

ENVIRONMENTAL TECHNOLOGY & SCIENCE JOURNAL (ETSJ)

VOLUME 8

NUMBER 1

JUNE, 2017

ISSN: 2006-0459

PUBLISHED BY: School of Environmental Technology Federal University of Technology, P.M.B. 65, Minna, Niger State, Nigeria

Copyright@2017

Editor- In- Chief

Prof. O. O. Morenikeji

Department of Urban & Regional Planning, Federal University of Technology, Minna, Nigeria

Deputy Editor-In-Chief/Managing Editor

Dr R. A. Jimoh

Department of Building, Federal University of Technology, Minna, Nigeria

Editorial Assistant

Dr I. B. Muhammad

Department of Architecture, Federal University of Technology, Minna, Nigeria

Editorial Committee

Dr O. F. Adedayo

Department of Architecture, Federal University of Technology, Minna, Nigeria

Dr A. D. Adamu

Department of Quantity Surveying, Federal University of Technology, Minna, Nigeria

Dr I. C. Onuigbo

Department of Surveying & Geoinformatics, Federal University of Technology, Minna, Nigeria

Dr O. A. Kemiki

Department of Estate Management and Valuation, Federal University of Technology, Minna, Nigeria

Dr P. Ayuba

Department of Architecture, Federal University of Technology, Minna, Nigeria

Dr.J. E. Idiake

Department of Quantity Surveying, Federal University of Technology, Minna, Nigeria

Dr A. Kawu

Department of Urban & Regional Planning, Federal University of Technology, Minna, Nigeria Environmental Technology & Science Journal Vol. 8 No. 1, June 2017

Editorial Advisers

Prof. A. M. Junaid

Department of Urban & Regional Planning, Federal University of Technology, Minna, Nigeria

Prof. Y. A. Sanusi

Department of Urban & Regional Planning, Federal University of Technology, Minna, Nigeria

Prof. D. A. Muazu

Department of Building, Federal University of Technology, Minna, Nigeria

Prof. (Mrs) S. N. Zubairu

Department of Architecture, Federal University of Technology, Minna, Nigeria

Prof. I. O. Aje

Department of Quantity Surveying, Federal University of Technology, Akure, Nigeria

Prof. B. T. Aluko

Dept. of Estate Management, Obafemi Awolowo University, Ile-Ife, Nigeria Prof. P. C. Nwilo
Department of Surveying &
Geoinformatics,
University of Lagos,
Lagos, Nigeria

Prof. U. O. Nkwogu
Department of Architecture,
Imo State University,
Owerri, Nigeria

Contents

to

nd rs /e id to nt ne n

1-13	Chemically Aggressive Environment Aka, A., Musa, A. A., Kaase, E.T. & Tukur, A.
14-22	Assessment of Public Perception of Climate Change Issues in Minna, Niger State, Nigeria <i>Odegbenro</i> , F.J. & Ojoye, S.
23-35	Geospatial Analysis of Shoreline Dynamics in the Coastal Areas of Cross River State Nigeria <i>Adebola, A. O, Adegboyega, S. A. & Ibitoye, M. O.</i>
36-46	Evaluation of Key Design Elements for Play-Learning Environment in Elementary Schools in Minna, Nigeria Ayuba, P. & Akpama, D. S.
47-60	Car Park Usage and Management in Federal Institutions of Zaria Metropolis, Kaduna State-Nigeria Oluwole, M. S., Masugari, D. Y. and Elegonye, I. I.
61-74	Reliability of the Liquidation Valuation Models of Selected Real Estate Collaterals in Niger State <i>Babatunde</i> , <i>I. O.</i>
75-86	Appraisal of Recycling of Deconstructed Building Materials from Selected Renewal and Renovation Projects in Minna Ayuba, P. & Albert, B. S.
87-102	A Geospatial Analysis of Coastal Land use/Land Cover Pattern and Shoreline Changes in Akwa-Ibom State, Nigeria Adebola, A. O., Ojoye, S. & Ibitoye, M. O.
103-122	The Risk of Residing in Proximity to Illegal Waste Dump Site in Sabon Wuse, North-Central, Nigeria Abd'razack, N. T.A., Medayese, S.O., Umaru, E.T. & Shaibu, S.L.

