Itrahim Aliyut; Kalo Jonathan Ganaz; Aibinu Abiodun Musả̉; James Agajtt; Abdullahi Mahammed Drire; Folorvunso Taliha Abiodurf; Mutiu Adesina Adegboye ${ }^{7}$

${ }^{12.4}$ Eepartment of computer Engineering, Federal University of Technology, Minna.
3.5 Department of Mechatronics Engineering, Federal University of Technology, Minna.
${ }^{5}$ Department of Water Resources, Aquaculture and Fisheries, Federal University of Technology, Minna.
${ }^{7}$ Department of computer Engineering.
Federal University Dye-Ekiti, .

ABSTRACT

Fish product cantributes a significant ammunt of protein demand of human nutrition and made up af about /FF\% of human diet all around the world. However, Fish production is one of the factors that have been a bottleneck for development of fish farming for most develpping cauntries such as Nigeria. Dne af the major and time cansuming task in production is providing an accurrate estimate of the fingerlings to farmers. The methods of counting fingerlings in most develaping cauntries is done manually. These manual methods are inevitably influence by inacuiracies and expaser of the fingerlings to unnecessary stress that could lead to death. This paper proposed a fingerling counting algorithm using digital image technique. To achieved this aim, a robust segmentation algorithm, feature extraction algorithm and mazhine learning algorithm for fingerlings classification and counting are hereby formulated. At the end of this research, the propased algorithm is expected to count different sizes of fingerlings with high accuracy.

Keywords: Algorithm, Aquaaulture, Counting, Digital Image Processing, Fingerlings, Fish

INTRODULTILN

Fish product contributes a significant amount of protein demand of human nutrition and its consumption have dramatically increased- about 27 million tons of fish were consume during 1948 and this has increase to about 145 million tons during 2007. Fish product is about 16% of human diet all around the world (Dowlati, de la Guardia, G Mohtasebi, 2012).

In some of the developing countries such as Nigeria, Fingerlings production has increased from 3 million per year in 20 Cl to more than 30 million per annum in 2005: Several large producers are delivering more than

300,000 fingerlings monthly (Potongkam \& Miller, 2006). Despite this increase in fingerlings production, the industries still suffer shortages of high-quality Fingerling: This has driven fish farms/companies to establish hatcheries to fast-track their production (Daniel, 2015). For the past 40 years, fingerlings production has been a bottleneck for the development of fish farming in Nigeria and counting is one of the problems faced by hatcheries (Patongkam 8 Miller, 2006).

Ine of the essential most important aperations in aquaculture is counting (Zion, 20I2). This is very important
because it help growers to accurately stack containers; pond ar cages: manage precise feeding strategies and design a marketing schedule. Hatchery supply fingerlings to custamers and one of the major and time consuming tasks is providing an accurate estimate of the fingerlings (Khantuwan 8 Khiripet, 2012).

Fingerlings are counted and sarted using a sarting table-inta homageneous groups of different sizes before supplying the fingerlings to the fish farmers based on their sizes. The different size can be temporarily stocked in hapas place (FAD, 2OIC).

The methad of counting fingerlings in rural areas in mast develaping countries is mostly manual counting with hands which lead to stress and sometimes leads to death of the fingerlings. Manual counting processing is prone to mistakes, occasional omission as well as fatigue. Another method emplay is the use of container to estimate the number of the fingerlings which could be inaccurate. lnaccurate estimation affects both hatchery and the customer- it could lead to over or under feeding and payment. In the other hand, digital image technique enable fast and robust counting with less errar-prone and high scalability (Huang, Hwang, 年Rose, 201B).

Several autamatic counting systems have been devised over the years. Most of the available commercial counting product are optical techniques. Also, other techniques such as machine vision have been prapased. Majority of the work review in this work shows that many of such systems are suitable for mainly fishing or underwater counting while efforts has been made towards developing system for aquaculture farm, counting in aquaculture farms still present a major challenge.

