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Summary: This paper used self-reported data obtained from 2010 Tanzania Demographic and
Health Survey. We propose a semi-parametric model that combines the fixed effects, non-linear term
and spatial component in a unified framework. The fixed(linear) effects were modelled parametri-
cally, and the non-linear effects of metrical covariates were modelled using P-splines. The spatial
effect was modelled using a Markov random field prior. We explore multinomial logit models to
analyse the severity of anaemia among under-five children and assess the risk factor of childhood
anaemia. We run several Bayesian models via Markov Chain Monte Carlos(MCMC)simulation
techniques and the models were compared using Deviance information criteria(DIC). We found the
spatial residual pattern of anaemia and the risk factors. The risk factors associated with anaemia
include place of residence, maternal poverty index, childhood under-nutrition, and vitamin A sup-
plementation and infectious diseases. The findings also estimate non-linear function of continuous
covariates(child‘s age and maternal body mass index (mbmi)) on childhood anaemia. Our method
also estimate the residual spatial effects that are not captured by the underlying factors and produced
probability predictive maps. Higher residual risk were identified in Northern-South of Tanzania.
These spatial maps highlight high endemic regions, that can assist government agency to target
scarce health resource and effective policy making.

1. Introduction

Childhood anemia is a global public health problem, with monumental consequences at adulthood.
It relates to major causes of health problems in children, and adversely affects their cognitive and
physical development(Denny, Kuchibhatla and Cohen, 2006), and immunity, increases the risk of
infections and infant mortality(Organization et al., 2008). A WHO recent report on the world preva-
lence of anemia, showed that the global prevalence of anaemia is 24.8% with the highest prevalence
in sub-Saharan Africa (67%), followed by the southern east Asian(65.5%).
Several studies have identified genetic determinants (Meinzen-Derr et al., 2006; ?), socio-economic,
cultural and dietary(Hadler, Colugnati and Sigulem, 2004; ?) factors on anaemia using linear and
binary logistic regression model. However, little work has been done on investigating the geograph-
ical variations and other underlying factors that are not linearly associated with child‘s anaemia.
The motivation of this work is to provide a flexible approach that simultaneously estimate linear and
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non-linear covariateas , as well as small area estimation of spatial heterogeneity across the regions
(districts).

2. Material and Methods

2.1. Model formulations

In 2010 Tanzania Demography Health Survey (TDHS)data, child‘s anemia defined as a measure of
haemoglobin concentration and extracted with aim of assessing the influence of some covariates on
the childhood anaemia. TDHS data set contains several other variables, only those that are related
to anemia level and those similar to the ones identified in the literate were selected. The children
involved in the survey had ages range between 1- 59 months and the respondents( mothers) are in
reproductive ages range 15- 49.
Model A: Anaemia ia a product of low level of functional Hb in the blood. Hence, the concentra-
tion of Hb in the blood was considered as continuous variable, i.e. yi jand modelled by assuming a
Gaussian distribution.
Model B: The response variable, anaemia can be classified by the haemoglobin concentration level(Hb)
as

yi1 =

{
1 if Hb concentration level of a c hild is ≤ 11.0 g/dl
0 otherwise

Model C : The severity level of anemia in child can vary based on the concntration of Hb level.
According to Who Health organization (Organization et al., 1968), Hb can be classified as severe,
moderate, mild or normal resulting in a four- ordered category and the response variable, yi j can be
constructed as

yi2 =


1 : non-anemia, if Hb ≥ 11.0g/dL
2 : mild anemia, if 10.0 g/dL ≥ Hb≤ 10.9 g/dL
3 : moderate anemia, if 7.0 g/dL ≤ Hb≤ 9.9 g/dL
4 : severe anemia, if Hb < 7.0 g/dL

where yi1 is a univariate response (continuous, binary response outcome) and yi2 is an ordered
categorical response outcome.
The present study intends to apply a flexible regression model to quantify the fixed and non-linear
effects, as well as geographical variations of the anaemia level as response variables yi1 and yi2 as
defined above.

