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ABSTRACT 

In this paper, we examine in details how to obtain the order, error constant, consistency  and convergence of a 

Runge-Kutta Type method (RKTM) when the step number  𝑘 = 2. Analysis of the order, error constant, 

consistency and convergence will help in determining an effective Runge- Kutta Method (RKM) to use. Due 

to the loss of linearity in Runge –Kutta Methods and the fact that the general Runge –Kutta Method makes no 

mention of the differential equation makes it impossible to define the order of the method independently of the 

differential equation. 
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INTRODUCTION 

Mathematical modeling of many engineering and physical 

system leads to non-linear ordinary and partial differential 

equations. In general, exact solutions of such equations are 

unknown and thus numerical integration, perturbation 

techniques or geometrical methods have applied to obtain 

approximate solutions. The Runge-Kutta method is one of the 

most famous and popular method which is used for solving 

differential equations. The Runge-Kutta method is named for its' 

creators Carl Runge (1856-1927) and Wilhelm Kutta (1867-

1944) (Tamer Abassy, 2000). 

Runge-Kutta methods are very popular because of their simple 

coefficients, efficiency and numerical stability (Agam, 2013). 

The methods are fairly simple to program, easy to implement 

and their truncation error can be controlled in a more straight 

forward manner than multistep methods (Muhammad, R, Y.A 

Yahaya, A.S Abdulkarim, 2016). The application of Runge-

Kutta methods have provided many satisfactory solutions to 

many problems that have been regarded as insolvable. The 

popularity and growth of these methods, coupled with the 

amount of research effort being undertaken, are further evidence 

that the applications are still the leading source of inspiration for 

mathematical creativity (Adegboye, 2013). 

In the early days of Runge-Kutta methods, the aim seemed to be 

to find explicit methods of higher and higher order. Later the 

aim shifted to finding methods that seemed to be optimal in 

terms of local truncation error and to finding built-in error 

estimators (John Butcher, 2005). 

An ordinary differential equation is a relation between a function, its derivatives and the variable upon which they depend. The 

most general form of an ordinary differential equation is given by 

∅(𝑡, 𝑦, 𝑦′, 𝑦′′, … . , 𝑦𝑚) = 0                                                                   (1) 

Where 𝑚 represents the highest order derivative, and 𝑦 and its derivatives are functions of 𝑡. The order of the differential equation 

is the order of its highest derivative and its degree is the degree of the derivative of the highest order after the equation has been 

rationalized in derivatives. 

The differential equation (1) together with initial conditions (Jain et al., 2003) 

 𝑦(𝑣)(𝑡0) = 𝜂𝑣 , 𝑣 = 0,1,2, …… ,𝑚 − 1                                                     (2)  
 

The initial value problem for first order Ordinary Differential Equation is defined by 

𝑦′ = 𝑓(𝑥, 𝑦)              𝑦(𝑥0) =  𝑦0               𝑥 ∈ [𝑎, 𝑏]                                              (3)  

Butcher defined an s-stage Runge Kutta methods for the first order differential equation in the form 

𝑦𝑛+1 = 𝑦𝑛 + ℎ∑ 𝑎𝑖𝑗𝑘𝑖
𝑠
𝑖,𝑗=1                                                                                   (4) 

where for 𝑖 = 1,2……… . 𝑠 

𝑘𝑖 = 𝑓(𝑥𝑖 + 𝛼𝑗ℎ, 𝑦𝑛 + ℎ∑ 𝑎𝑖𝑗𝑘𝑗
𝑠−1
𝑖,𝑗=1 )                                                                  (5)          

The real parameters 𝛼𝑗 , 𝑘𝑗 , 𝑎𝑖𝑗 define the method. The method in Butcher array form can be written as 

 

𝛼 𝛽 

   𝑏𝑇 

  Where 𝐴 = 𝑎𝑖𝑗 = 𝛽                               (Butcher, 2008)                                   

