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ABSTRACT 

The analytical needs in geographic information systems (GIS) have led to the 

interpretation of formal methods of modeling the topological relationship of spatial 

objects using Egenhofer-matrices. As a result, we investigate the algebraic approach for 

the structural analysis of a spatial topology- Simplices, The Order of Simplices, Faces 

of Simplices, Simplicial Complex, Skeletons of  Simplicial Complex. Oriented Simplex, 

Connectedness of Spatial Objects. The matrix interpretation of the eight spatial 

topological relations matrices of two Egenhofer 4-intersection models and that of the 

two Egenhofer 9-intersection models using matrix addition and multiplication modulo 

2. We also developed the 8-intersection and The 2x4 Matrix Representation of 

Topological Relations of Three Objects A, B and C. 16- intersection models and  The 

2x8 Matrix Representation Of Topological Relations Of Four Objects A, B, C And D. 

using the Egenhofer‟s 4 and 9- Intersections Models. 
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CHAPTER ONE 

1.0            INTRODUCTION  

1.1  Background to the Study  

This work was motivated by the analytical need for a formal understanding of modeling 

the topological relationship of spatial objects using Egenhofer-matrices within the realm 

of geographic information systems. To display, process or analyze spatial information, 

users select data from a Geographic Information System (GIS) by asking queries. 

Almost any GIS query is based on spatial concepts. Many queries explicitly incorporate 

spatial relations to describe constraints about spatial objects to be analyzed or displayed. 

The lack of comprehensive theory of spatial relations has been a major impediment to 

any GIS implementation. The development of a theory of spatial relations is expected to 

provide answers to the following questions (Abler, 1987): 

(i) What are the fundamental geometric properties of geographic objects needed to 

describe their relations? 

(ii) How can these relations be defined formally in terms of fundamental geometric 

properties? 

(iii) What is a minimal set of spatial relations? 

In addition to the purely mathematical aspects, cognitive, linguistic and psychological 

considerations must also be included if a theory about spatial relations applicable to the 

real world problems is to be developed (Talmy, 1983 and Herskovits,1986). Within the 

scope of this thesis, only the formal, mathematical concepts which have been partially 

provided from point-set topology will be considered. 

The variety of spatial relations can be grouped into three different categories as follows: 

(i) Topological relations which are invariant under topological transformations of 

the reference objects (Egenhofer, 1989; Egenhofe and Herring, 1990) 
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(ii) Metric relations in terms of distances and directions, (Peuquet and Ci-

Xiang,1986) and  

(iii) Relations concerning the partial and total order of spatial objects (Kainz ,1990) 

as described by prepositions such as in front of, behind, above and 

below(Freeman 1975; Chang et al., 1989; Hernamdez, 1991)Within the scope of 

this study, only topological spatial relations are discussed. 

 

1.1.2 Object and object identity 

Formally, an object can be defined as an identifiable entity that has a precise role for an 

application domain  (Roy and Clement, 1994; Blaha and Premerlani, 1998). To 

constitute an entity, something must be identifiable (have identity), relevant (be of 

interest to the application domain) and describable (have characteristics) (Chen, 1976); 

cited in (Mattos et al,  1993). By means of the modeling process, each entity relevant to 

an application domain is represented by a corresponding object in the data model. The 

object in the model should have properties that describe the characteristics of the 

corresponding entity in the universe of discussion. 

In an object-oriented system, each object is unique. This uniqueness of an object is 

achieved by means of the object identity. Object identity is that property of an object 

that uniquely distinguishes it from all other objects (Khoshafian and Abnous, 1995). By 

introducing a unique identity for each object, different objects can be distinguished from 

each other without the need to compare their attributes and behavior (Ellmer, 1993). 

The object identity is usually system generated, unique to that object and invariant for 

the object lifetime (Cooper, 1997). 
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1.1.3 Spatial relationships 

Spatial relationships describe the relationships between spatial objects and geometric 

elements (Raza, 2001). In spatial databases, spatial relationships are needed for two 

main purposes as follows: 

(a) For performing spatial queries: Queries in spatial databases or GIS are often based 

on the relationships among spatial objects. For example, “Retrieve all parcels that 

are adjacent to parcel A”. Such queries involve spatial conditions which standard 

query definition languages like Standard Query Language (SQL) do not adequately 

support. Spatial relationships are needed at both the query formulation and 

processing levels (Clementini et al, 1993). 

(b) For enforcing consistency of the database. Spatial relationships are also used to 

formulate consistency constraints in spatial databases. For example, a violation of 

the constraint that two parcels should not overlap in a cadastral database can be 

detected by checking the spatial relationship that exists between the two parcels 

(Kufoniyi et al.,1994). The spatial relationships provide the means for defining and 

monitoring these constraints in the database. Hence the formalization of the basic 

spatial relationships is an essential component in GIS development. 

 

1.1.4 Topological relationships 

Topology is that branch of mathematics that studies the characteristics of geometry that 

remain invariant under certain transformations (topological mapping or 

homeomorphism) (Kainz, 1995). A topological property is that which is preserved 

under topological transformations such as scaling, translation and rotation. Examples of 

topological properties are connectivity, adjacency and so on. There are two general 

branches of topology, both of which are applied in spatial data handling  (Kainz and 

Worboys1995).  
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These are: 

(a) Point-set (or analytic) topology: This focuses on set of points and is based on real 

analysis, using concepts such as open sets, neighborhood and convergence. 

(b) Algebraic (or combinatorial) topology: This uses algebraic means to describe the 

spatial relationships and is based on such concepts as simplified and cell complex 

and graph theory. 

The point-set approach is the most general model for topological relationships (Raza, 

2001). Using the point-set approach, topological relationships are defined in terms of 

three fundamental primitives of object parts, which are interior denoted as (  ), 

boundary denoted as     and exterior or closure denoted as (
-
), which themselves are 

defined based on neighborhood concepts (Egenhofer and Herring,1991). Topological 

models include: 

(i) The 4-Intersection model. 

(ii) The 9-Intersection model. 

(iii) The dimension extended model. 

1.2    Significance of the Study 

The significance of this study, modeling the topological relationship between spatial 

objects using Egenhofer-matrices, cannot be over emphasized due to it applications in 

the following important areas of the real world: 

(a) Natural resource-based like: 

(i) Management of areas: agricultural lands, forest, recreation resources, 

wildlife habitat analysis, migration routes planning. 

(ii) Environmental impact analysis. 

(iii) Toxic facility sitting. 
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(iv) Groundwater modeling. 

(b) Land parcel-based like: 

(i) Zoning, subdivision plan review. 

(ii) Environmental impact statements. 

(iii) Water quality management. 

(iv) Facility management electricity, gaze, clean water, used water and so on. 

 

1.3    Scope and limitation of the Study 

The essence of this research is to analytically investigate the topological relationship 

between spatial objects using Egenhofer-matrices. The study is however, limited to 

mathematical modeling, sets and matrices. 

 

1.4    Aim and Objectives of the Study 

The aim of this study is to analytically model the topological relationship between 

spatial objects using Egenhofer-matrices.  

