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ABSTRACT Seismic waves experienced prior to earthquake are the primary and the sec-
ondary waves. This paper investigates the time lag after the primary wave before the occur-
rence of the secondary (destructive) wave. The aim is to allow for necessary warning signals 
and safety steps to be taken prior to the impending disaster. Seismometer records from pre-
vious earthquakes were used in this investigation, putting into consideration the time lag 

between the primary and secondary waves. Other parameters considered include the magni-
tude, the epicenter distance, the seismic station‘s distance and the direction (in azimuths). 
Consequently, a prediction model was developed from the derived data using Artificial Neu-
ral Network (ANN). Data obtained from earthquakes of magnitude 6.0 to 7.0, based on 
Richter‘s scale, was used to train the ANN. The results therein showed high performance, 
with regression values greater than 0.9 and root mean squared errors of 0.1003-0.1148 for 
the most satisfactory architecture. The final results showed that the developed ANN model 
achieved a high performance, hence, adequate for this type of application. 
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1. Introduction  
 

Earthquakes are the result of plate tectonics, and it occurs when energy is released 

in the earth crust resulting in seismic waves. Earthquake occurrence varies spatially 

and its prediction has been a goal of mankind for millennia (Wiemer 2000). The 

basics in earthquake prediction begins with measuring the changes in distance 

(geodetic), also a creep-meter can be used; this is a device to measure movement 

across a fault line. In (Liu et al. 2013), a measure of the change in slope on earth‘s 

surface using a tilt-meter is considered, this inclinometer measures small changes 

on the ground and on physical structures. Other changes in the properties of physi-

cal structures can also be measured; solid rocks are highly resistive but under ex-
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cessive strain, they develop cracks and shatter, thus allowing water to percolate 

through, resulting to increase in its conductivity (Furen 2010). Seismologist uses 

various tools for earthquake prediction analysis, the most common of this is the 

seismograph machine (or seismometer) which detects and records seismic waves. 

For a region‘s seismicity factors considered includes: the air ionization around rock 
surface which increases prior to earthquakes (Freund et al. 2009), the geology of 

the area, location of faults, the earthquake history of the area, the previous earth-

quake intensities and evidence for recent fault movement. 

Further useful works give reviews on various animal behavioral anomaly 

(Bhargava et al. 2009), the possibility of prediction from physical climatic ele-

ments using neural networks (Maitha et al. 2011), evidence on the relationship 

between seismic electric signal (SES) with earthquake focal mechanisms (Varotos 

& Alexopoulos 1982), and the use of wireless sensor networks in earthquake moni-

toring (Azzam et al. 2011). 

      In addition, (Kirschvink 2000; Adi & Schnytzer 2011; Grant & Halliday 2010) 

considered behavioral activities (seismic-escape response) put up by some animals 

in response to the precursor to be helpful in earthquake prediction. These animals 
through natural selection are forced to develop anticipatory mechanism for predict-

ing possible natural disasters. Although, the issue with the belief that certain ani-

mal do anticipate earthquakes is that it is poorly supported by evidence (Grant & 

Halliday 2010). 

      In another related approach, called the VAN method, coined from the initials of 

the three Greek scientist (Varotsos, Alexopoulos and Nomicos). They found out 

that seismic electric signals which results to variations in the earth‘s electric field 

occurs prior to an earthquake. Depending on this SES‘s types, the earthquake can 

be predicted to occur within days to weeks (Varotsos et al. 2006). This has attract-

ed a high level of debate, which has been majorly on how to distinguish between 

similar electric signals from natural occurrence like thunderstorms and other man-
made disturbances (Moustra et al. 2011). In (Kai Tan & Xiushan Cai 2010), data 

from earthquakes of magnitude 3.5 and greater collected from 1970 to 2008 in 

Yunnan region (22-28oN, 98 -104oE) were used to predict earthquakes in 1999-

2008 and verified using the Support Vector Machine (SVM). 