In view of the aforementioned facts, counting using image processing technique would reduce the time consumption, minimize the exposure of the fish to unhealthy situation and ensure accurate estimation of fingerlings in the farm. Accurate and fast estimation will enhance fast delivery of fingerlings to farms, adequate
feeding and proper financial plan for the growing of the fingerlings.

The rest of the paper is arganized as follows: In section 2.0, the overview of related works is given. Section 3.1 discusses the proposed counting methodology while section 4.0 concludes the paper

Related works

The review is classified into four (4) categories as shown in Figure l.: The classifications are fish counting by size, underwater counting system, commercial counting systems and fish farm counting system.

Dver the years, a lot of research has been done in the above classification. Summary of fish counting works is shown in Table l.

In summary, the reviewed works are basically based on other kind of fishes other than catfish; there is was no algorithm for fingerlings segmentation, features extraction, classification and counting. Commercial counting system could also be expensive and limited access among farmer in Nigeria. This warrant a closer look at fish farms issue especially in Nigeria where fish farming processes are mostly done manual. This work is proposed to address counting difficulties in Nigeria fish industries as well as improve accuracy of existing methods and technique by addressing water contamination.

Table 1: Review of Related works

N/D	TYPE DF CIUNTING	AUTHDRS
1	Fish counting by size	Arnarson (1991); Strachan (1993); Martınez-Palacias, Tovar, Taylor, Durán and Ross (2022); Ruff, Marchant and Frost (II95); Harvey et al. (2003); Mathiassen et al. (2016); Costa, Loy, Cataudella, Davis and Scardi (20®B); Mathiassen, Misimi, Toldnes, Bonda and Østvik (2DII); Huang, et al. (20IE)
2	Underwater counting technique	Cadieux, Michaud, and Lalonde (2०००); Morais, Campos, Padua, and Carceroni (2005); Costa, Scardi, Vitalini and Cataudella (2019); Han, Asada, Takahashi and Sawada (2010): Kang (20III); Costa et al., (2013) Fabic, Turla, Capacillo, David and Naval (2013); Westling, Sun, and Wang (2014)
3	Commercial counting systems	VAKI (20II); SMITH-REIT (2016); Rosenberry (2012); AquaScan (20II): IMPEX (20IE)
4	Fish farm counting systems	Newbury, Culverhouse and Pilgrim (1935); Yada and Chen (1937); Friedland et al. (2015); Alver, Temnay, Alfredsen and Die (2017); Han, Honda, Asada and Shibata (2019); Toh, Ng, and Liew (2019) Zheng and Zhang (2010); Loh, Raman and Then (20II); Labuguen et al. (20I2); Luo, Li, Wang, Li and Sun (2015); Duan et al. (2015)

PROPDSED FINGERLINGS CDUNTING ALEDRITHM

The proposed methodalogy consists of five steps: image acquisition, image prepracessing, image segmentation, features extraction, classification and
counting, as well as algorithm evaluation using accuracy and mean square error. Figure l., shows the block diagram of the proposed algorithm. Details of each unit in the block diagram is given in subsequent subsection.

Figure 2: Proposed methodology

/mage Acquisition

Image acquisition unit will consist of camera that will capture multiple images of a group of fingerlings. The multiple capture will improve accuracy and reduce the issue of overlapping since the fingerlings аге dynamically moving around in the water. Number of

$$
N_{f}=\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}\right)
$$

Where N_{f} is the average number of fingerlings, f_{i} is total number of fingerlings in all the captured frames and N is the number of frames captured
fingerlings in each frame would be counted and the average total number of the fingerlings in all the frames will be reported as the estimated numbers of fingerlings using (2). At end of the research, the sizes of the container and depth of water would be reported as well as how these factors affect accuracy.

Fish Image Pre-Pracessing

Water contamination due to feed and other factors is a common prablem in fish pond. In order to be able to count successfully with higher accuracy in such water background, a preprocessing algorithm is proposed as shown Figure 2.