The objectives of this study are to understand and apply; 

(i) The algebraic approach for structural analysis of a spatial topology. 

(ii) The matrix interpretation of the spatial topological relations of two 

Egenhofer 4-Intersection models using matrix addition and multiplication 

modulo 2. 

(iii) The matrix interpretation of the spatial topological relations of two 

Egenhofer. 9-Intersection models using matrix addition and multiplication 

modulo 2 . 

(iv) Derivation of the 8-intersection and the 16-intersection models and their 

corresponding eight spatial topological relations using Egenhofer matrices. 
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1.5.1    Geometry 

This is a branch of mathematics concerned with questions of shape, size, relative 

position of Figs, and the properties of space. A mathematician who works in the field of 

geometry is called a Geometer (Encyclopedia of Science Clarified, 2013). 

1.5.2 Spatial 

This is related to space and the position, size, shape etc of things in it, (Encyclopedia of 

Science Clarified, 2013).  

1.5.3     Topological Constraints: These are constraints that satisfy topological 

conditions. Constraint is a thing that limits or restricts something, (Encyclopedia of 

science clarified, 2013).  

1.5.4      Sets 

Cantor (1895) defined a set as any collection M of certain distinct objects of our thought 

or intuition (called elements of M) into a whole. It is a collection of objects, called the 

elements or member of the set. The objects could be anything (planets, squirrel, 

characters in Shakespeare‟s play, or others) but for us they will be mathematical objects 

such as numbers, or sets of numbers. We write x X if x is an element of the set X and 

x X if x is not an element of X. Sets are determined entirely by their elements. Thus the 

sets X, Y are equal written X = Y, if x X if and only if x Y. An empty set (  ) is a set 

without an element. If X  , meaning that X has atleast one element, then we say that 

X is non-empty. 

1.5.5       Set operations 

The intersection A  B of two sets, A, B is the set of all elements that belong to both A 

and B; that is x A B if and only if x A and x B. Two sets A, B are said to be disjoint 

if A B =  ; that is, if A and B have no elements in common. 

The union A   B is the set of all elements that belong to A or B; that is  
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x    B if and only if x A or x B. 

Note that we always use “or” in an inclusive sense, so that x    B if x is an element 

of A or B, or both A and B. 

The difference of two sets A and B is the set of elements of B that do not belong to  

A, that is   AxBxAB  :\ . 

1.5.6   Relations 

According to (Science Encyclopedia Clarified, 2013), a binary relation R on set X and 

Y is a definite relation between elements of X and elements of Y. We write xRy if x X 

and y Y are related. One can also define relations on more than two sets but we shall 

consider only 

binary relations and refer to them simply as relations. If X = Y then we call R a relation 

on X. The set of all x-values is called the domain and the set of all y-values is called the 

range. Relations could be the following: 

(a) Equivalence relations: The equivalence relation is a binary relation that is 

reflexive, symmetric and transitive. For example, for any objects a, b and c 

a = a (reflexive property), if a = b then b = a (symmetric property) and  

if a = b and b = c then a = c (transitive property). 

(b) Transitive relations: A relation in a set A is called transitive if and only if (a,b)   

R and (b,c)   R then (a,c)   R for all a, b, c  A. 

(c) Void relations: A relation R in a set A is called void relation or empty relation, if 

no element of set A is related to any element of A. Hence R =   which is a 

subset of  

A x A. 

(d) Symmetric relations: A relation R in set A is said to be symmetric if and only if 

aRb implies bRa for all a,b   A. 
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(e) Identity relations: For a given set A, I = {(a,a), a   A} is called the identity 

relation in A. In identity relation every element of A is related to itself only. 

(f) Reflexive relations: A relation is said to be reflexive if and only if aRa, for all a 

  A. It means every element of A is related to itself. 

1.5.7   Matrices 

 (Kreyszig, 2004) defines a matrix (plural: matrices) as a rectangular array of numbers, 

symbols or expressions, arranged in rows and columns enclosed in brackets: There are 

m rows which are horizontal and the n columns are vertical. Each element of a matrix is 

often denoted by a variable with two subscripts. For example, a2,1 represents the element 

at the second row and first column of a matrix A. In mathematics a matrix is a 

rectangular array of numbers, symbols or expressions, arranged in rows and columns. 

The size of a matrix is defined by the number of rows and columns. A matrix with m 

rows and n columns is called m x n matrix or m by n matrix, while m and n are called 

its dimensions. 

1.5.8         Mathematical modelling 

(Bellomo et al, 1995),  defines mathematical modeling as the process of using various 

mathematical structures such as graphs, equations and diagrams to represent real world 

situations. The process of developing a mathematical model is termed mathematical 

modeling. A mathematical model may help to study the effects of different components 

and to make a prediction about a behavior. 

 1.5.9        Simplex 

According to (Giblin 1977), a simplex is a minimal object that exists for each dimension 

in the spatial dimensions in which spatial objects are classified.  
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1.5.10        Simplicial Complex 

A simplicial complex is a finite collection of simplices and their faces. Simplices is the 

plural of simplex. 
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CHAPTER TWO 

2.0         LITERATURE REVIEW 

2.1      Review of Related Literatures 

This section reviews some related literatures on modeling the topological relationship of 

spatial objects using Egenhofer   matrices. Some of  which are considered and compared 

in this work. 

 2.2        Spatial Relations 

 According to (Egenhofer, 1989), spatial relation is a means of modeling a particular 

property of the spatial relationship which exists between two or more objects. Spatial 

relations may be characterized as topological, metric and other relations. Topological 

relations model properties which are invariant under consistent topological 

transformations such as rotation, translation and scaling. Metric relations model 

properties concerning distance and direction. Order relations model properties 

concerning the partial and total order of objects as described by prepositions such as in 

front of, behind, above and below. Many spatial relations cannot be classified as 

exclusively topological, metric or order. Such relations include the align-along-road 

relation existing between a set of buildings and a road. A number of authors have 

considered the effect splitting and merging objects has on topological relations. 

Research on the topic of spatial relations is motivated by a broad spectrum of possible 

application areas. Spatial relations can be used to describe constraints which specify a 

subset of spatial objects. For example one may specify the subset of objects which fall 

within a given radius of a point using a metric relation. Spatial relations can also be 

used as a platform for spatial inference and qualitative spatial reasoning. For example if 

it is specified using spatial relations that an object A is contained within an object B 

which in turn is contained within an object C, it is straight forward to infer that A is 
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contained within C. Some spatial relations (transitive spatial relations) have a 

corresponding easily interpretable natural language expression which offers the 

potential for the linguistic interaction with spatial data. Other applications of spatial 

relations include robotics and high-level computer version. Many set of spatial relations 

have been proposed but the most predominant are the intersection models of 

(Egenhofer, 1991) and the Region Connected Calculus (RCC) of (Randell et al, 1992). 

Due to their ubiquitous nature we do not describe these in detail suffice to say that each 

consists entirely of binary topological relations and both sets are in fact equivalent. 