2.2. Multinomial ordinal models

The ordinal logistic regression model can be expressed as a latent variable model (Agresti, 2003;
Tutz, 2011). These models are regarded as a powerful class of models for for treating observations
that fall into mutually categorical classes. The ordered nature facilitates the use of a flexible re-
gression framework, which allows better inference. A regression model based on multi-categorical
outcomes sometimes called cumulative regression models had been earlier investigated in literature
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(McCullagh and Nelder, 1989; ?). The later authors argued that the cumulative link models are
members of a class of multivariate generalized linear models.
The models can be motivated from latent variables such that the response variable Y , here, anaemia
concentration, is a categorized version of a continuous latent (utility) variable defined by

Z = η + ε (1)

where η is a predictor depending on covariates and parameters and ε is the error term. The two
variables Y and Z are linked by Y = j if and only if

θ j−1 < Z ≤ θ j, j = 1,2,3,4 (2)

with thresholds −∞ < θ0 < θ1 < .. . < θk = ∞. In a multinomial logit model setting, the error
variables ε in (1) are independent across the categories and assumed to be standard extreme value
distributed with function F . Hence, it follows that Y obeys a cumulative logit model. The predictor
is then defined as

Pr(yi ≤ j|η) = F(θ j−η) (3)

If F in equation (3)is chosen to be the logistic distribution function, one obtains a sequential logit
model (Tutz, 2003). Hence, the jth the level of anaemia is estimated as the probability of selecting
that category against the reference, in our case, severe anaemia is chosen. The influence of covariates
is modelled using the multinomial logit model given as

Pr(yi = j|yi ≥ j,ηi) =
exp(η j)

1+ exp(η j)
= θ j−η j (4)

If F is chosen to be the logistic distribution function, one obtains the proportional odds model

log
Pr(yi ≤ j|ηi)

Pr(yi > j|vi)
= θ j−ηi (5)

When the logit link is replaced by the complimentary log-log link, the resulting model is written as

log
[

log
Pr(yi ≤ j|vi)

Pr(yi > j|vi)

]
= θ j− v′iγ (6)

Equation (5) is known as the proportional hazard model (Tutz, 1991; ?)

2.3. Bayesian structured additive regression model

Consider a set of regression observations (yi,xi,si,vi), i = 1,2, . . . ,4870, where yi is either binary or
categorical response variable, a vector xi is the of metrical covariate effects of the mother‘s age at
birth and body mass index, the spatial covariate si ∈ [1, . . . ,S], index of the district(region) where
mother i lives in Tanzania and a further vector v = (vi1, . . . ,viq) of categorical covariates.
For a linear case,the linear predictor is written as

η = γv1 + . . .+ γqvq = θ j−v′γ (7)
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where γ = (γ1, . . . ,γq)
′ is unknown and must be estimated together with the unknown thresholds,θ j

from the data. For identifiability, the linear combination does not contain an intercept term γ0,
otherwise one of the threshold must be set to zero. Usually, the last category is chosen to be equal
to zero.
Equation (7) can be modified to include geo-reference of the woman, where the mother i lives.
Thus, the regression model prediction η now called a geoadditive predictor for incorporating the
geographical location for a particular woman i, and the semiparametric predictor by (Tutz, 2003) is
given as

ηi = θ
j

i − f (xi)+ fspat(si)+ v′iγ (8)

where, f (xi) , fspat(si) and vi represent the estimates of the unknown non-linear smoothing effects
of the metrical covariates xisuch as mother‘s age at birth, the spatial effect and a vector of the fixed
effect parameters. The spatial component, fspat(si) of the model can be used to capture the random
effects of area si, ,s ∈ {1, . . . ,37}, where the womani resides. The spatial component, fspat(si) is
further split into two components: fstr(si) and funstr(si) as spatially structured (correlated) and un-
structured(uncorrelated) random effects respectively.
A univariate response variable with a non-linear predictor is defined by

ηi = v′iγ + fmbmi(mbmi)+ fcage(cage)+ fdistrict(si) (9)

For the ordered categorical response variable yi2, cumulative probit models with predictor similar to
(9) were fitted as

η
j

i = θ
j

i − (v′iγ + fmbmi(mbmi)+ fcage(cage)+ fdistrict(si)) (10)

In equation (10), the smooth effect functions of the nonlinear effects are fcage (child‘s age, in months),
fmbmi (mother‘s body mass index = weight(kg)/height2(meters), and fspat(si) are the structured
spatial effects, index si ∈ {1, . . . ,S}. The spatial effects can be split into structured (correlated) and
unstructured effects are used to capture any residual spatial variation between and within districts
(regions) that are not explained by the other underlying determinants of anaemia in the model. In this
application, yi2 = 4 is chosen as the reference category. For the multinomial model, the covariates
are assumed to be independent of the category while the effects are category-specify. For the ordinal
model, all effects apart from the thresholds are independent across categories.

