2014

[^0]: $Y_{1}=a+\beta_{11} X_{1}+\beta_{12} X_{2}+\beta_{B} X_{3}+\beta_{41} X_{4}+\beta_{18} X_{s}+\beta_{16} X_{6}+\beta_{n} X_{9}+\varepsilon_{i}{ }^{(2)}$