According to (Cohn and Hazarika 2001) not all sets of spatial relations are equally 

useful and the actual set must be relevant to the task been performed. One of the main 

goals in the research field of spatial relations is to determine if a single universal set of 

relations can be defined which is pragmatic with respect to many applications. A 

promising approach towards achieving this goal proposes to model the aspects of spatial 

relationships which the human cognition models. This has led to the use of the term 

cognitively adequate model to describe a set of spatial relations which are believed to be 

an accurate model of these aspects. Initial studies focused on the role topological 

relations play in defining cognitively adequate models. The study of (Mark and 

Egenhofer, 1995), suggested that topological relations alone and in particular the 

intersection models of (Egenhofer, 1991) are sufficient to achieve cognitive adequacy. 

This lead to the famous   expression “topological  matters, metric refines” by 

(Egenhofer and Mark, 1995). This claim was supported by the works of (Clementini et 

al., 1993) and (Renz et al., 2000) but these authors claimed that a finer level of 

granularity than the intersection models was necessary to achieve cognitive adequacy. 

However a study by (Sheriff   et al,  2016) suggests that topological relations alone may 

not be sufficient for cognitive adequacy; the authors propose that a  combination of 
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topological and metric relations are necessary. The recent work of (Klippel, 2012) 

suggests that semantics must also be considered if one wishes to define a set of spatial 

relations which are cognitively adequate. 

Spatial relations may also be categorized as qualitative or non-qualitative relations. 

Qualitative relations model properties which are of a vague or fuzzy nature and possibly 

context dependent. Determining the existence of such relations generally requires one to 

model some aspect of human cognition. Examples of qualitative relations include a 

relation which indicates if an object is nearly completely contained inside another or a 

relation which indicates if an object is between two others.  The spatial relation 

indicating if a road entering a housing estate,  is also a qualitative relation. On the other 

hand, non-qualitative spatial relation model properties which are not of a vague or fuzzy 

nature and not context dependent. Such relations have a precise geometrical definition. 

Examples include binary relations which indicate if two lines intersect or if an object is 

completely contained inside another. 

2.3  Topological Spatial Relations (Point-Set Topology) 

According to (Egenhofer and. Franzosa 1990), the model of topological spatial relations 

is based on the point-set topological notions of interior and boundary. Let X be a set. A 

topology on X is a collection   of subsets of X that satisfies three conditions as 

follows: 

(i) The empty set and X are in   

(ii)   is closed under arbitrary unions and  

(iii)  is  closed under finite intersections. 
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A topological space is a set X with a topology A on X. The sets in a topology on X are 

called open sets, and their complements in X are called closed sets. The collection of 

closed sets:  

(i) Contains the empty set and X;  

(ii) Is closed under arbitrary intersections; and  

(iii) Is closed under finite unions.  

Via the open sets in a topology on a set X, a set-theoretic notion of closeness is 

established. If U is an open set and x   , then U is said to be a neighborhood of x. This 

set-theoretic notion of closeness generalizes the metric notion of closeness. A metric (d) 

on a set X induces a topology on X, called the metric topology defined by d. This 

topology is such that U   is an open set if for each x                    

       that the d-ball of radius   around x is contained in U. A d-ball is the set of points 

whose distance from x in the metric d is less than   , that is {y            . 

Suppose X is a set with a topology  . If S is a subset of X, then S inherits a topology 

from  . This topology is called the subspace topology and is defined such that U S is 

open in the subspace topology, if and only if U-S     some set V       nder such 

circumstance,  S is called a subspace of X. Some vital topological properties are: 

(a) Interior: Given Y X, the interior of Y denoted by Y , is defined to be the union 

of all open sets that are contained in Y, that is the interior of Y is the largest open 

set contained in Y. y is in the interior of Y if and only if there is a neighborhood 

of y contained in Y, that is 

y Y                                                        The 

interior of a set could be empty, for example the interior of the empty set is 

empty. The interior of X is X itself. If U is open then U         
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(b) Closure/Exterior: The closure of Y, denoted by Y , is defined to be the 

intersection of all closed sets that contain Y, that is the closure of Y is the 

smallest closed set containing Y. It follows that y is in the closure of Y if and 

only if every neighborhood of y intersects Y, that is y  Y if and only if U    

  for every open set U containing y. The empty set is the only set with empty 

closure. The closure of X is X itself. If C is closed then C  = C. If Z Y then Z

 Y . 

(c) Boundary: The boundary of Y denoted by   , is the intersection of the closure 

of Y and the closure of the complement of Y, that is    Y  YX    The 

boundary is a closed set. It follows that y is in the boundary of Y if and only if 

every neighborhood of y intersects both Y and its complement, that is y  

                                      for every open set U 

containing y. The boundary can be empty, for example, the boundaries of both X 

and the empty sets are empty. 

2.3.1 Topological spatial relations between two sets 

According to (Egenhofer and Franzosa, 1990), this model of describing the topological 

spatial relations between two subsets A and B, of a topological space X is based on a 

consideration of the four intersections of the boundaries and interiors of the two sets A 

and B, that is                             

Definition 2.3 Let A, B be a pair of subsets of a topological space X. A topological 

spatial relation between A and B is described by a four-tuple of values of topological 

invariants associated to each of the four sets                           

respectively. 
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 A topological spatial relation between two sets is preserved under homeomorphism of 

the underlying space X. Specifically, if f:X    is a homeomorphism and A,B X, then 

                           are mapped homeomorphically onto       

                                           respectively.  

Since the topological spatial relation is defined in terms of topological invariants of 

these intersections, it follows that the topological spatial relation between A and B in X 

is identical to the topological spatial relation between f(A) and f(B) in Y. 

A topological spatial relation is denoted here by the four-tuples above. The entries 

correspond in order to the values of topological invariants associated to the four set-

intersections. The first intersection is called the boundary-boundary intersection, the 

second is the interior-interior intersection, the third is the boundary – interior 

intersection and the fourth is the interior-boundary intersection. 

2.4       Spatial Topology 

According to (Jiang and Claramunt 2004), spatial topology, is a model used to identify 

spatial relationships of geographic objects via common objects is introduced. The model 

is introduced by starting with an example from social networks as follows. Two persons 

A and B, are not acquainted in a general social sense as colleagues or friends, but they 

are considered as “adjacent”, as both, for instance belong to the same geographic 

information community. The community or organization people belong to is a context 

that keeps people “adjacent”. Extending the case into a geographic context, we can say 

that for instance, two houses are adjacent if they are both situated along the same street, 

or within the same district. It is further stated that a pair of objects sharing more 

common objects is more “adjacent”. The model is aimed at representing spatial 
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relationships of various objects as a simplicial complex. To this end, some formal 

definitions are also presented in the context of GIS. 

According to (Jiang and Itzhak, 2005),  a definition of map layer according to set theory 

is used for a start. Map layer is defined as a set of spatial objects at a certain scale in a 

database or on a map. For example, M = {o1, o2, …,on}, or M = {0i, |i=1,2,…n} denotes 

a map layer (using a capital letter) that consist of multiple objects (using small letters). 