A Geospatial Analysis of Coastal Land use/Land Cover Pattern and Shoreline Changes in Akwa-Ibom State, Nigeria

Adebola Abiodun Olufemi ¹, Ojoye Shamsideen² & Ibitoye Matthew Olomolatan¹

Department of Remote Sensing and Geoscience Information System (GIS), Federal University of Technology, Akure, Ondo State

Department of Geography, Federal University of Technology, Minna, Niger State.

Department of Remote Sensing and Geoscience Information System, Federal University of

Technology Akure, Ondo State

Corresponding E-mail: collinola@gmail.com

Abstract

The shoreline is one of the most important features on earth's surface. They are highly dynamic and ever changing. Changes are over time scales including minutes, hours, decades and Centuries. Spatial scales vary from local to regional to worldwide. Although change is continuously occurring, it doesn't occur in a constant manner. Many factors influence these changes including the type of shoreline (rocky, sandy), wave activity, tidal variations, storms and human impacts. The shoreline change study is necessary for updating the shoreline change maps and management of natural resources. Shorelines are the key element in coastal GIS and provide the most information on coastal landform dynamics. The frequent monitoring of coasts is only to accesses variation of shoreline changes. This study investigates the shoreline changes of Akwa Ibom in Nigeria for three different years 1990, 2000 and 2016, changes that occur in the land use land cover of the area and landforms around the coast. The rate of shoreline change was assessed using Linear Regression (LRR) and End Point Rate (EPR) methods. Landsat imageries for the three years were acquired and processed using Arcgis software by digitizing the shoreline of the coast to determine the changes that occurred in the years under review, maximum likelihood classification was done to classify the study area into different landuse/landcover in order to detect the changes that had also occurred. The shoreline change detection was conducted using the Digital Shoreline Analysis System (DSAS). Based on this result, it was concluded that the shoreline is eroding at -19.03 m/yr and accreting at 15 m/yr.

Keywords: Coasts, End point rate, Accretion, Erosion, shoreline, geospatial.

Introduction

Coastal shorelines worldwide are changing rapidly as a result of natural physical processes and human activities. Natural factors such as sediment supply, wave energy, and sea level are the primary causes of coastal changes, whereas human activities are catalysts causing disequilibrium conditions that accelerate changes. Coastline defined as the line of contact

between land and the water body, is one of the most important linear features on the earth's surface, which has a dynamic nature (Winarso et al., 2001).

Shoreline shifting is the uncontrollable result of coastal erosion/accretion, the consequence of near shore currents. With reverence to the sediment supply, a certain portion of coastline may have excess, be in balance, or have a discrepancy in its sediment budget.

Enormous drop or boost in the sediment supply, in a little span of time or a stretched period, creates a shortage/excess in the sediment budget which causes shoreline shifting, multi-year shoreline shifting mapping seems to be an important task for coastal monitoring and appraisal, satellite remote sensing data in combination with Geographic Information System (GIS) is being used in shoreline extraction and mapping.

Tides often determine the range over which sediment can be deposited or the tidal and range eroded influenced by the size and shape of the shoreline. Waves erode shorelines as they break on the shore releasing their energy, the larger the wave the more energy it releases and the more the sediment it moves. Human activities of reclamation and dredging, infrastructural development along shores also deface the shoreline. A coastline shoreline can he or geographically defined as a linear intersection of coastal land and the surface of a water body.