2.4. Bayesian inference

Prior distributions
Within a Bayesian framework, all model parameters and nonlinear functions are usually taken as
random variables and an appropriate prior is needed to be specified for each. we need to specify ap-
propriate prior for the model parameters. For the fixed regression parameters, γ‘s, a suitable choice
is the independent diffuse prior, i.e. p(γ) ∝ constant.
For the non-linear effect, a Bayesian P−splines prior was assumed as suggested by (Brezger, 2005).
The P−spline permits for non-parametric estimation of f as a linear combination of the basis func-
tion (B−spline):

f (x) =
p

∑
j=1

ξk jB j(x)
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whereB j(xi j) are B− spline basis functions and ξ = (ξ1, . . . .ξp)′ correspond to the vector of the un-
known regression coefficients. To achieve the smoothness of function f , we penalize the differences
of coefficients of the adjacent B− splines as proposed by (Marx and Eilers, 1998). They suggest a
moderate number of knots, such like between 20 to 40 nots and by introducing a roughness penalty
on adjacent regression coefficients that regularize the smoothness to avoid overffiting. The coeffi-
cients was later replaced with Bayesian smoothing splines Hastie and Tisbshirani, 2000) or a flexible
first and second order random walk as proposed by (Fahrmeir and Lang, 2001), defined by

ξ j = ξ j−1+u j; ξ j = 2ξ j−1−ξ j−2 +u j

with Gaussian errors u j ∼ N(0;τ2) and non-informative prior, β1,β2, . . . ∝ const. Again, τ2
j controls

the smoothness of f . The variance parameter with hyperparameters a and b has inverse gamma
distribution i.e (τ2 ∼ IG(a,b)), and by assigning large (small) variance leading to less smoothing
(smoother) on the curve.
In order to capture spatial effects, one chooses a Gaussian Markov random field prior which is
common in spatial statistics, see (Besag, York and Mollié, 1991) and the unstructured spatial random
effects, funstr(s), takes exchangeable normal priors, funstr ∼ N(0,τ2

unstr), where τ2
unstr is a variance

component that allows for over-dispersion and spatial heterogeneity.
For regions that exhibit geographical variation, we modelled with a structured spatial effect, fstr,
which assumes that two sites or regions s and t are neighbours if they share a common boundary
information. The structured spatial effects is then specified by the conditional autoregressive CAR
error

fstr(s)| fstr(t), t 6= s,τ2 ∼ N

(
∑

t∈θs

fstr(t)
Ns

,
τ2

Ns

)
(11)

where Ns is the number of adjacent regions and t ∈ θs denotes that the region t is a neighbour of
region s. Thus, the conditional mean of fstr(s) is an unweighed average of function evaluations for
neighbouring regions. Spatial correlation between regions is achieved by introducing suitable spatial
correlation structure on fstr in (11). This is specified by using either the Markov Random field(MRF)
or Gaussian RF prior. The MRF is defined by

fstr(s)|τ2 ∼ N
(
0,τ2

strQ
−1) (12)

The density of vector fstr has mean zero and precision matrix Q defined as

Qst =


ms s = t

−1 s∼ t

0 otherwise

(13)

where s ∼ t denotes that region s is adjacent to t, ms is the number of adjacent regions to s. Other
options for modeling spatial effects such like (11) models and stationary Gaussian random field
(Kriging) models can be found in (Rue and Held, 2005).

3. Data application and Results

The output of the analysis are presented in terms of tables of fixed effects of categorical covariates,
the nonlinear plots of continuous covariates and the residual plots of spatial effects. Because of
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page limitation in this proceeding, we have only presented the results for Gaussian and multinomial
models in this section.
Fixed effects

Table 1: Posterior mean and 95% credible interval of fixed Effects of categorical covariates
Gaussian model Multinomial logit model