      The mitigation to earthquakes is in its prediction which could be long term, 

medium or short term. In short-term prediction, specific information of the earth-

quakes time and location is given within minutes, weeks, or months and are there-

fore very useful for public safety and evacuation (Uyeda et al. 2009). This method 

of prediction has attracted extensive research lately. Most earthquake studies in the 

past were basically on understanding the basics; its occurrence and extent of dam-

age. Prediction study on this area only started in the 1980‘s (Zuniga & Wyss 1995). 

      Seismograph is used to detect and record seismic waves and the seismic meas-
urements are the basis for short-term prediction (Uyeda et al. 2009). There are two 

basic types of seismic waves; the primary wave (P-wave) and secondary wave (S-

wave). Though a third wave exists that is called the surface wave (this is the result-

ing wave formed when the P & S-waves combines at the surface). This research 

work presents a novel approach which focuses on the prediction of the arrival time 

of the S-wave after a P-wave has been detected. It further shows how the time lag 
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between these two wave forms can be computed using Artificial Neural Network 

(ANN). 

      This work uses a supervised learning strategy in ANN. The supervised learning 

can also be termed ‗learning with a teacher‘. Illustration for this kind of learning 

uses a teacher. The teacher is believed to have full knowledge of the system, this 
knowledge is given in a set of input-output mapping, but the neural network does 

not know this. Thus, the knowledge of the system is transferred from the teacher to 

the neural network to a certain degree measured with statistical tools. While in 

contrast, unsupervised learning looks at how systems learn to represent input pat-

tern in ways to reflect the structure of the entire collection of the inputs. For this 

method of learning, there are no explicit target outputs associated with the inputs. 

The remainder of this paper is organized as follows: Dataset description in section 

II, section III shows the ANN Model Development. The result and its discussion is 

presented in section IV. Finally, in section V the conclusion and limitations are 

presented. 

 

2. Dataset Description  
 

A number of factors are known to influence the occurrence of earthquake and these 

factors have varying effect on the strength as well as impact of the quake. The sam-

pled seismic data set used for this study was obtained from the World Data Center 

for Seismology in China, measured from January, 2012 to August, 2014. The da-

taset contains varying values of five key parameters namely; the distance, the azi-

muth, the measured magnitude, the depth and the time lag between the primary and 

the secondary waves. The range of values for the parameters are as depicted in 

Table 1.  

 

Table 1: Dataset description and their value ranges 

 
  
Characteristically, the distance (D) measured in degrees, is the representation of 

the distance from the earthquake‘s source and the seismological station (point of 

observation); the Azimuth (Az) is a clockwise measurement referenced from the 

earth‘s true north, also in degrees; the Magnitude (M) is the measure for the earth-

quake‘s primary wave as recorded by the seismograph at the station; the Depth (D) 

is the distance from the earthquake‘s hypocenter (wave origin) to the epicenter, and 

finally, the time lag (Ts-Tp) is the time difference between the arrival of the first 

primary wave and the first secondary wave signals. 

Parameters Value range 

Distance (degrees) 8.8-164.6 

Azimuth (degrees) 0-358 

Measured Magnitude (Richter) 6.0-7.0 

Depth (meters) 5,000-80,000 
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A total of 86 earthquake cases were sampled from 1,478 stations, and they were all 

of the magnitude range of 6.0 to 7.0 (Strong earthquakes) on the magnitude scale. 

The choice of this magnitude range is because of the frequency of occurrence 

amongst the earthquake classes that poses serious threats to lives and properties. 

Table 2 shows the classes of earthquakes base on the magnitude and their effects. 
 