Figure 3: Image prepracessing algorithm

After image capture, the next step is to preprocess the image in order to filter the fingerlings and remove noise from the image. The image will first be converted from RGB to Grayscale image using the (2). Since unwanted portion of image significantly affect result (Duan at al., 2015), region of interest (RDI) image will then be created using the MATLAB function in (3) which generates a polygonal RDl. After this, Бray morphological operations and enhance processing will then be performed on the ROl image. For grey morphological operations, the image will first be bottomhat transformed to produce a frame representing the
change in illumination in the image using (4). Subtraction and Addition operations will be then executed on the image using (5) and (Б) respectively. The subtraction operation will be used to subtract background variations in illumination from the image so that foreground fingerlings can be analyze easily (Fisher, Perkins, Walker, \& Wolfart, 2003b). The addition operation will be used to make the fingerlings stand uniformly from the background (Fisher, Perkins, Walker, \& Wolfart, 2003a). Finally, to make the fish stand out more uniformly from the background as well suppress noise, gamma correction will be used in (7).

$$
\begin{equation*}
I(x, y)=0.2989 \times R+0.5870 \times G+0.1140 \times B \tag{2}
\end{equation*}
$$

Where R, G and B are Red, Green, Blue respectively of the RGB colour space.

$$
\begin{equation*}
I 1=\operatorname{roipoly}(x, y, I, x i, y i) \tag{3}
\end{equation*}
$$

where I is the image of interest, vectors x and y are vectors that establish a nondefault spatial coardinate system? $x i$ and $y i$ are equal-length vectars that specify polygon vertices as locations in this coardinate system.

$$
\begin{equation*}
I 2=\text { imbothat }(I 1, S E) \tag{4}
\end{equation*}
$$

where $I 1$ is the input image and $S E$ is the structuring element.

$$
\begin{align*}
& I 3=|I 2(x, y)-C 1| \tag{5}\\
& I 4=|I 3(x, y)+C 2| \tag{6}
\end{align*}
$$

where $C 1, C 2$ are pixels constants that will be determine by trial and егrar.

$$
\begin{equation*}
I 5=A(I 4)^{\gamma} \tag{7}
\end{equation*}
$$

where A is a constant equal to l , and γ is the encoding gamma equal to 0.5 .

Image Segmentation Algorithm

In the segmentation algorithm, the image would be subjected to a comprehensive three methods:
thresholding, morphological aperation and watershed segmentation. The process is described in Figure 3. The key operations in the algorithm is described below

Figure 3: Image Segmentation Algorithm

Auta thresholding. Image binarizing will be done using an adaptive thresholding to correct some variation int mean grey level that could arise due to some factors such as
unequal light exposure. The adaptive thresholding will binarized the image into pixel representing the fingerlings and pixels representing background using (8):

$$
g= \begin{cases}1, & \geq T=\text { graytresh }(I 5) \tag{8}\\ 0, & \text { otherwise }\end{cases}
$$

Where g is the resulting binary image, T is the threshold generated by the graythresh MATLAB-function and $I 5$ is the output image from the image preprocessing operations.

Marpholagical aperation: After initial binarization by thresholding some fingerlings objects may have holes, some small noise may still exist and part of the fingerlings may be cut out. In order to correct these, a fill holes' operation will be exeruted using (9).

$$
f(x, y)=\left\{\begin{array}{c}
1-g(x . y), \text { if }(x, y) \text { is on the border of } g \tag{9}\\
0, \quad \text { otherwise }
\end{array}\right.
$$

where f is the marker image which is 0 except on the image border, where it is set to $1-g$

$$
g o B=(g \ominus B) \oplus B
$$

The apening operation in (8) is obtained by the erasion (Θ) of the image g by structuring element B, followed by dilation (\oplus) of the resulting image by B.

Followed by an area opening operation to remove small objects from the binary image:

The size filter would be determined by experiment. All objects less than this size will be considered as noise and removed from the background.

Dilatation will then be executed to 'grow' and 'thicken' objects so that divided parts of fingerlings will be connected. Subsequently fill holes and small objects removal pracedures will be perfarmed again. Lastly, an apening aperation will be used to remove, break and diminish false connections between fingerlings objects.