According to kulikov (2003) if the matrix 𝐴 is strictly lower triangular (i:e the internal stages can be calculated without depending 

on later stages), then the method is called an explicit method, otherwise the internal stages depend not only on the previous stages 
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but also on the current stage and later stages, then the method is called an Implicit method. This method is more suitable for solving 

stiff problems due to its high order of accuracy which makes it more superior to the explicit method (Yahaya and Adegboye, 2011) 

 

 

DEFINITION OF TERMS 

Definition 1:  Order and Error Constant of Runge-Kutta Method  
The first and second order Ordinary Differential Equation (ODE) methods are said to be of order 𝒑 if 𝒑 is the largest integer for 

which 

𝑦(𝑥 + ℎ) − 𝑦(𝑥) − ℎ𝜑(𝑥, 𝑦(𝑥), ℎ) = 0(ℎ𝑝+1)                                           (6) 
𝑦(𝑥 + ℎ) − 𝑦(𝑥) − ℎ2𝜑(𝑥, 𝑦(𝑥), 𝑦′(𝑥), ℎ2) = 0(ℎ𝑝+2)                         (7) 
holds respectively.  Where  

𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) +
ℎ𝟐

2
𝑦′′(𝑥)…………+

ℎ𝒔

s!
𝑦𝑠(𝑥)                       (8) 

𝜑(𝑥, 𝑦(𝑥), ℎ) = 𝑦′(𝑥 + ℎ) = 𝑓(𝑥, 𝑦(𝑥)),                                                     (9) 
𝜑(𝑥, 𝑦(𝑥), 𝑦′(𝑥), ℎ2) = 𝑦′′(𝑥 + ℎ) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥))                             (10) 
in the taylor series expansion about 𝑥0 and compare coefficients of ℎ𝑘𝑦𝑘(𝑥0), 𝑦(𝑥0) is the interval value. The coefficient for 

which 𝒑 is the largest integer is known as the error constant. (Yahaya and Adegboye 2013). 

Definition 2: Consistency of Runge Kutta Methods  

The first and second order Ordinary Differential Equation (ODE) methods are said to be consistent if 

𝜑(𝑥, 𝑦(𝑥), 0) ≡ 𝑓(𝑥, 𝑦(𝑥))                                                                          (11) 
𝜑(𝑥, 𝑦(𝑥), 𝑦′(𝑥), 0) ≡ 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥))                                               (12) 
holds respectively. 

Note that consistency demands that ∑ 𝑏𝑠 = 1
𝑠
1 , and ∑ 𝑏𝑠 =

1

2
𝑠
1   =  for first and second order respectively. Also  ∑ 𝑏𝑠

𝑠
1   is as shown 

in the butcher array table.  

𝛼 �̅� 𝐴 

 �̅�𝑇 𝑏 

𝐴 = 𝑎𝑖𝑗 = 𝛽
2                        �̅� = �̅�𝑖𝑗 = 𝛽              𝛽 = 𝛽𝑒   

Definition 3: Convergence of Runge –Kutta Methods 

If 𝑓(𝑥, 𝑦(𝑥)), 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥))  represents first and second order respectively, then for such method consistency is necessary and 

sufficient for convergence. Hence the methods are said to be convergent if and only if they are consistent. (Yahaya and Adegboye 

2013). 

 

METHODOLOGY 

Reformulation of Runge - Kutta Type method for Order and Error Constant. 

The initial value problem (IVP) for first order Ordinary Differential Equation is defined by  

𝑦′ = 𝑓(𝑥, 𝑦)                        𝑦(𝑥0) = 𝑦       𝑥 ∈ [𝑎, 𝑏] 
The general s-stage Runge Kutta method is defined by 

𝑦𝑛+1 = 𝑦𝑛 + ℎ∑ 𝑎𝑖𝑗𝑘𝑖
𝑠
𝑖=1                                                                                      (13) 

where for 𝑖 = 1,2……… . 𝑠 
𝑘𝑖 = 𝑓(𝑥𝑖 + 𝑐𝑗ℎ, 𝑦𝑛 + ℎ∑ 𝑎𝑖𝑗𝑘𝑗

𝑠
𝑖=1 )                                                                     (14) 