Variable Mean STD 95% cred.int Mean STD 95% cred.int
Intercept 6.248 4.274 (0.638 , 13.845) - - -
θ1 - - - 5.874 - (- , -)
θ2 - - - 6.809 - ( -, -)
θ3 8.948 - (- , -)
ref. No 0 0 0 0 0 0
stunted(HAZ) 0.013 0.070 (-0.116 , 0.156) -0.096 0.101 (-0.293, 0.101)
wasted (WHZ) -0.058 0.072 (-0.202, 0.081) 0.098 0.097 (-0.091, 0.287)
underweight(WAZ) -0.045 0.076 (-0.198 , 0.097) 0.142 0.110 (-0.073, 0.357)
ref. Antenatal visit 5 + 0 0 0 0 0 0
1-3 -0.105 0.089 (-0.289 , 0.069) 0.316 0.138 (0.045, 0.586)
4-5 0.058 0.092 (-0.121, 0.250) 0.008 0.141 (-0.268, 0.285)
ref. No 0 0 0 0 0 0
Iron syrup dur. preg. 0.109 0.146 -0.173, 0.393 -0.078 0.218 (-0.506, 0.350)
ref. No 0 0 0 0 0 0
Vitamin A 0.050 0.060 (-0.074, 0.167) -0.106 0.083 (-0.269, 0.057)
ref. Rural 0 0 0 0 0 0
urban -0.062 0.086 (-0.224, 0.100) 0.024 0.122 (-0.216, 0.264)
ref. Female 0 0 0 0 0 0
Male 0.017 0.056 (-0.089, 0.124) -0.001 0.079 ( -0.156, 0.154)
ref. incomplete prim 0 0 0 0 0 0
prim 0.203 0.191 (-0.165, 0.561) -0.188 0.308 (-0.791, 0.416)
sec -0.334 0.201 ( -0.747, 0.030) 0.514 0.324 (-0.121, 1.149)
high 0.221 0.512 (-0.877, 1.136) -0.557 0.866 ( -2.253, 1.140)
ref. poorest 0 0 0 0 0 0
poor 0.007 0.112 (-0.218, 0.218) 0.012 0.175 (-0.330, 0.354)
middle -0.018 0.122 (-0.283, 0.211) 0.232 0.161 (-0.084, 0.549)
richer -0.147 0.103 (-0.345 ,0.0625) 0.105 0.153 (-0.195, 0.405)
richest -0.334 0.166 (-0.668, -0.014) 0.353 0.245 (-0.127, 0.833)
ref. ≤ 1child 0 0 0 0 0 0
≥ 2 -0.041 0.098 (-0.234 , 0.139) 0.135 0.132 (-0.124, 0.394)
ref. - Flush toilet 0 0 0 0 0 0
latrine 0.220 0.092 (0.038, 0.402) -0.301 0.125 (-0.545, -0.056)
Bush/field -0.214 0.125 (-0.444 , 0.025) 0.228 0.172 (-0.109, 0.566)
ref. No disease 0 0 0 0 0 0
diarrhea 0.100 0.066 (-0.026 , 0.223) -0.135 0.094 (-0.320, 0.050)
cough 6.054 4.26 (-1.481, 11.528) 4.571 - (-, -)
fever -0.173 0.059 (-0.287, -0.047) 0.209 0.089 (0.034, 0.383)
pneumonia 0.016 0.055 (-0.086, 0.120) -0.022 0.084 (-0.186, 0.142)

ref. - reference category; − = not estimable

Non-linear effects
The estimates of non-linear function of child‘s age(in months) and mother‘s body mass index for
Gaussian and multinomial model are presented in Figure 1. Each non-linear graph consists of a
center line representing the posterior mean estimate bounded by 95% credible intervals(inner lines)
and 80% credible interval(outer lines).
Spatial effects

Figure 1 showing the posterior means (left panel) and 95% credible interval (right panel), which is
used to determining the significance level of spatial variations. Black coloured regions are associated
with low prevalence of childhood anaemia , white “coloured” regions depict high prevalence of
anaemia, and grey coloured regions indicate, although these variations are not significant in this
report.
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Figure 1: Nonlinear effects of child age and mother body mass index for Gaussian model upper
panel and Multinomial logit model lower panel

Figure 2: Spatial structured residual effects for Gaussian model upper panel and Multinomial logit
model lower panel

4. Conclusion

The paper investigates the impacts of different kinds of covariates on the childhood anaemia. Our
approach is flexible and robust, and estimate several effects simultaneously. In addition to the statis-
tical relevance of the output, we produce spatial residual effects which may be neglected in classical
regression settings. The spatial residual maps can assist developing partners and government agents
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to channel health resources in a more effective manner.
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