Watershed segmentation: After morphological operations, there could be still fingerlings that are connected. Watershed segmentation will further be employ to segment the fingerlings.

Features extraction algorithm

The feature extraction algorithm will extract size and shape features, suitable for estimating the average size of fingerlings in a given collection. This information will be use to classify and count the number of fingerlings in the next step. Chain-Code and Corner will be used for feature representation and description respectively. The chaincode boundary representation will be based on 8 connectivity segment in other to clearly represent the fingerlings. Haris Stephen is mast suitable in this work for corner description because it allows for identification. Figure 4. shows the features extraction algorithm

Figure 4. Features Extraction Algorithm

Classification and counting Algorithm

After the features extraction, the image will then be classified into two classes; Class I consist of fingerlings not connect in any way and class 2 consist of fingerlings connected in some ways. The features extracted will be use to estimate the area of the two class. From the area of the class 1 , the mean and standard deviation of the area of a fingerling will be obtained. Since the fingerlings are of homogenous sizes, the mean and standard deviation of a single fingerling in class 1 represents the average sizes of the entire fingerlings. The
means and standard deviation of the area will be used to train the Artificial Neural Network. The training will be done in order for the algorithm to be able to count fingerlings of various sizes and estimate mean and standard deviation for any given size. The mean and standard deviation for class I will be used to calculate the number of fish in the cluster of the connected or overlapped fish in class 2. The class I and class 2 count will then be sum up and this gives the count of the fingerlings. Figure 5. Shows the classification and counting algorithm.

Figure 5. classification and counting algorithm

CONCLISIDN

In this paper, a proposed algorithm for fish counting using digital image technique was presented. The review presented here revealed some general challenges faced by the aquaculture farms in counting fishes especially fingerlings in Nigeria. To the best of our knowledge, this review shows more extensive works have been concentrated towards underwater counting which might not be suitable for farms/hatchery. This call for a closer look at fish farms issue especially in Nigeria where fish farming processes are mostly done manually. The accuracy of the technique in the reviews need to be enhanced as well as in order to obtain optimal accuracy. This work is proposed to address counting difficulties especially in Nigerian fish industry as well as improve accuracy of existing methods and technique. To achieve counting with high accuracy, a robust segmentation algorithm for fingerlings segmentation, a feature extraction algorithm for the fingerlings segmentation, machine learning algorithm for fingerlings classification and counting was formulated. At the end of this research the proposed algorithm is expected to count different
sizes of fingerlings with high accuracy as compare to existing warks.

REFERENCES

Alver, M. Z., Tennay, T., Alfredsen, J. A., \& Die, G. (2007). Automatic measurement of rotifer Brachionus plicatilis densities in first feeding tanks. Aquacultural Engineering, 3Q(2), II5-121.
AquaScan. (2016). AquaScan Fishcounters. Retrieved from http://www.aquascan.com/
Arnarson, H. (IISII). Fish and fish praduct sorting. In Fish quality control by machine vision, Marcel Dekker, New York, 245-2bi.
Cadieux, S., Michaud, F., \& Lalonde, F. (2010). Intelligent system for autanated fish sorting and counting. Paper presented at the Intelligent
 Proceedings. 200 IEEE/RSJ International Сопference on.
Costa, C., Antonucci, F., Baglione, C., Menesatti, P., Vandeputte, M., \& Chatain, B. (2013). Automated sorting for size, sex and skeletal anomalies of
cultured seabass using external shape analysis. Aquacultura/ Engineering, 52, 58-64.
Costa, C., Lay, A., Cataudella, S., Davis, D., \& Scardi, M. (2015). Extracting fish size using dual underwater cameras. Aquazultura/ Engineering, 38(3), 218-227.
Costa, C., Scardi, M., Vitalini, V., \& Cataudella, S. (2004). A dual camera system for counting and sizing Northern Bluefin Tuna (Thumnus thynnus; Linnaeus, 1758) stack, during transfer to aquaculture cages, with a semi automatic Artificial Neural Network toal. Aquaculture, 24(3), IEI-167.
Daniel, E. (20|5). Quality fingerlings: Hatcheries to the rescue. The Nation. Retrieved from http://thenationonlineng.net/quality-fingerlings-hatcheries-to-the-rescue/
Dowlati, M., de la Euardia, M., \& Mohtasebi, S. S. (20I2). Application of machine-vision techniques to fish-quality assessment. TrAL Trends in Analytical Lhemistry, 4D, 168-179.
Duan, Y., Stien, L. H., Tharsen, A., Karlsen, Ø., Sandlund, N., Li, D., ... Meier, S. (2OI5). An automatic counting system for transparent pelagic fish eggs based on computer vision. Aquacultural Engineering, 67, 8-13.
Fabic, J., Turla, I., Capacilla, J., David, L., \& Naval, P. (2013). Fish papulation estimation and species classification from underwater viden sequences using blab counting and shape ana/ysis. Рарег presented at the Underwater Technology Symposium (UT), 20I3 IEEE International.
FAD. (2IIC). Mass production of fry and fingerlings of the african catfish clarias gariepinus. Retrieved from
http://www.fan.arg/docrep/field/[03/acl82e /ac182e03.htm