The shoreline is generally considered to be the edge or margin of land next to the sea or river Shorelines have been defined by different coastal management and regulatory agencies but most coastal zone studies describe the coastline as the interface between land and water (Bird, 1967; Dolan et al., 1980). The changes in the coastline largely depend on its geology and geomorphology, the nature of tidal waves impacting on the coastline; changes in sea level; and sediment transport by long-shore currents (Carter and Woodroffe, 1994; Cowel and Pidwirnyi, 1994; 2006a) activities which include Human dredging, construction of breakwater infrastructure physical and development; mineral exploration and exploitation. construction ports removal of backshore vegetation construction of barges and coastal control works and reclamation also deface the coastline tremendously (Franos et al., 1995; Bergerand 1996; Ibe 1988; Pandian et al., 2004). The shoreline is the bridge between aquatic life and terrestrial life, and it is usually a fragile eco-zone, hence the study of shoreline changes can be of immense benefit to the understanding of complex coastal ecosystems. Shorelines are widely used as ports for navigation and marine commerce and therefore are of economic value and critical to the socio- economic development of nonland locked nations

The location of the shoreline and the changing position of its boundary over time are of elementary importance to coastal scientists, engineers and managers (Douglass and Crowell 2000; National Research Council, 1990).

Study Area

Akwa ibom is a state in Nigeria, it is located in the coastal southern part of the country, lying between the latitude 4° 32'N and 5°33'N and longitudes 7°25'E and 8°25'E. The State is bordered on the east by Cross River on the west by Rivers state, on the south by Atlantic Ocean with population of over 5 million people, it was created in 1987 from the former cross river state

and is currently the highest oil and gas anducing state in the country.

topography of Akwa Ibom is neged, consisting of hills and ridges with steep-sided valleys. The hills and adges of this region which are enarated by flood-prone lowlands are emnants of the west-east extension of he Enugu-Okigwe. The slopes are reatly ravaged by erosion during the my season. The existing climatic actors in Akwa Ibom would have avoured luxuriant tropical rainforests with teeming populations of fauna and extremely high terrestrial and aquatic homass. The native vegetation has been almost completely replaced by secondary forests of predominantly wild oil palms, woody shrubs and various grass under growths. Akwastate is reputed to hold the mehest oil palms per capita in Nigeria. The climate of Akwa-Ibom State is haracterized into two seasons, namely, be wet or rainy season and the dry son. In the south central and central parts of the state, the wet or rainy eason lasts for about eight months but wards the far north, it is slightly less. The rainy season begins about March-April and lasts until mid-November. Akwa-Ibom State receives relatively meher rainfall totals than other parts of southern Nigeria. The total annual minfall varies from 4000mm along the coast to 2000mm inland (NIMET, 2014). The whole of Akwa-Ibom State s underlain by sedimentary formations of late tertiary and Holocene ages.

Deposits of recent alluvium and beach ridge sands occur along the coast and

estuaries of Imo and Qua Iboe Rivers, and also along the flood-plains of creeks. Inland, a greater part of the state consists of coastal plain sands now weathered into laterictic layers. Ituen et al. (2014) remote sensing and Geographic Information System (GIS) based application in the analysis of Shoreline change in Ibeno Local Government. Area [LGA], Akwa Ibom State. Satellite imageries of1986, 2006 and 2008 were used to extract the shoreline through heads-up digitization. The rate of shoreline change was assessed using Linear Regression (LRR) and End Point Rate (EPR) The shoreline methods. detection was conducted using the Digital Shoreline Analysis System (DSAS). Landsat Thematic Mapper (LTM) of 1986 and Enhanced Thematic Mapper (ETM) of 2006 both of 28.5 X 28.5metres ground resolution were acquired from the United States Geological Surveys (USGS) actually used for various analysis carried out. A high resolution Ikonos image of 2008 with about 1m ground resolution was obtained and used. These imageries cover a period of 22yrs. The range of time and years chosen was due to data availability. The result however indicated that the rate of erosion is found out to be very high with maximum value of -7.8m/yr recorded at Itak Abasi community. On the other hand, some portions of the shoreline are accreting at an average rate of 2m/yr. Based on this result however, it was concluded that Ibeno shoreline is eroding at an average rate of -3.9m/yr.