The objects are put into four categories: point, line, area and volume objects in terms of 

basic graph primitives. The definition of objects must be appropriate with respect to the 

modeling purpose. For instance, a street layer can be considered as a set of 

interconnected street segments, or an interconnected named street depending on the 

modeling purpose (Jiang and Claramunt, 2004), a city layer can be represented as a 

point or area object depending on the representation scale. 

A spatial topology (T) is defined as a subset of the Cartesian product of two map layers, 

L and M, denoted by T = L x M. To set up a spatial topology, we examine the 

relationship of every pair of objects from one map layer to another (As distinct to 

topological relationships based on possible intersections of internal, external and 

boundary of spatial extended objects, (Egenhofer, 1991), we simply take a binary 

relationship). That is, if an object   is within, or intersects, another object m, we say 

there is a relationship   = ( , m), otherwise no relationship, λ =   [Note: the pair ( , m) 

is ordered and (m,  ) represent an inverse relation denoted by λ
-1

]. The relationship can 

be simply expressed as “an object has a relationship to a contextual object”. If a set of 

primary objects shares a common contextual object, we say the set objects are adjacent 

or proximate. Thus two types of map layers can be distinguished: primary layer for the 

primary objects, with which a spatial topology is to be explored, and contextual layer, 
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whose objects constitute a context for the primary objects. It is important to note that 

the contextual layer can be given in a rather abstract way with a set of features (instead 

of map objects). This way, the relationship from the primary to contextual objects can 

be expressed as “an object has certain features”. For the sake of convenience and with 

notation T = L x M, we refer to the first letter as the primary layer and the second the 

contextual layer. 

The notion of spatial topology represent a network view as how the primary objects 

become interconnected via the contextual objects. A spatial topology can be represented 

as a simplicial complex. Before examining the representation, we turn to the definition 

of simplicial complex (Atkin, 1977). A simplicial complex is the collection of relevant 

simplicies. We assume the elements of a set A from simplicies (or polyhedral, denoted 

by σ
d
 where d is the dimension of the simplex); and the elements of a set B form 

vertices according to the binary relation λ, indicating that a pair of elements (ai, bj) from 

two different sets A and B, ai A and bj B, are related. The simplicial complex can be 

denoted as KA(B;λ). In general, each individual simplex is expressed as q-dimensional 

geometric Fig with q+1 vertices. The collection of all the simplices forms the simplicial 

complex. For every relation λ it is feasible to consider the conjugate relation, λ-1, by 

reversing the relations between two sets A and B by transposing the original incidence 

matrix. The conjugate structure is denoted as KB(A;λ
-1

). 

A spatial topology can be represented as a simplicial complex where the simplices are 

primary objects, while vertices are contextual objects. Formally, the simplicial complex 

for the spatial topology T = L x M is denoted by KL (M;λ), where L represents the 

primary layer and M the contextual layer, the relation between a primary object and a 

contextual object λ = ( , m). A spatial topology can be represented as an incidence 
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matrix A, where  A simplicial complex with simplices as primary objects  and vertices 

as contextual objects the columns represent objects with primary layer and the rows 

represent the objects with contextual layer. Formally, it is represented as follows, 

Aij = {
           

       
 

The entry 1 of the matrix indicates that a pair of objects (i, j) respectively from the two 

different layers L and M (that is i   L and j   M) is related, while the entry 0 represents 

no relationship between the pair of objects. The incidence matrixAij is not symmetric as  

λ   λ-1
 in general. 

Spatial topology is not intended to replace the existing topology or spatial relationship 

representation, but to extend and enhance the existing ones for more advanced spatial 

analysis and modeling. In this respect, the simplicial complex representation provides a 

powerful tool for exploring structural properties of spatial topology. We take a look at a 

simple example of simplicial complex as follows: 

They examine with environmental GIS, three pollution sources whose impact areas are 

identified through a buffer operation, as a polygon layer. It is likely that the three 

polluted zones overlap each other. This constitute a map layer, denoted by Y = {yj |j = 1, 

2, 3}.  

To assess the pollution impact on a set of locations with another map layer X = {xi |I = 

1, 2, …6}, it is not sufficient to just examine which location is within which pollution 

zones. They took a step further to put all locations within an interconnected context (a 

network view) using the concept of spatial topology. For instance, location x1 is out of 

pollution zone of y2, but it may get polluted through x2 and x5, assuming the kind of 
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pollution is transmittable. Only under the network view are we able to investigate the 

pollution impact thoroughly and matrix equation by (Jiang and Claramunt, 2004). 

 

 

 

 

 

 

 

Fig 2.1: A Simple Example of Spatial Topology 

In the above example, the locations under pollution impact are of primary interest. The 

spatial topology can be represented as an incidence matrix as follows: 

 

      [
  

  

 
  

 
    
    

  

 
  

 
  

 
   
   

  

 
 
 

] 

 

For the primary layer, the six locations in Fig 2.1 and with respect to the columns of the 

matrix can be represented as six simplices as follows: 

    (x1) =      

    (x2) =         

    (x3) =         

    (x4) =      

    (x5) =            

    (x6) =      

y1 
x1 . 

x2 . 

x5 . 

x3 . 
y2 

x6 . 

x4 . y3 . 
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where the right hand side of the equation represents vertices that consist of a given 

simplex. The dimension of a simplex is represented by a superscript. For instance, σ
2
 

(y5) denotes a two dimensional simplex or a two dimensional face that consists of three  

vertices    ,   and   . 

 Note that the primary and contextual objects are relative and transversal 

(interchangeable) depending on different application interests. If for instance, we take Y 

as the primary layer (whether it makes sense is another issue which we will not consider 

here), that is to transpose the incidence matrix defined in equation (1), then we would 

have three simplices as follows: 

    (  ) =            

    (  ) =            

    (  ) =               

We have noted that a spatial topology can be represented as a geometric form (the 

simplicial complex). It is important to note that the geometric representation makes little 

sense when the dimension of the simplicial complex exceeds three because of a human 

perceptual constraint, but no such constraint for the algebraic approach. 

2.5        Formalism for Spatial Relationships 

Three classes of spatial relationships are discriminated which are based upon different 

spatial concepts, (Pullar and Egenhofer, 1988). It appears natural for each class to 

develop an independent formalism describing the relationships. 

(i) Topological relationships are invariant under topological transformations such 

as translation, scaling and rotation. Examples are terms like neighbor and 

disjoint. 

(ii) Spatial order and strict order relationships rely upon the definition of order and 

strict order respectively. In general, each order relation has a converse 
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relationship. For example behind is a spatial order relation based upon the order 

of preference with the converse relationship in front of. 

(iii)Metric relationships exploit the existence of measurements, such as distances 

and directions. For instance “within 5 miles from the interstate highway 195” 

describes a corridor based upon a specific distance. 

This classification is not complete since it does not consider fuzzy relationships such as 

close and next to, (Robinson and Wong, 1987), or relationships which are expressions 

about the motion of one or several objects such as through and into, (Talmy, 1983). 