Fisher, R., Perkins, S., Walker, A., \& Wolfart, E. (2003a). Pixel Addition. HYPERMEDIA IMAGE PRDCESSING
REFERENEE. Retrieved from
http://homepages.inf.ed.ac.uk/rbt/HIPR2/pixa dd.htm
Fisher, R., Perkins, S., Walker, A., \& Wolfart, E. (2003b). Pixel Substraction. HYPERMEDIA IMAGE PRDEESS/NG REFERENCE. Retrieved from http://homepages.inf.ed.ac.uk/rbf/HIPRZ/pixs ub.htm
Friedland, K., Ama-Abasi, D., Manning, M., Clarke, L., Kligys, ‥, \& Chambers, R. (2005). Automated egg counting and sizing from scanned images: rapid sample processing and large data volumes for fecundity estimates. Journa/ of Sea Research, 544), 307-316.
Han, J., Asada, A., Takahashi, H., 8 Sawada, K. (2OID). Automated three-dimensional measurement method of in situ fish with a sterea camera. Paper presented at the OCEANS 2OID IEEESydney.
Han, J., Honda, N., Asada, A., \& Shibata, K. (2004). Autamated acaustic methad for counting and sizing farmed fish during transfer using DIDSON. Fisheries Science, 756), 1359-1367.
Harvey, E.., Cappo, M., Shartis, M., Robson, S., Buchanan, J., \& Speare, P. (2003). The accuracy and precision of underwater measurements of length and maximum bady depth of southern bluefin tuna (Thunnus maccayii) with a stereovideo camera system. Fisheries Research, 63(3), 315-326.
Huang, I.-W., Hwang, J.-N., \& Rose, C. S. (20IC). Chute based automated fish length measurement and water drap detection. Paper presented at the 2DII IEEE International Conference on Acoustics, Speech and Signal Processing (ILASSP).