The real parameters 𝑐𝑗 , 𝑘𝑖 , 𝑎𝑖𝑗 define the method. The method in Butcher array form can be written as 

 

𝑐 𝛽 

 𝑊𝑇 

Where 𝑎𝑖𝑗 = 𝛽 

For 𝑐1, 𝑐2, … . , 𝑐𝑠 and 𝑘1, 𝑘2, … . . 𝑘𝑠 in (14) we shall let 𝑘𝑖 = 𝑓𝑐𝑖  implies 𝑘1 = 𝑓𝑐1, 𝑘2 = 𝑓𝑐2,𝑘3 = 𝑓𝑐3 and 𝑘𝑠 = 𝑓𝑐𝑠. 

 

RESULTS  

Consider the equation for the Block Hybrid Runge-Kutta Type Backward Differentiation Formula for  𝐾 = 2 given as 

𝑦
𝑛+

1

2
  =
𝑦𝑛 + ℎ(0𝑘1 +

8

9
𝑘2 −

11

24
𝑘3 +

5

72
𝑘4)

𝑦𝑛+2 = 𝑦𝑛 + ℎ (0𝑘1 +
8

9
𝑘2 +

2

3
𝑘3 +

4

9
𝑘4)

𝑦𝑛+1 = 𝑦𝑛 + ℎ (0𝑘1 +
10

9
𝑘2 −

1

6
𝑘3 +

1

18
𝑘4)}

  
 

  
 

                                              (15a) 
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Where 

𝑘1 = 𝑓(𝑥𝑛 , 𝑦𝑛)

𝑘2 = 𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 + ℎ{

8

9
𝑘2 −

11

24
𝑘3 +

5

72
𝑘4})

𝑘3 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ{
10

9
𝑘2 −

1

6
𝑘3 +

1

18
𝑘4})

𝑘4 = 𝑓(𝑥𝑛 + 2ℎ, 𝑦𝑛 + ℎ{
8

9
𝑘2 +

2

3
𝑘3 +

4

9
𝑘4}) }

 
 
 
 

 
 
 
 

                                          (15b) 

Since 𝑘𝑖 = 𝑓𝑐𝑖 , implies 𝑘1 = 𝑓𝑐1 , 𝑘2 = 𝑓𝑐2, 𝑘3 = 𝑓𝑐3,  𝑘4 = 𝑓𝑐4 

Using equation (14), it implies    

    𝑐1 = 0, 𝑐2 =
1

2
 , 𝑐3 = 1, 𝑐4 = 2. 

Therefore  

 𝑘1 = 𝑓0, 𝑘2 = 𝑓1
2

,  𝑘3 = 𝑓1, 𝑘4 = 𝑓2 

 the equation (13a) now becomes 

𝑦
𝑛+

1

2
  =
𝑦𝑛 + ℎ(0𝑓0 +

8

9
𝑓1
2

−
11

24
𝑓1 +

5

72
𝑓2)

𝑦𝑛+2 = 𝑦𝑛 + ℎ (0𝑓0 +
8

9
𝑓1
2

+
2

3
𝑓1 +

4

9
𝑓2)

𝑦𝑛+1 = 𝑦𝑛 + ℎ (0𝑓0 +
10

9
𝑓1
2

−
1

6
𝑓1 +

1

18
𝑓2)

                                                     (16)                                                                   

Taylor series expansion of  

𝑦
𝑛+

1
2
= 𝑦 (𝑛 +

1

2
ℎ) = 𝑦(𝑛) +

1

2
ℎ𝑦′(𝑛) +

(
1
2
ℎ)

2

2!
𝑦′′(𝑛) +

(
1
2
ℎ)

3

3!
𝑦′′′(𝑛) + ⋯+

(
1
2
ℎ)

𝑠

𝑠!
𝑦𝑠(𝑛) 