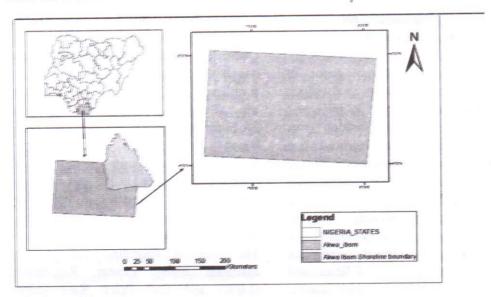


Fig 1: Map of the study area

Areas mostly affected by accretion processes are identified near Oua Iboe River Estuary and ExxonMobil Jetty where sand filling is usually done for settlement purposes. This best explains the reason for the submersion of school buildings, residential buildings and the persistent inundation of large portions of land in the area. Mitra et al. (2013) used Change detection analysis of the shoreline using Topo-sheet and Satellite Mandarmani-Shankarpur Image im West Bengal applied remote sensing and GIS techniques on the multitemporal satellite image and toposheets, shoreline extraction using water index and subsequent change detection analysis was carried out to assess the erosion-accretion pattern in the region at both regional and local scale. Depending on the erosional pattern, the entire study area was divided into four erosional-cells, and independent study was carried out in different cells. The results exhibit that this coastal region has been experiencing erosion.

Kumaravel et al. (2013) and Saravana et al. (2015) used remote sensing and GIS based shoreline change studies in the Cuddalore District, East Coast of Tamilnadu South India, to investigate the spatial as well as quantify the shoreline changes along the coast in the parts of Cuddalore district, east coast geospatia TamilNadu using bv techniques. used Quantitative estimation for shoreline change using Remote Sensing and GIS for South South Andaman Island, India and Andaman Island, India, respective Multivear shoreline mapping considered as a valuable task for coastal monitoring assessment and detection of shoreline change and estimation of erosion and accretion along the eastern coast of the South Andaman. The SOI topo-sheet 1979 IRS 1D 1998 and IRS P6 2009 satelling

pictures were used to delineate the shoreline changes. The results revealed that there is a greatest value of erosion over 30 years of studying. Boatemaa et al. (2013) used impacts of shoreline morphological change and sea level rise on mangroves keta coastal zone investigated the effect of sea level rise and shoreline recession on the mangroves at Anyanui, using geospatial data and modeling techniques. The local trend in rising sea level was analysed using data from a tide gauge station in Ghana. The results indicate that Keta coastal zone is eroding at a rate of about 2.32m/yr and the sea level is rising at a historic rate of about3mm/yr. The study revealed that increasing sea level rise will enable the shoreline to migrate about 8 km inland in the next 100 years, which could pose a severe threat to the mangrove forest. It also emerged that there is a significant increase in mangrove cover between 1986 and Ramanamurthy et al. (2016) used Shoreline Change Monitoring Nellore Coast at East Coast Andhra Pradesh District Using Remote Sensing and GIS to investigate the shoreline changes of Nellore district in Andhra Pradesh coast, as well as the quantity of the erosion and accretion rate. Using multi-temporal resolution satellite data(TM & LISS III, IV) and Geographic information system(GIS) 25 years period i.e, from 1989 to 2015. The resultant coastal maps were used to estimate the geomorphologic changes and shifting of the shoreline position. This integrated study was found useful for exploring accretion and erosion processes in the region. About 87.6 km of coastline was found to be accreting

nature with average of +1.40 m/yr followed by 38.4 km of coastal line eroding with average of -1.36 m/yr and stable coastline of 41.4 km was found. This study demonstrates that combined use of satellite imagery and statistical method such as linear regression for shoreline change analysis are helpful for erosion monitoring and preventive measure.

Prukpitikul et al. (2012) used shoreline change prediction model for coastal zone management in Thailand to utilize geo-informatics technology to increase accuracy of a shoreline prediction model along two study sites Samutprakarn province and Prachuabkirikhan province. The result presents that averaged erosion and accretion rate along Samutprakarn province was 22.30 meters/year and 2.94 meters/year, respectively. On the other hand, the average rate of coastal erosion along Prachuabkirikhan province was much lower, being 2.48 meters/year while the accretion rate was approximately 4.11 meters/year. The predicted shoreline change Samutprakarn province in 2019 is about -132.69 ± 0.758 meters while at Prachuabkirikhan is 40.58 ± 0.0012 meters.