IMPEX. (2IIG). TPS Fish counters. Retrieved from impexagency.dk/uploads/product_sheets/lmp ex__-_ishCounters.pdf
Kang. M. (20II). Semiautomated analysis of data from an imaging sonar for fish counting, sizing, and tracking in a post-processing application. Fisheries and aquatic sciences, $14(3)$), 218-225.
Khantuwan, W., \& Khiripet, N. (2DI2). Live shrimp larvae counting method using co-ocuurrence color histogram. Paper presented at the Electrical Engineering/Electronics, Computer, Telecommunications and lnformation Technology (ECTI-CON), 2012 Sth International Conference on.
Labuguen, R.. Volante, E.. Causo, A.. Bayot, R.. Peren, … Macaraig, R., ... Tangonan, G. (2012). Automated fish fry cuunting and schocling behzvior analysis using computer vision. Paper presented at the Signal Processing and its Applications (CSPA), $2 \mathrm{ZI\mid} 1 \mathrm{IEEE}$ 8th International Colloquium on.
Loth, B. ... Raman, V., \& Then, P. H. (2DII). First Prottatype of Aquatic Too/Kit: Towards Low-Cost Intelligent Larval Fish Counting in Hatcheries. Paper presented at the Dependable, Autonomic and Secure Computing (DASC), 2DII IEEE Ninth International Conference on.
Luo, S., Li, X., Wang, D., Li, J., a Sun, C. (2015). Automatic Fish Recognition and Counting in Videa Footage of fishery Lperations. Paper presented at the Computational Intelligence and Communication Networks (LLCN), 2015 International Conference on.
Martınez-Palacios, L. A.. Tovar, E. B.. Taylor, J. F., Durán, G. R., \& Ross, L. ․ (2002). Effect of temperature on growth and survival of Chirostoma estor estor, Jardan 1879, monitored using a simple videa technique for remote measurement of length and mass of
larval and juvenile fishes. Aquarulture, 2DGI). 369-377.
Mathiassen, J.. Jansson, S.. Veliyulin, E.. Njaz, T.. Lunseth,
M.. Bondg, M.. ... Skavhaug, A. (200B).

Automatic weight and quality grading of whole pelagic fish. Paper presented at the In Procedings NFTC 2006, the lst Nor-Fishing Technology Conference, Trondheim, Norway.
Mathiassen, J. R., Misimi, E.. Toldnes, B.. Bonda, M., \&
Ustrik, S. D. (20II). High-Speed Weight
Estimation of Whole Herring (Clupea harengus)
Using 3 D Machine Vision. Journaloffond science, 7日6), E458-E484.
Morais, E. F., Campos, M. F. M.. Padua, F. L., \& Carceroni, R. L. (2005). Particicl filter-based predictive tracking for robust fish counting. Paper presented at the XVIII Brazilian Symposium on Computer Fraphics and Image Processing (SIICRRAP'C5).
Newbury, P. F., Culverhouse, P. F., \& Pilgrim, D. A. (I995). Automatic fish population counting by artificial neural network. Aquaculture, /Z3:1), 45-55.
Potangkam, K., \& Miller, J. (2006). Catish Hatchery and Production Manual.
Rosenberry, B. (2012). The Larcos PL-Counter.. Shrimp News Internationa/ Retrieved from http://www.shrimpnews.com/FreeReportsfold er/FarmReportsFolder/TheLarcosPPLCounter.ht m
Ruff, B., Marchant, J., \& Frost, A. (I995). Fish sizing and monitoring using a sterea image analysis system applied to foish farming. Aquacultural Engineering, 142). 155-173.
SMITH-RIDI. (2UIE). Fish Harvesting. Retrieved from http://www.smith-root.com/aquaculture/
Strachan, N. (1993). Length measurement of fish by computer vision. Computers and electronics in agriculture, G2), 83-104.

Toh, Y., Ng. T., \& Liew, B. (2009). Automated fish counting using image pracessing. Paper presented at the Computational Intelligence and Software Engineering, 2003. CiSE 2009. International Conference on.
VAKI. (20IE). Product Line- Fish Counter. Retrieved from
https://www.pinterest.com/pin/29477436334 6159913
Westling, F., Sun, C., a Wang, D. (2014). A modular learning approach for fish counting and measurement using sterea baited remote underwater viden. Paper presented at the Digital Image Computing: Techniques and Applications (DICTA), 2014 International Conference on.
Yada, S., 8 Chen, H. (1997). Weighing type counting system for seedling fry. Bulletin of the dapanese Society of Scientific Fisheries (Japan).
Zheng, X., \& Zhang, Y. (20ID). A fish population counting methad using fuzzy artificial neural netwark. Paper presented at the Progress in Informatics and Computing (PIL), 20II IEEE International Сопference on.
Zion, B. (20I2). The use of computer vision technologies in aquaculture-a review. Camputers and electronics in agriculture, $88,125-132$.