𝑦𝑛+1 = 𝑦(𝑛 + ℎ) = 𝑦(𝑛) + ℎ𝑦
′(𝑛) +

(ℎ)2

2!
𝑦′′(𝑛) +

(ℎ)3

3!
𝑦′′′(𝑛) +

(ℎ)4

4!
𝑦′𝑣(𝑛) …+

(ℎ)𝑠

𝑠!
𝑦𝑠(𝑛)                                                                                                                                                

𝑦𝑛+2 = 𝑦(𝑛 + 2ℎ) = 𝑦(𝑛) + 2ℎ𝑦
′(𝑛) +

(2ℎ)2

2!
𝑦′′(𝑛) +

(2ℎ)3

3!
𝑦′′′(𝑛) +

(2ℎ)4

4!
𝑦′𝑣(𝑛) …+

(2ℎ)𝑠

𝑠!
𝑦𝑠(𝑛)                                                                                                                                                

𝑓1
2

= 𝑓 (𝑛 +
1

2
ℎ) = 𝑦′(𝑛) +

1

2
ℎ𝑦′′(𝑛) +

(
1

2
ℎ)

2

2!
𝑦′′′(𝑛) +

(
1

2
ℎ)

3

3!
𝑦′𝑣(𝑛) + ⋯+

(
1

2
ℎ)

(𝑠−1)

(𝑠−1)!
𝑦𝑠(𝑛)  

𝑓1 = 𝑓(𝑛 + ℎ) = 𝑦
′(𝑛) + ℎ𝑦′′(𝑛) +

(ℎ)2

2!
𝑦′′′(𝑛) +

(ℎ)3

3!
𝑦′𝑣(𝑛) + ⋯+

(ℎ)(𝑠−1)

(𝑠 − 1)!
𝑦𝑠(𝑛) 

𝑓2 = 𝑓(𝑛 + 2ℎ) = 𝑦
′(𝑛) + 2ℎ𝑦′′(𝑛) +

(2ℎ)2

2!
𝑦′′′(𝑛) +

(2ℎ)3

3!
𝑦′𝑣(𝑛) + ⋯+

(2ℎ)(𝑠−1)

(𝑠−1)!
𝑦𝑠(𝑛)` 

By substituting into the equation (14) above, we have 

𝑦
𝑛+

1

2

− 𝑦𝑛 − ℎ (
8

9
𝑓1
2

−
11

24
𝑓1 +

5

72
𝑓2) =  

−37

1152
ℎ4𝑦4, the method is of order 3 and the error constant is 

−37

1152
. 

𝑦𝑛+2 − 𝑦𝑛 − ℎ (
8

9
𝑓1
2

+
2

3
𝑓1 +

4

9
𝑓2) =  

−1

18
ℎ4𝑦4 , the method is of order 3 and the error constant is 

−1

18
 

Also, 

𝑦𝑛+1 − 𝑦𝑛 − ℎ (
10

9
𝑓1
2

−
1

6
𝑓1 +

1

8
𝑓2) =  

−1

36
ℎ4𝑦4, the method is of order 3 and the error constant is 

−1

36
 

From definition (2) and (3), the method  
0
1

2

2

1

 

0 0 0 0

0
8

9

−11

24

5

72

0

0

8

9
10

9

2

3

4

9
−1

6

1

18

 

 
0

10

9

−1

6

1

18
 

 

 is consistent since ∑ 𝑏𝑠 = 1
𝑠
1 , hence convergent.  

Consider this equation for the second derivative of 𝒌 = 𝟐 given as 



 

THE ORDER AND ERROR… Muhammad R. FJS 

FUDMA Journal of Sciences (FJS) Vol. 4 No. 2, June, 2020, pp 743 - 748 
746 

𝑦
𝑛+

1

2

= 𝑦𝑛 +
1

2
ℎ𝑦𝑛

′ + ℎ2 (0𝑘1 +
37

108
𝑘2 −

41

144
𝑘3 +

29

432
𝑘4)

𝑦
𝑛+

1

2

′ = 𝑦𝑛
′ + ℎ (0𝑘1 +

8

9
𝑘2 −

11

24
𝑘3 +

5

72
𝑘4)