Table 2: Earthquake magnitude, effect and annual frequency (source UPSeis) 

 
 

3. Artificial Neural Network (ANN) Model Development  

 
In this work, the design of an ANN model that will give a significantly high level 

of generalization (prediction) for the time lag between the primary and secondary 

earthquake waves is presented. 
      The structure of the neutral network is as shown in Figure 1, this depicts the 

perceptron process, with ,.. representing the input parameters.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Magnitude Earthquake Effect Annual Frequen-

cy 

8.0 or more Can totally destroy communities near the epi-

center 

One in 5-10 

years 

7.0 – 7.9 Causes serious damage 20 

6.1 – 6.9 May cause a lot of damage in very populated 

areas 

100 

5.5 – 6.0 Slight damage to buildings and other structures 500 

2.5 – 5.4 Often felt, but only causes minor damage 30,000 

2.5 or less Usually not felt, but can be recorded by a seis-

mograph 

900,000 
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Figure 1: A detailed perceptron process 
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The input neurons buffers the inputs ×i (×1, ×2,..×n) to the neurons in the hidden 

layer. Summation of inputs is done in each neuron j of the hidden layer, where the-

se inputs are weighted with the inter-neuron connection weights wji and the output 

yji is computed as a threshold function of the sum using equation (1). 

 

 
 

In the Multilayer Perceptron (MLP) structure, the threshold function is a continu-

ous derivative. The goal is to minimize the error function, which is achieved by 

finding the squared error of the network. Equation 2 gives how the training weights 

are adapted: 

 
 

Where  is the  learning rate; it determines the level of modification to the 

link weights (w) and node biases base on the change rate and direction. 

A ―momentum‖ term (µ) is added to help the network skip over the local minima 

and successfully reach the global minimum, while still maintaining the change rate 

and direction. This is adopted into the weight update equation as shown in Equa-

tion (3), while the change rate for both the output and hidden neurons are comput-

ed as given in Equations (4) and (5) respectively: 

 

 
 

For the output neurons, 

 

 
For the hidden neurons, 

 
And training continues until the error function reaches a target minimum value. 
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The parameters considered for this prediction work are; the distance (D), the azi-

muths (Az), the measured magnitude (M), the depth (Ep), the measured time lag 

(Ts-Tp). 

      The design for a neural network on MATLAB adopts certain systematic proce-

dures. In general, these five basic steps are followed; importing the data, prepro-
cessing data, building the network, training the network, testing the network and 

evaluating the system‘s performance. The data is first grouped in two sets; the 

training set and the testing set. In the preprocessing stage, normalization of the data 

set is applied. This is necessary considering the range of values of the parameters 

which largely varies. The design program for this work follows the flow chart pre-

sented in Figure 2. 

 

In the training, the network is taught how to generalize for the presented data set. 

These data sets consist of input-output pairs. The neural network learns from the 

input and updates its weight; this is why it is termed a supervised learning, since 

the neural network is taught what the output should be from the input set intro-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart for developing MLP using MATLAB 
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Importation of Data 

Data Pre-processing 

Building the Network 

Testing the Network 

Training the Network 

End 

Performance Evaluation 
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duced to it. Figure 3 shows the neural network MLP architecture, presenting the 

network flow from input to the output for the design. 

      The architecture used has four (4) inputs neuron, one (1) hidden layer with hid-

den number of neurons varied from 3-7, 10 & 20. Each of this architecture was 

trained and tested with a learning rate (η) of 0.1 to 0.9. The network was observed 
while varying the number of neurons in the hidden layer, the momentum constant 

and also the learning rate for the 9 different structures, and the best performing 

structures are selected. The training is stopped whenever any of the network‘s per-

formance parameter is met. 

      After training is completed, the network is tested with unseen data and the out-

put compared with the target (measured result). This is to check how well the net-

work can generalize (predict output from the unseen inputs). Checking the perfor-

mance is carried out using statistical measures on the obtained results: the root 

mean square error (RMSE), the mean absolute error (MAE) and the mean bias er-

ror (MBE) are computed with the formulas as given in Equations (6), (7), and (8) 

respectively: 

 
Where, n is the number of samples. t is the target output (measured value), and O is 

the network output (predicted value). 