These types of relationships can be considered as combinations of several independent 

concepts. Motion for example may be seen as a combination of spatial and temporal 

aspects. So far three different formal approaches for the definition of spatial 

relationships exist in this literature. The first one is based upon distance and direction in 

combination with the logical connectors AND, OR and NOT, (Peuquet, 1986). The 

relationship disjoint (A,B) for example, is defined by the constraint that the distance 

from any point of object A to any point of object B is greater than 0. This approach has 

two severe deficiencies as follows: 

(i) It is not possible to model inclusion or containment unless negative distances are 

introduced (Peuquet, 1986) defines the relationship touching, for example, by 

the distance which equals to zero at a single location and is never less than zero; 

however, by definition, distances are symmetric and a violation of this principle 

would lead to strange geometries. 

(ii) The lack of appropriate computer numbering systems for geometric applications, 

(Franklin, 1984) impedes the immediate application of coordinate geometry and 

distance-based formalisms for spatial relationships. The assumption that every 

space has a metric is unnecessarily complex and promotes the confusion about 
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two different concepts like metric and topology. The formal definition of spatial 

relationships in the context of a geo-relational algebra is based upon the 

representation of spatial data in the form of point sets, (Guting, 1988).Binary 

relationships are described by comparing the points of two objects with 

conventional set operators such as equal and less than or equal. For example, the 

relationship inside (x,y) is expressed by points (x)   points (y). This point set 

approach is in favour of raster representations in which each object can be 

represented as a set of pixels, but it is not easily applicable to vector 

representation. A serious deficiency inherent to the point set approach is that 

only a subset of topological relationships is covered with this formalism. While 

equality, inclusion and intersection can be described, the point set model does 

not provide the necessary power to define neighborhood relationships. A crucial 

characteristic of neighborhood is that the boundaries of two objects have 

common parts, while the interior do not. These distinct object parts cannot be 

distinguished with the point set model; therefore, pure point set theory is not 

applicable for the description of those relationships which rely upon interior or 

bounding parts only. 

(iii) A third approach was developed for the representation of relationships among 

1-dimensional intervals in a 1-dimensional space (Egenhofer, 1987), (Pullar and 

Egenhofer, 1988). It is based upon the intersection of the boundary and interior 

of the two objects to be compared and distinguishes only between “empty” and 

“non-empty” intersection.  
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Table 2.5: The Minimal Set of Topological Relationships among Intervals in a 

One- Dimensional Space described by the Intersection Of Boundaries (    , 

Interiors  (    , Boundary with Interior (     and Interior with Boundary  

(    .  

(i1,i2)         

 

    

 

    

 

Disjoint         

Meet          

Overlap            

Inside           

Contains           

Covers            

Covered by            

Equal           

Source: Pullar and Egenhofer (1988). 

This method is superior to the other  two formalism because it describes topological 

relations by purely topological properties. 
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CHAPTER THREE 

3.0      RESEARCH METHODOLOGY 

3.1 The Algebraic Approach for Structural Analysis of Spatial Topology 

Here we analytically and structurally investigate the following concepts:  

 3.1.1      Simplices 

An n-simplex (σ
n
) is a spatial (geometric) object with (n+1) vertices which leave in an 

n-dimensional space and cannot fit in any space of smaller dimension (less than zero), 

(Casey and Alessandra, 2016). A vertex is a point in space where two lines or edges 

meet to form an angle. It is also called the node of a graph and the point at which the 

sides of an angle intersect. 

3.1.2        Formation of Some Simplices 

Generally, simplices are formed by using the (n+1) vertices which generate an object of 

dimension n where n is the number of simplex. 

(i) Zero-Simplex: This is a n=0 simplex with 0+1= 1 vertex that generate a 

point Po. Thus a 0-simplex is a point Po. For example, the origin or another 

point in the coordinate axis is a 0-simplex.                                   

It is denoted by σ
0
= ˂ P0˃  

Figs 3.1a – 3.1d formation of some simplices by (Author). 

 

 

 

 

 

Fig 3.1a: 0-Simplex 

P0 
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a) 1-Simplex: This is a n=1 simplex with 1+1=2 vertices which generate a segment 

by connecting the two vertices. The 1-simplex is a line segment with two end-

points Po and P1 which in construction produces two 0-subsimplices. It is 

denoted by  

σ
1
=         

 

 

Fig 3.1b: 1-Simplex 

b) 2-Simplex: This is a n=2 simplex with 2+1=3 vertices which generate a triangle. 

The 2-simplex produces two 1-subsimplices by connecting all possible pairs of 

two points         and         and three 0-subsimplices           . It is 

denoted by σ
2

 =             

 

 

 

Fig 3.1c: 2-Simplex 

3-Simplex: This is a n=3 simplex with 3+1=4 vertices which produce a solid tetra- 

hedron (4-sided shape) including its border. The 3-simplex produces four 0-

subsimplices          ,    three 1-subsimplices                 and        

and two 2-subsimplices          and           .. It is denoted by σ
3
=  

            . 

 

 

 

Fig 3.1d: 3-Simplex 

P0 

P1 

P0 

P2 

P1 

P0 

P2 

P1 

P3 
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Simplices can be rotated, translated, dilated and even stretched but cannot be crushed. 

Neither can an n-simplex be turned into an (n - 1) simplex by deforming it. 

3.1.3    The Order of simplices 

The order in which a simplex is generated does not matter. For example by (Author) 

(i) For a 1-simplex,         =         

(ii) For a 2-simplex,            =            =            =            

(iii)For a 3-simplex,              =               =               =  

             . 

3.1.4       Faces of simplices 

The face of an n- dimensional simplex (σ
n
 )  is a sub simplex of (σ

n
 )  which is the 

simplex generated by a subset of the vertices of (σ
n
 )  

ifσ
n
 =                

To get a face of dimension m    , we choose m+1 points among P0, P1,-,-,-,Pn and take 

the corresponding simplex. 

A table that counts the number of m-simplices needed to construct an n-simplex using 

the Fig below by   (Author): 

 

 

 

 

 

 

  

Fig 3.1e: 4-Simplex 

 

P1 

2 

5 

10 

6 

P0 

1 
9 

P4 
8 7 

3 

4 

P3 

P2 
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Table 3.2: The Number Of m-Simplices Needed To Construct An n- Simplex. 

Number of 

m-simplices 

contained  

in an n-

simplex 

m =0 

Number of 

points (1 

point) 

m =1 

Number of 

lines (2 points) 

m=2 

Number of 

triangles (3 

points) 

m =3 

Number of 

tetrahedron

s (4 points) 

m =4 

5 points 

n =0 1 0 0 0 0 

n =1 2 1 0 0 0 

n =2 3 3 1 0 0 

n =3 4 6 4 1 0 

n =4 5 10 10 2 1 

 

3.2 Simplicial Complex 

A simplicial complex K is a collection of simplices such that: 

(i) If K contains a simplex σ, then K also contains every face of σ, for example, 

for the 3-simplex σ
3
=              , the simplicial complex contains every 

faces of σ. That is K is a set of every face of σ as below.  