𝑦𝑛+2 = 𝑦𝑛 + 2ℎ𝑦𝑛
′ + ℎ2 (0𝑘1 +

52

27
𝑘2 −

2

9
𝑘3 +

8

27
𝑘4)

𝑦𝑛+2
′ = 𝑦𝑛

′ + ℎ (0𝑘1 +
8

9
𝑘2 +

2

3
𝑘3 +

4

9
𝑘4)

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦𝑛
′ + ℎ2 (0𝑘1 +

23

27
𝑘2 −

4

9
𝑘3 +

5

54
𝑘4)

𝑦𝑛+1
′ = 𝑦𝑛

′ + ℎ (0𝑘1 +
10

9
𝑘2 −

1

6
𝑘3 +

1

18
𝑘4) }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

                         (17a) 

 where 

𝑘1 = 𝑓(𝑥𝑛 , 𝑦𝑛, 𝑦𝑛
′ )

𝑘2 = 𝑓(𝑥𝑛 +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ𝑦𝑛

′ + ℎ2 (0𝑘1 +
37

108
𝑘2 −

41

144
𝑘3 +

29

432
𝑘4) ,

 𝑦𝑛
′ + ℎ (0𝑘1 +

8

9
𝑘2 −

11

24
𝑘3 +

5

72
𝑘4))

𝑘3 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + ℎ𝑦𝑛
′ + ℎ2 (0𝑘1 +

23

27
𝑘2 −

4

9
𝑘3 +

5

54
𝑘4) ,   

𝑦𝑛
′ + ℎ (0𝑘1 +

10

9
𝑘2 −

1

6
𝑘3 +

1

18
𝑘4))

𝑘4 = 𝑓(𝑥𝑛 + 2ℎ,  𝑦𝑛 + 2ℎ𝑦𝑛
′ + ℎ2 (0𝑘1 +

52

27
𝑘2 −

2

9
𝑘3 +

8

27
𝑘4) ,

𝑦𝑛
′ + ℎ (0𝑘1 +

8

9
𝑘2 +

2

3
𝑘3 +

4

9
𝑘4)) }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

     (17b) 

From equation (14)   

   𝑐1 = 0, 𝑐2 =
1

2
 , 𝑐3 = 1, 𝑐4 = 2 

Therefore  

 𝑘1 = 𝑓0, 𝑘2 = 𝑓1
2

,  𝑘3 = 𝑓1, 𝑘4 = 𝑓2 

the equation  (17a)  now becomes 

𝑦
𝑛+

1

2

= 𝑦𝑛 +
1

2
ℎ𝑦𝑛

′ + ℎ2 (0𝑓0 +
37

108
𝑓1
2

−
41

144
𝑓1 +

29

432
𝑓2)

𝑦
𝑛+

1

2

′ = 𝑦𝑛
′ + ℎ (0𝑓0 +

8

9
𝑓1
2

−
11

24
𝑓1 +

5

72
𝑓2)

𝑦𝑛+2 = 𝑦𝑛 + 2ℎ𝑦𝑛
′ + ℎ2 (0𝑓0 +

52

27
𝑓1
2

−
2

9
𝑓1 +

8

27
𝑓2)

𝑦𝑛+2
′ = 𝑦𝑛

′ + ℎ (0𝑓0 +
8

9
𝑓1
2

+
2

3
𝑓1 +

4

9
𝑓2)

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦𝑛
′ + ℎ2 (0𝑓0 +

23

27
𝑓1
2

−
4

9
𝑓1 +

5

54
𝑓2)

𝑦𝑛+1
′ = 𝑦𝑛

′ + ℎ (0𝑓0 +
10

9
𝑓1
2

−
1

6
𝑓1 +

1

18
𝑓2) }

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

                         (18) 

      

The taylor series expansion of  

𝑦
𝑛+

1
2
= 𝑦 (𝑛 +

1

2
ℎ) = 𝑦(𝑛) +

1

2
ℎ𝑦′(𝑛) +

(
1
2
ℎ)

2

2!
𝑦′′(𝑛) +

(
1
2
ℎ)