Barman et al. (2015) used an approach of future prediction for trends of shoreline position for Balasore Shoreline to analyze the shift in shoreline due to coastal processes and formular available for best estimate of future shoreline positions based on precedent shorelines, simple Linear Regression Model and End Point Rate (EPR) was adopted to takeout the rate

of change of shoreline and its future on empirical positions. based observations at 67transects along the Balasore coast.. The rate of shoreline movement calculated from the fixed base line to shoreline position of 1975, 1980, 1990, 1995, 2000, 2005 and 2010 and based on this, the estimated shoreline of 2013 was calculated. The estimated shoreline was compared with the actual shoreline delineated from satellite imagery of 2013. The model error or positional shift at each sample point was observed, the positional error varies from -4.82 m to 212.41 m. It has been found that model prediction error is higher in the left hand side of river Subarnarekha. The overall error for the entire predicted shoreline was found to be 41.88 m by Root Mean Square Error (RMSE). In addition, it was tested by means difference between actual and predicted shoreline positions using "t" test and it has been found that predicted shore line is not significantly different from actual shoreline position at (t132 = 0.278) p < 0.01.

Materials and Method

In the process of carrying out this study, the use of satellite images and GIS tools to extract the shorelines for three different years of 1990, 2000 and 2016 became very necessary. In this case, Landsat Thematic Mapper (LTM) of 1990 and Enhanced Thematic Mapper (ETM) of 2000 both of 28.5 X 28.5metres ground resolution were acquired from the United States Geological Surveys (USGS) site and used for various analysis carried out. These imageries cover a period of 26yrs. The images were processed to

delineate the shorelines for 1990, 2000 and 2016 with a view to determining their rate of changes over the study period. ARCGIS was used to perform clipping of the study area, image processing of the areas were done by combining bands together.

Image classification was done on the three images to separable use/cover categories which are dense, light vegetation, unpolluted, polluted settlements and wetlands. Digitizing of the shorelines was done on the three images to detect the changes that occurred over the years. The combined false colour images of the area were used for the identification geomorphology and landforms around the coast.

a) Processes of Shoreline Extraction

To extract the shorelines from the satellite images, shape files were created in Arc catalog for each of the images. For easy data handling, the three images were spatially re-projected to Universal Transverse Mercator (UTM 1984). This was followed by the determination of shoreline reference feature where measurements were based.

b) Determination of Rate of Shoreline Change

After the shorelines were extracted, a base-line was created parallel to these extracted shorelines in order to cast perpendicular lines to the shorelines and also to serve as the origin for measuring distances of the shorelines in relation to the established base-line.

The base-line was created through buffering method in ArcGIS 10.1 and this served as the starting point for generating transects. In this case, a 600

meter buffer was created just above the lines, resulting in a single buffer of 600 meters around the outermost line. The upper and side sections of the buffer were deleted resulting in a single line 600 meters from the shoreline

This line served as the base-line and was smoothened to remove the rough side of the line in order to cast perpendicular transects the shorelines under consideration. The base-line and shoreline data were imported into a geo-database in order for DSAS to recognize the data. Before running the DSAS program, spatial reference and feature type requirements of the shoreline files were reconciled. The multiple shape files of the shorelines were appended into a single feature class by using the Append tool from the Arc Toolbox. The various attribute tables for the baseline and the appended shoreline file were created as shown below. If no accuracy field value exist for a specific shoreline or Zero is used in the accuracy field, a default value specified in the Set data Accuracy section by the user could be used. The

ID field was populated to control the order of transect casting along the baseline.

c) Determination of Net Shoreline Movement (NSM)

After the computation of the rate of change in shoreline, the End Point Rate method was used to calculate the distance of shoreline movement by subtracting between the earliest and latest measurements (i.e., the oldest and the most recent shoreline). The major advantage of the EPR is that, it is easy to compute with minimal requirements of shoreline data (two shorelines). The linear regression rate-of change statistic (LRR) was the second rate of change method used. This was done by fitting a least squares regression line to all shoreline points for a particular transects. The rate is the slope of the line. The linear regression method has the advantage that all the data are used, regardless of changes in the trend or accuracy in addition to the method being purely computational.