 
If MAE=RMSE, it means all the errors in the sample are of the same magnitude.

  

 
For every simulation, the computed values are recorded in excel and used to evalu-

ate the system‘s performance. The performance of the trained network on testing 

data is the focus; it is most important measure of the training success. 

 
4. Results and Discussion  
 
Several network variations were investigated. The computed data for the network 

architecture with satisfactory performance are given in Tables 3 and 4 for this sec-

tion. Table 3 gives the best result for the different architectures while varying both 

momentum constant and the learning rate for the eight different architectures. 
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Table 3 Statistical performance evaluation for the different ANN architectures 

In Table 3, the notation 4-2-1 implies 4 input neurons, 2 hidden neurons and 1 out-

put. The RMSE and MAE values are found to be better using a momentum con-

stant of 0.01 (µ=0.01). Also from the table, we can deduce that the best overall 

RMSE value was at five (5) hidden neurons with a momentum constant of 0.01, 

while the test using the three (3) hidden neurons gave the best RMSE with the mo-

mentum constant of 0.001.  

      Another observation from Table 3 is that the RMSE and MAE values were 

considerably consistent from N=2 to N=7. This indicates that optimal performance 

of the network was within this range and then much increase from N=10. The per-
formance plot of the training also indicates a good training. The performance plots 

selected for N=5 for µ=0.01 is seen in Figure 3.  

Architec-

ture 

Test error statistics at µ=0.01 Test error statistics at µ=0.001 

 RMSE MAE MBE RMSE MAE MBE 

4-2-1 0.1241 0.0955 0.1241 0.2139 0.154 -0.0247 

4-3-1 0.1126 0.0925 -0.0243 0.2009 0.1474 -0.0024 

4-4-1 0.1072 0.0937 -0.0079 0.2132 0.1526 -0.0236 

4-5-1 0.1003 0.0867 -0.0661 0.2173 0.1555 -0.0222 

4-6-1 0.1065 0.0899 -0.0054 0.2193 0.1468 -0.0054 

4-7-1 0.1049 0.0915 -0.0553 0.2175 0.1387 -0.0318 

4-10-1 0.1188 0.0998 -0.0439 0.2142 0.1497 -0.0252 

4-20-1 0.1132 0.0971 -0.0414 0.224 0.1576 -0.0047 
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The plot as seen in Figure 3 shows that the best validation was reached at epoch 

seven (7), even though the training still proceeded for 7 more epochs and with a 

mean square error of 0.024839. Also the test plot is noticed to be similar with that 

of the validation. Figure 4 gives the linear regression between the output and the 

target for the training, validation, test and all three results combined. 

 

Figure 4. Schematic of the regression plot at N=5 for µ=0.01 
 

The R-values shown in Figure 4 are all greater than 0.9. This is an indication of a 

very good fit for the training data and it shows how very close the output of the 

network and the target (measured) values are. The training stops whenever any of 

the performance goal is met. Also in Figure 5, it is observed that the network gave 

a better result (i.e. a lower root mean square value), for the testing when a momen-

tum constant (µ) of 0.01 than when using 0.001. For the different training using 

varying number of hidden neurons, it is observed that this trend is maintained. 
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5. Conclusion  
 

From the result, this research work does not only present the possibility of earth-

quake prediction using the primary and secondary earthquake waves (P & S-
waves), its performance evaluation also shows a high confidence for its adoption as 

a prediction model. The neural network was trained to a level that it was able to 

achieve a very good generalization from the input parameters (distance, azimuth, 

depth of the source and the magnitude of the received primary wave) & the output 

(time-lag between the P & S-waves). A limitation to this proposed model is the 

high amount of data sampling required for effective training. This will require a lot 

of computational resources. As such, for an effective and efficient implementation 

of this model on an industrial scale, it is recommended that large computing and 

processing machines be used. 
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