3

3!
𝑦′′′(𝑛) + ⋯+

(
1
2
ℎ)

𝑠

𝑠!
𝑦𝑠(𝑛) 

𝑦𝑛+1 = 𝑦(𝑛 + ℎ) = 𝑦(𝑛) + ℎ𝑦
′(𝑛) +

(ℎ)2

2!
𝑦′′(𝑛) +

(ℎ)3

3!
𝑦′′′(𝑛) +

(ℎ)4

4!
𝑦′𝑣(𝑛) …+

(ℎ)𝑠

𝑠!
𝑦𝑠(𝑛)      

𝑦𝑛+2 = 𝑦(𝑛 + 2ℎ) = 𝑦(𝑛) + 2ℎ𝑦
′(𝑛) +

(2ℎ)2

2!
𝑦′′(𝑛) +

(2ℎ)3

3!
𝑦′′′(𝑛) +

(2ℎ)4

4!
𝑦′𝑣(𝑛) …+

(2ℎ)𝑠

𝑠!
𝑦𝑠(𝑛)                                                                                                                                           
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𝑓1
2

= 𝑓 (𝑛 +
1

2
ℎ) = 𝑦′(𝑛) +

1

2
ℎ𝑦′′(𝑛) +

(
1

2
ℎ)

2

2!
𝑦′′′(𝑛) +

(
1

2
ℎ)

3

3!
𝑦′𝑣(𝑛) + ⋯+

(
1

2
ℎ)

(𝑠−1)

(𝑠−1)!
𝑦𝑠(𝑛)  

𝑓1 = 𝑓(𝑛 + ℎ) = 𝑦
′(𝑛) + ℎ𝑦′′(𝑛) +

(ℎ)2

2!
𝑦′′′(𝑛) +

(ℎ)3

3!
𝑦′𝑣(𝑛) + ⋯+

(ℎ)(𝑠−1)

(𝑠 − 1)!
𝑦𝑠(𝑛) 

𝑓2 = 𝑓(𝑛 + 2ℎ) = 𝑦
′(𝑛) + 2ℎ𝑦′′(𝑛) +

(2ℎ)2

2!
𝑦′′′(𝑛) +

(2ℎ)3

3!
𝑦′𝑣(𝑛) + ⋯+

(2ℎ)(𝑠−1)

(𝑠 − 1)!
𝑦𝑠(𝑛) 

 

Substituting these values above in equation (18), we obtained the Order and Error Constant for the second derivative of 𝒌 = 𝟐 of 

the Block Hybrid Runge -Kutta Type method as tabulated below. 

 

Method Order Error Constant 

𝑦
𝑛+

1

2

= 𝑦𝑛 +
1

2
ℎ𝑦𝑛

′ + ℎ2 (0𝑓0 +
37

108
𝑓1
2

−
41

144
𝑓1 +

29

432
𝑓2)  3 −37

1152
 

𝑦𝑛+2 = 𝑦𝑛 + 2ℎ𝑦𝑛
′ + ℎ2 (0𝑓0 +

52

27
𝑓1
2

−
2

9
𝑓1 +

8

27
𝑓2)  

3 −1

18
 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦𝑛
′ + ℎ2 (0𝑘1 +

23

27
𝑘2 −

4

9
𝑘3 +

5

54
𝑘4)             3                              

−1

36
 

From definition (2) and (3), the methods 
0
1

2

2

1

 

0 0 0 0

0
8

9

−11

24

5

72

0

0

8

9
10

9

2

3

4

9
−1

6

1

18

 

0 0 0 0

0
37

108

−41

144

29

432

0

0

52

27
23

27

−2

9

8

27
−4

9

5

54

 

 
0

10

9

−1

6

1

18
 0

23

27

−4

9

5

54
 

 

 are consistent since  ∑ 𝑏𝑠 =
1

2
𝑠
1 , hence convergent.  

 

DISCUSSION 

The formula for the first order Block Hybrid Runge-Kutta Type 

Method (BHRKTM) for 𝑘 = 2 given in equation (15) has each 

of its stages (i:e 𝑘𝑖
′𝑠 from 𝑖 = 1,…4)  reformulated as a linear 

multistep with their corresponding values assigned accordingly. 