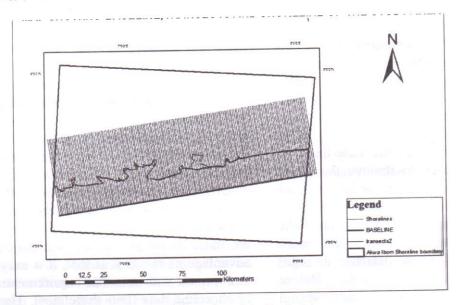
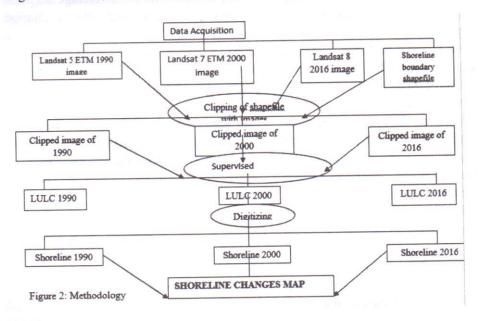
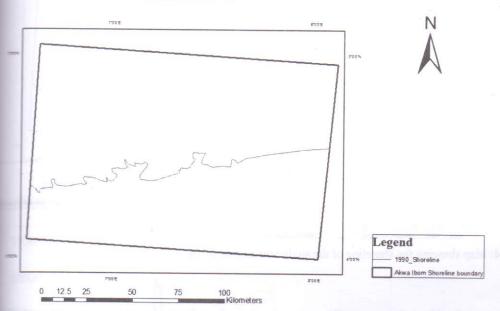



Figure 1: Baseline, Transects and Shoreline of the Study Area

Result and Discussion


The rate of shoreline change was assessed using Linear Regression (LRR) and End Point Rate (EPR) methods. The shoreline change detection was conducted using the Digital Shoreline Analysis System (DSAS) an extension of ArcGis.

Shoreline length

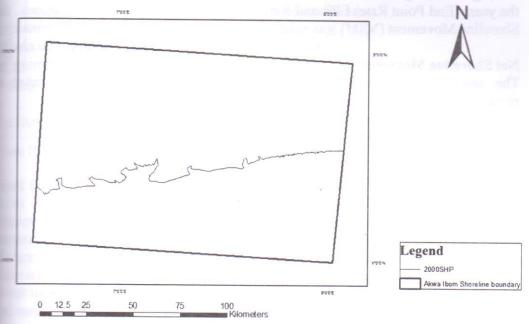

From the maps and table, it shows that 1990 shoreline is 246.928 in length; it increased in year 2000 to 257.678 and decreased again in year 2016 to 251.061m.

Table 1: Length in meters of each of the areline from 1990-2016

Mareline Year	Length(m)	
(890)	246.928	
2000	257.678	
3116	251.061	

2: Shoreline of the study area in year 1990

Map showing the shoreline of the study area in year 2000

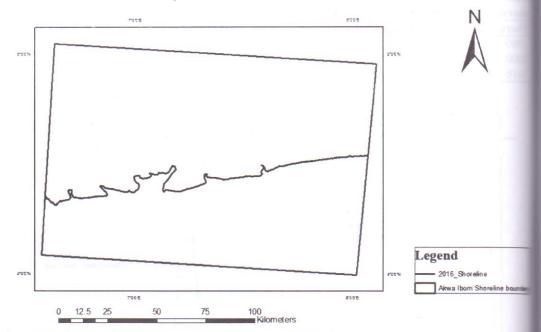


Fig 4: Map showing the shoreline of the study area in year 2016

Changes in Shoreline over Time

Getting the changes that occurred over the years (End Point Rate) EPR and Net Shoreline Movement (NSM) was used.