K = {             ,           ,          ,           ,           , 

         ,        ,        ,        ,        ,        ,     ,  

      ,      ,      } 

The cardinality of this set (number of elements in the set) is 15. 

(ii) If any two simplices in the simplicial complex K intersect, then their 

intersection is a face of each of them. For example, for a 5-simplex, the 

simplicial complex is given by  



33 
 

K = {          ,        ,        ,        , ,        ,        ,  

      ,         ,     ,     ,      ,      ,      ,      } 

The cardinality of the set (complex) is 14. 

Note:  

(i) Since         is in the complex K then         and          are also in K. 

(ii) Also since σ3 =               is in K then all its subsets minus the empty set is 

in K. 

3.2.1    Skeletons of  simplicial complex 

The g-skeleton of a simplicial complex K is denoted by K
(g)

 and is the set of all of the 

simplices in K of dimension g or less. 

Examples 

From the 3-simplex below, we obtain the following skeletons 

σ
3
 =               

 

 

 

 

  

Fig 3.2d: 3-Simplex 

(i) The 0-skeleton is given for the 3-simplex as  

K
(o)

 = {    ,    ,     ,     } 

The 0- skeleton is the set of all points in a simplex. 

(ii) The 1-skeleton is the set of all the lines and points in a simplex. It is given 

for the 3-simplex σ
3
 =               as K

(1)
 = {                 

P0 

P2 

P1 

P3 
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      ,        ,        ,        ,     ,     ,     , 

    }. 

(iii) The 2-skeleton is the set of all the points, lines and the triangles in a simplex. 

It is given for the 3-simplex σ
3
 =                              as   

K
(2)

 = {          ,           ,           ,           ,        ,  

       ,        ,        ,        ,        ,     ,    , 

    ,     } 

(iv) The 3-skeleton is the set of all the points, lines, triangles and the tetrahedron 

in a simplex. It is given for the 3-simplex σ
3
 =                                                                    

as K
(3)

 = {             ,          ,           ,           , 

         ,        ,        ,        ,        ,        , 

       ,     ,     ,     ,     }. 

Note that for all n where n is the number of simplex, we have: 

(i) The n-skeleton is contained in the n+1 skeleton. K
(n)  K

(n+1)
 

(ii) If the number of simplex (n) is equal to the dimension of the simplicial 

complex (K) then the n-skeleton is equal to the simplicial complex. If n = 

dim(K), then K
(n)

 = K. 

(iii) If the number of simplex (n) is greater than the dimension of the simplicial 

complex then the n-skeleton is equal to  the empty set. If n  dim(K), 

then K
(n)

 =  . 

3.3 Oriented Simplex 

The oriented simplex is derived from the word orientation which means direction of 

motion. The oriented simplex is an oriented g-simplex if it is a g-simplex and has a 
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fixed orientation (that is the order of the points is fixed). To denote the oriented 

simplex, we use the brackets [  ] instead of       symbols around the generating points. 

The oriented simplices have the property that switching any two points introduces a 

minus sign. For example,  

[                                       = -[                                      

Here Pi and Pj are switched. 

The oriented simplices are drawn only by considering n-simplices 

for n = 1, 2, 3. (n  [1,2,3]). 

Examples by (Author) 

(i) Diagrammatic representation (model) of 1-oriented simplices 

σ
1
=        are 

  [a, b]     [b, a] 

  a  b  b a 

Fig 3.3a: Models of 1-oriented simplices 

(ii) Diagrammatic representation (model) of 2-oriented simplices 

σ
2
 = [          are 

               [a, b, c]                                   [a, c, b] 

 

 

 

Fig 3.3b: Models of 2-oriented simplices 

(i) Model of 3-oriented simplices σ3 = [             are 

 

 

 

a b 

c 

a b 

c 
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  Fig 3.3c: Model of 3-Oriented Simplices 

3.4         Connectedness of Spatial Objects 

3.4.1      Two objects connection 

Two objects placed beside each other can only be connected once. For  example, the 1-

simplex with two points below. 

        

 

 

 

Fig 3.4a: Two Objects Connection 

It has zero- intersection. 

3.4.2    Three objects connection 

Three objects can be connected 3 times only. For example, the 2-simplex with 3 points 

below. 

 

           

Fig 3.4b: Three Objects Connection 

It has zero- intersection. 

 

 

 

a b 

c d 

P1 

P0 

P0 P1 

P1 

P2 

P0 
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3.4.3      Four objects connection 

Four objects can be connected 6 times only. For example, the 3-simplex with 4 points 

 below:    

                    

 

Fig 3.4c: Four Objects Connection 

It has 2-Intersections      and P0  P3. 

3.4.4 Five objects connection 

Five objects can be connected in 10 ways only. For  example, the 4-simplex with 5 

vertices. The table below summarizes the connectedness of spatial objects. 

Table 3.4: Summary of the Connectedness of Spatial Objects by (Author) 

Number of 

simplex (n) 

Number of points 

= number of 

vertices, n(v) 

Number of 

connections n(C) 

Number of 

intersection (T) 

1 2 0 0 

2 3 1 0 

3 4 3 0 

4 5 6 1 

5 6 10 5 

6 

Formula 

7 15 13 

 

Note that the above concepts are part of spatial topology which according to (Jiang and 

Claramunt, 2004) represents a social network view. The algebraic approach for 

P1 

P3 

P0 

P2 
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structural analysis of a spatial topology is representation of values in table 3.4 using 

formula. 

  The relationship between number of vertices n(V) and simplex (σ
n
) geometrically is 

that for each n, n(V) = n+1. This is easily observed from the table. Also, number of 

connections, n( C ) in n-gon shape is determined combinatorially  as: 

n( C)= ( ), n   2. Note that when n < 2, then n( C) = 0. 
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CHAPTER FOUR 

4.0                 RESULTS AND DISCUSSIONS 

4.1 The Matrix Interpretations of the Eight Spatial Topological Relations 

Matrices of two Egenhofer4-Intersection Models using Matrix Addition and 

Multiplication 

The binary topological relations between two objects A and B, are defined in terms of 

the four intersections of A‟s boundary ( A) and interior (A   with B‟s boundary (    

and interior (B   ,(Egenhofer and Franzosa, 1991). It is the topological relationship 

between the boundary and interior parts of objects A and B given by p
n
, where p is the 

object parts and n is the number of objects (2
2
 = 4 intersection model).This model is 

concisely represented by a 2x2 matrix, called the 4-intersection matrix and is given in 

matrix form by; 

Ѯ4(A,B) = (
          
          

)       (4.1) 

Note:  

a) The boundary-boundary intersection is denoted by       

b) The boundary-interior intersection is denoted by       

c) The interior-interior intersection is denoted by A     

d) The interior-boundary intersection is denoted by A     

Topological invariants of these four intersections (that is properties that are preserved 

under topological transformations), are used to categorize topological relations. 