The values obtained respectively substituted into equation (15) 

gave rise to equation (16). The taylor series expansion carried 

out with values substituted back into equation (16) gave rise to 

the corresponding order and error constant of each of the 

methods that form the block. All the tables justified the 

consistency as well as convergence of the methods. The same 

procedure was applied for the second derivative of the method 

and results obtained were tabulated accordingly. 

 

CONCLUSION 
For the Block Hybrid Runge-Kutta Type Method (BHRKTM) 

with step number 𝑘 = 2, each of the stages reformulated into 

linear multistep method and with the aid of Taylor series 

expansion gave rise to the uniform order with their error 

constant. All the methods that formed the block are of uniform 

order 3 with varying error constants. The procedures 

highlighted step by step and results obtained tabulated helped to 

establish the consistency and convergence of the methods. This 

helps to determine a standard method to adopt at any point in 

time. The procedure adopted explained a simple approach that 

speeds up computation and reduces computational effort in 

determining the order, error constant, consistency and 

convergence a Runge- Kutta Type Method (RKTM). This will 

also serve as a guide for researchers on how to determine the 

order, error constant and convergence of a Block Hybrid Runge-

Kutta Type Method (BHRKTM). It will also help to determine 

a good choice of the method. 

  

REFERENCES 

Adegboye, Z.A (2013). Construction and implementation of 

some reformulated block implicit linear multistep method into 

runge-kutta type method for initial value problems of general 

second and third order ordinary differential equations. 

Unpublished doctoral dissertation, Nigerian Defence Academy, 

Kaduna 

 

Agam, A.S (2013). A sixth order multiply implicit Runge-kutta 

method for the solution of   first and second order ordinary 

differential equations. Unpublished doctoral dissertation, 

Nigerian Defence Academy, Kaduna. 

 

Butcher, J.C (2005). “Runge-Kutta method for ordinary 

differential equations” COE workshop on numerical analysis 

Kyushu university pp1-208 

 

Butcher, J.C (2008). Numerical methods for ordinary 

differential equations. John Wiley & Sons. 

 



 

THE ORDER AND ERROR… Muhammad R. FJS 

FUDMA Journal of Sciences (FJS) Vol. 4 No. 2, June, 2020, pp 743 - 748 
748 

 ©2020 This is an Open Access article distributed under the terms of the Creative Commons 

Attribution 4.0 International license viewed via https://creativecommons.org/licenses/by/4.0/ which  

permits  unrestricted  use,  distribution,  and  reproduction  in  any  medium, provided the original 

work is cited appropriately. 
 

Kulikov, G. Yu. (2003). “Symmetric Runge Kutta Method and 

their stability”. Russ J. Numeric Analyze and Maths Modelling. 

18(1): 13-41 

 

Jain, M. K., Iyenger, S. R. K. & Jain, R. K. (2003). Numerical 

Methods for Scientific and Engineering Computation. New Age 

International Publishers.  

 

Muhammad R , Yahaya Y.A, & Abdulkareem A.S.  

(2015).Error and Convergence Analysis     of a Hybrid Runge - 

kutta Type    Method.  International Journal of Science and 

Technology (IJST,) 4(4) 164-168. 

 

Tamer A. Abassy (2000). Introduction to Piecewise Analytic 

Method. Journal of Practitional Calculus and Application 3(8) 

1-19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yahaya, Y.A. & Adegboye, Z.A. (2011).  Reformulation of 

quade’s type four-step block hybrid multstep method into runge-

kutta method for solution of first and second order ordinary 

differential equations.  Abacus, 38(2), 114-124. 

 

Yahaya Y.A. and Adegboye Z.A. (2013). Derivation of an 

implicit six stage block runge kutta type method for direct 

integration of boundary value problems in second order ode 

using the quade type multistep method. Abacus, 40(2), 123-132. 

 

 

 

 

https://creativecommons.org/licenses/by/4.0/