Net Shoreline Movement

The result of the analysis revealed remarkable changes in the study area Shoreline, the net change measured as the distance between the most recent and earliest shorelines, in this case the 1990, 2000 and the 2016 shorelines changes. 1990 to 2016 shows the highest changes between the remaining years of shore line changes. The change that occurred between the timing of each available image is presented in Figures 6.

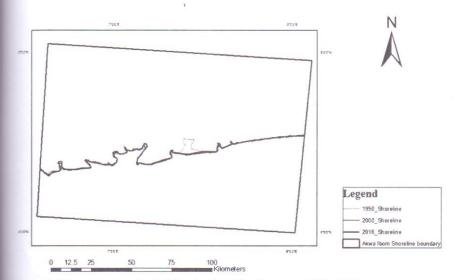


Fig 5: Map showing the shifting in shoreline between 1990-2016

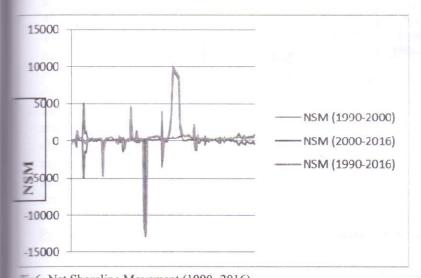


Fig6: Net Shoreline Movement (1990-2016)

End Point Rate

After the computation of the rate of change in shoreline, the End Point Rate method was used to calculate the stance of shoreline movement by batracting between the earliest and mest measurements (i.e., the oldest and me most recent shoreline).

From Figure 7, the highest accretion is at the rate of 950 and the erosion is -1300. This shows that in this period erosion was more than accretion. EPR for shoreline 2000-2016 shows that the highest accretion is at the rate of 250 and the erosion is -800. This shows that in this period erosion is more than accretion. It is noticed that there is a decrease in erosion and accretion of

EPR of shoreline 2000-2016 compare to that of 1990-2000.

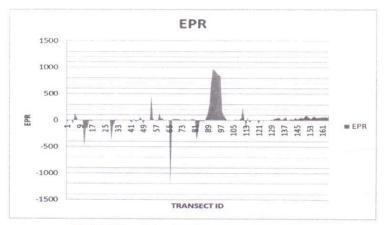


Fig 7: EPR of the shoreline from 1990-2000

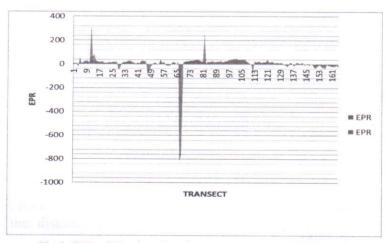


Fig 8: EPR of the shoreline from 2000-2016

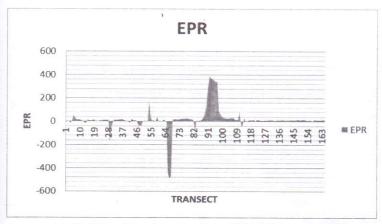


Fig 9: EPR of the shoreline from 1990-2016

From graph, EPR for shoreline 1990-2016 shows that the highest accretion is at the rate of 390 and the erosion is -495

Table 2 shows the sum total of the magnitude of Net Erosion and Accretion that occurred over the different periods under investigation. Table 2 shows the net change of shoreline erosion and accretion. The net change was at -350m in 1990-2000, it increased in 2000-2016 but decreased in 1990-2016 at the rate of -105m.

Rate per year of erosion and accretion over 1990-2016 is calculated as; Erosion or accretion / years from 1990-2016.

Erosion = -495 / 26 = -19.03 m/yrAccretion = 390 / 26 = 15 m/yr

Table 2: Shoreline Erosion, Accretion and Net Change in Meters

Periods	Accretion (M)	Erosion (M)	Net Change (M)
1990-2000	950	-1300	-350
2000-2016	250	-800	-550
1990-2016	390	-495	-105

Land Use Land Cover Change Analysis

From the classified images of 1990, 2000 and 2016, the area of each land use categories were computed and compared statistically