Examples of topological invariants applicable to the four intersection, are the content 

(that is emptiness or non-emptiness) of a set, the dimension and the number of 

separations, (Franzosa and Egenhofer, 1992). By considering the values empty (0) and 

non-empty (1) for the four intersections, one can distinguish 2
4 

= 16 binary topological 
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relations. Eight of these sixteen relations can be realized for homogenously 2-

dimensional objects with connected boundaries, called regions, if the objects are 

embedded in R
2 

(Egenhofer and Herring, 1990). The Fig 4.1 below shows the matrix 

representation of topological relations of two objects A and B by (Egenhofer and 

Herring, 1990). 

 

 

 

     Disjoint 

(
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Contains 
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Inside 
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Equal 
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  Meet  
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        Covers 
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) 

 

 

Covered By 
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) 

 

 

Overlap 

(
  
  

) 

 

Fig 4.1: The Egenhofer2x2 Matrix Representation of Topological Relations of Two 

Objects A and B 

 The topological relations matrices are obtained from the p by p
n-1

 matrix, where p is the 

object parts and n is the number of objects 
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Table 4.1.1: Matrix addition of the eight spatial topological relations matrices of 

two Egenhofer 4-intersection models using modulo 2 by (Author) 

Matrix 

Addition 

(+) 

Disjoint 

 

(
  
  

) 

Contains 

 

(
  
  

) 

Inside 

 

(
  
  

) 

Equal 

 

(
  
  

) 

Meet 

 

(
  
  

) 

Covers 

 

(
  
  

) 

Coveredby 

 

(
  
  

) 

Overlap 

 

(
  
  

) 

Disjoint 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

Contains 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

Inside 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

Equal 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

Meet 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

Covers 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

Coveredy 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

Overlap 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

It is observed by (Author) from table 4.1.1 that the matrix addition of the eight spatial 

topological relations matrices of two Egenhofer 4-intersection models gave a total of 64 

2x2 matrices with 32 possible Egenhofer 2x2matrices and 32Egenhofer 2x2 

complement matrices. These 2x2 complement matrices are formed from the set X = {0, 
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1} which also give the Egenhofer 2x2 matrices. The matrix addition of two similar 

Egenhofer 2x2 complement matrices using modulo 2 gives an Egenhofer 2x2 matrices 

while the addition of two different Egenhofer 2x2 complement matrices using modulo 2 

gives an Egenhofer 2x2 compliment matrix. 

4.1.2  The Matrix Multiplication of the Eight Spatial Topological Relations 

Matrices of two Egenhofer 4-Intersection Models 

Table  4.1.2: Matrix Multiplication of the Eight Spatial Topological Relations 

Matrices of two Egenhofer 4-Intersection Models Using Modulo 2 by (Author) 

Matrix 

Multiplicati

on (x) 

Disjoint 

(
  
  

) 

Contains 

(
  
  

) 

Inside 

(
  
  

) 

Equal 

(
  
  

) 

Meet 

(
  
  

) 

Covers 

(
  
  

) 

Coveredby 

(
  
  

) 

Overlap 

(
  
  

) 

Disjoint 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 
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(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 
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) 
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(
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(
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) 
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) 
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(
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(
  
  

) 

 

(
  
  

) 

 

(
  
  

) 

 

It is observed by (Author)  from table 4.1.2, that the matrix multiplication of the eight 

spatial topological relations matrices of two Egenhofer 4-intersection models using 
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modulo 2, gave a total of 64 2x2 matrices with 49 Egenhofer 2x2 matrices and 15 2x2 

complement matrices. The matrix multiplication of two similar or different  Egenhofer 

2x2 complement matrices using modulo 2   gives an Egenhofer 2x2 matrices. 

4.2  The Matrix Interpretation of the Eight Spatial Topological Relations 

Matrices of two Egenhofer 9-Intersection Models Using Matrix Addition and 

Multiplication 

The nine intersections between the six object parts describe a topological relation and 

can be concisely represented by Ѯ9  called the 9-intersection model. 

Ѯ9(A,B) = (
               

               

               
)     (4.2) 

It is obtained from the topological relationship between the interior , boundary and 

exterior of  two spatial objects A and B. 

In analog to the 4-intersection, each intersection will be characterized by a value empty 

(0) or non-empty (1), which allows one to distinguish 2
9
 = 512 different configurations. 

Only a small subset of them can be realized between two objects in R
2
. 

The Fig 4.2 below shows the Egenhofer 3x3 matrix representation of topological 

relations of two objects A and B. 
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Fig 4.2: The Egenhofer3x3 Matrix Representation Of Topological Relations Of Two 

Objects A And B by (Egenhofer and Herring,1990). 

The topological relations matrices are obtained from the p x p
n-1

 matrix, where p is the 

object parts and n is the number of objects. 
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4.2.1  The Matrix Addition of the Eight Spatial Topological Relations Matrices of 

two Egenhofer 9- Intersection Models by (Author) 

Table 4.2.1: Matrix Addition of the Eight Spatial Topological Relations Matrices 

of two Egenhofer9-Intersection Models Using Modulo 2 
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It is observed from table 4.2.1, that the matrix addition of the spatial topological 

relations matrices of two Egenhofer 9-intersection models using modulo 2 gave a total 

of 64 9-Intersection matrices with no possible Egenhofer 3x3 matrix but all 64 

Egenhofer3x3 complement matrices. These complement 3x3 matrices are formed from 

the set X = {0, 1}, which also gave the Egenhofer 3x3 matrices. The matrix addition of 

two similar or different Egenhofer 3x3 complement matrices using modulo 2 will 

always give an Egenhofer 3x3 complement matrix and not an Egenhofer 3x3 matrix. 
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4.2.2  The Matrix Multiplication of the Eight Spatial Topological Relations 

Matrices of  two Egenhofer 9-Intersection Models. 

Table 4.2.2: Matrix Multiplication of the Eight Spatial Topological Relations 

Matrices of two Egenhofer 9-Intersection Models Using Modulo 2 

 

It is observed from the table that the matrix multiplication of the eight spatial 

topological relations matrices of two Egenhofer  9-intersection models using modulo 2 

gave a total of 64 9-Intersection matrices with 16 Egenhofer 3x3 matrices and 48 
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different Egenhofer 3x3 complement matrices using modulo 2 will always give an 

Egenhofer 3x3 complement matrices and not an Egenhofer 3x3 matrix. 

4.3 Derivations of the 8-Intersection and the 16-Intersection Models and their 

Corresponding Eight Spatial Topological Relations Matrices and Figs by (Author) 

using the Egenhofer 4 and 9- Intersections Models 

4.3.1      The 8-Intersection model 

For the topological relationship between the interiors and boundaries of three objects, 

we obtain the 8- Intersection Model. It is generally derived from the topological 

relationships between any two objects parts of three objects. using p
n
 where p is the 

object parts and n is the number of objects, we have 2
3
 = 8intersection model. By 

considering the values empty (0) and non-empty (1) for the eight intersection model, we 

can distinguish 2
8
 = 64 topological relations. 32 of these 64 relations can be realized for 

homogenously 2-dimensional objects with connected boundaries called regions, if the 

objects are embedded in two-dimensional space (R
2
) (Egenhofer and Herring, 1990). 

Ѯ8(A,B,C)  = (
                

                
                
                

) (4.3) 
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Fig 4.3.1: The 2x4 Matrix Representation of Topological Relations of Three Objects A, 

B and C 

It is observed that the 2x4 eight spatial topological relations matrices are obtained from 

p by p
n-1

 (pxp
n-1

) matrix, where p is the object parts and n is the number of objects. 

 4.3.2   The 16-Intersection model 

For the topological relationship between any two object parts of four objects we obtain 

the 16-Intersection model. It can be obtain from the topological relationship between the 

interior and exterior of four objects .using   p
n
 where p is the object parts and n is the 

number of objects, we obtain 2
4
 = 16 intersection model. By considering the values 

empty (0) and non-empty (1) for the 16-intersection, we can distinguish 2
16

 = 256 
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topological relations. 128 of these 256 relations can be realized for homogenously 2-

dimensional objects with connected boundaries called regions, if the objects are 

embedded in R
2 

(Egenhofer and Herring, 1990). It is denoted by  

Ѯ16(A,B,C,D)=  

(                                    

                                    
            

             

                                    

                                       
            

            )

           (4.4) 
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Fig 4.3.2: The 2x8 Matrix Representation of Topological Relations Of Four Objects A, 

B, C And D 

From the above Fig, it is observed for the spatial topological relation meet, that objects  

A and D does not meet likewise objects C and D. The 2x4 topological relations matrices 

are obtained from p by p
n-1

 (pxp
n-1

) matrix, where p is the object parts and n is the 

number of objects. 
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CHAPTER FIVE 

5.0   CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

We have figure out and understood analytically a mathematical model of the topological 

relationship of spatial objects using Egenhofer matrix. Besides we brought about the 

following: 

1. The topological relationship between spatial objects is the power set (p
n
) of the 

objects where p is the object parts and n is the number of objects related. For 

example, the topological relationship between 

a) Two object parts by 2 objects gives 2
2
 = 4 which is the 4-intersection model. 

b) Two object parts by 3 objects gives 2
3
 = 8 which is the 8-intersection model. 

c) Two object parts by 4 objects gives 2
4
 = 16 which is the 16-intersection model. 

d) Three object parts by 2 objects gives 3
2
 = 9 which is the 9-intersection model. 

e) Three object parts by 3 objects gives 3
3
 = 27 which is the 27-intersection model 

and so on. 

2. The topological relationship between spatial objects is given by the p by  

p
n-1

(p x p
n-1

) matrix where p is the object parts and n is the number of objects. 

3. The topological relationship between spatial objects can be denoted by  

TSobj=  p
n
 which is the power set of the object. 

4. The topological relationship between spatial objects can be expressed in 

logarithmic equation as logpTSObj = n where p is the object parts and n is the 

number of objects related. That is the logarithm to base p of TSObjis the number 

of objects related. 

5. The algebraic approach for structural analysis of a spatial topology is 

representation of values using the formulae n(V) = n+1 and n(C) = 
      

 
. 
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6.   The relationship between number of vertices n(V) and simplex (σ
n
) 

geometrically is that for each n, n(V) = n+1. Also, the number of connections, n( 

C ) in n-gon shape is determined combinatorially. 

7. The matrix addition of the eight spatial topological relations matrices of two 

Egenhofer 4-intersection models gave a total of 64 2x2 matrices with 32 

possible Egenhofer 2x2matrices and 32Egenhofer 2x2 complement matrices. 

These 2x2 complement matrices are formed from the set X = {0, 1} which also 

gave the Egenhofer 2x2 matrices. The matrix addition of two similar Egenhofer 

2x2 complement matrices using modulo 2 gives an Egenhofer 2x2 matrices 

while the addition of two different Egenhofer 2x2 complement matrices using 

modulo 2 gives an Egenhofer 2x2 compliment matrix. 

8. The matrix multiplication of the eight spatial topological relations matrices of 

two Egenhofer 4-intersection models using modulo 2, gave a total of 64 2x2 

matrices with 49 Egenhofer 2x2 matrices and 15Egenhofer 2x2 complement 

matrices. The matrix multiplication of two similar or different Egenhofer 2x2 

complement matrices using modulo 2  gives an Egenhofer 2x2 matrices. 

9. The matrix addition of the spatial topological relations matrices of two 

Egenhofer 9-intersection models using modulo 2 gave a total of 64 9-

Intersection matrices with no possible Egenhofer 3x3 matrix but all 64 

Egenhofer 3x3 complement matrices. These complement 3x3 matrices are 

formed from the set X = {0, 1}, which also gave the Egenhofer 3x3 matrices. 

The matrix addition of two similar or different Egenhofer 3x3 complement 

matrices using modulo 2 will always give an Egenhofer 3x3 complement matrix 

and not an Egenhofer 3x3 matrix. 
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10. The matrix multiplication of the eight spatial topological relations matrices of 

two Egenhofer  9-intersection models using modulo 2 gave a total of 64 9-

Intersection matrices with 16 Egenhofer 3x3 matrices and 48Egenhofer 3x3 

complement matrices. The matrix multiplication of two similar or different 

Egenhofer 3x3 complement matrices using modulo 2 will always give an 

Egenhofer 3x3 complement matrices and not an Egenhofer 3x3 matrix. 

11. The 8-Intersection model is obtained from the topological relationship between 

the interiors and boundaries of three objects. 

 It is generally derived from the topological relationships between any two 

objects parts of three objects. By considering the values empty (0) and non-

empty (1) for the eight intersection model, we can distinguish 2
8
 = 64 

topological relations. 

12.   The 16-Intersection model is obtained from the topological relationship 

between any two object parts of four objects. It can be obtain from the 

topological relationship between the interior and exterior of four objects. By 

considering the values empty (0) and non-empty (1) for the 16-intersection, we 

can distinguish 2
16

 = 256 topological relations. 

 

5.2 Contribution to knowledge  

From our findings, we have brought the following to knowledge: 

1. The algebraic approach for structural analysis of a spatial topology. 

2. Matrix interpretation of the spatial topological relations of two Egenhofer 4- 

intersection matrices using matrix addition and multiplication modulo 2. 

3. Matrix interpretation of the spatial topological relations of two Egenhofer 9- 

intersection matrices using matrix addition and multiplication modulo 2. 
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4. The 8-intersection model and its corresponding 8 spatial topological relations 

matrices developed from the Egenhofer matrices. 

5. The 16-intersection model and its corresponding 16 spatial topological relations 

matrices developed from the Egenhofer matrices. 

 

5.3        Recommendations 

Here we recommend that spatial objects and their topological relations should be 

studied analytically for decision making in Qualitative Spatio-Temporal Representation 

and Reasoning. As a result, this work is prescribed for a further research on the division, 

subtraction and possibly the inverse of the Egenhofer 4 and 9-Intersections matrices 

using modulo 2. 
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