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APPLICATION OF HOMOTOPY PERTURBATION METHOD
(HPM) FOR THE SOLUTION OF NANOFLUIDS OVER A

POROUS STRETCHING SURFACE

1U. Mohammed∗, 2A. A. Mohammed, 3A. I. Ma’ali and 4E. O. Titiloye

Abstract

In this study, by means of homotopy perturbation method

(HPM) and sixth order Runge-Kutta method an approximate

analytical and numerical solutions of the of viscous ag-water

and Cu-water nanofluids over a porous stretching surface is

obtained. Graphical results are presented to investigate the

influence of the nanoparticles volume fraction parameter and

suction/injection parameter on the velocity and skin friction.

The validity of our solutions is verified by the previous work.

1. Introduction

Most of the scientific problems and phenomena are modeled by nonlinear or-
dinary or partial differential equations. In recent years, many powerful methods
have been developed to construct explicit analytical solution of nonlinear dif-
ferential equations. Among them, two analytical methods have drawn special
attention, namely, the homotopy perturbation method HPM [1-2] and homotopy
analysis method HAM [3-6]. The essential idea in these methods is to introduce
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a homotopy parameter, say p, which takes the value from 0 to 1. For p = 0, the
system of equations takes a simplified form which readily admits a particularly
simple solution. When p is gradually increased to 1, the system goes through
a sequence of deformations, the solution of each of which is close to that at the
previous stage of deformation. Eventually at p = 1, the system takes the original
forms of equation, and the final stage of deformation gives the desired solution.
We know that all perturbation methods require small parameter in nonlinear
equation, and the approximate solutions of equation containing this parameter
are expressed as series expansions in the small parameter. Selection of small
parameter requires a special skill. A proper choice of small parameter gives ac-
ceptable results, while an improper choice may result in incorrect solutions. The
homotopy perturbation method, which is a coupling of the traditional perturba-
tion method and homotopy in topology, does not require a small parameter in
equation modeling phenomena. In recent years, the HPM has been successfully
employed to solve many types of linear and nonlinear problems [7-10].
Nanofluids are defined as dilute suspension containing tiny particles having di-
ameter less than 100 nm. Choi [11] experimentally verified that addition of small
amount of nanoparticles appreciably enhances the effective thermal conductivity
of the base fluid. These particles are made up of metals such as (Al, Cu), oxides
(Al2O3), carbides (SiC), nitrides (AlN, SiN) or nonmetals (graphite, carbon nan-
otubes). Buongiorno [12] proposed a mathematical model that considered two
significant effect namely the Brownian motion and thermophoretic diffusion of
nanoparticles. Kuznetsov and Nield [13] numerically studied the flow of nanofluid
past a vertical flat plate. The ChengMinkowcz problem for natural convective
boundary layer flow of a nanofluid occupying a porous space was considered by
Nield and Kuznetsov [14]. Similar attempts in this direction include those of
Nield and Kuznetsov [15,16] and Kuznetsov and Nield [17]. The boundary layer
flow of nanofluid over a continuously moving surface with a parallel free stream
has been studied by Bachok et al. [18]. Khan and Pop [19] provided numerical
solutions for boundary-layer flow of nanofluid over a stretching sheet. Rana and
Bhargava [20] numerically investigated the flow of nanofluid over a nonlinearly
stretching sheet by finite element method (FEM). Makinde and Aziz [21] exam-
ined the flow of nanofluid over a stretching sheet in the presence of convective
surface boundary conditions. Unsteady boundary layer flow of nanofluid over a
stretching/shrinking sheet has been examined by Bachok et al. [22].
The flow of viscous Ag-water and Cu-water nanofluids over a stretching surface
have not been investigated using HPM, although the use of Keller Box Method
of solution is known for such problems (Vajravelu et. al. [23]).
Hence, the purpose of this paper is to apply HPM to obtain the approximate
analytical solution to the problem of viscous Ag-water and Cu-water nanofluids
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flow over a stretching sheet. It went further to compare the result obtained with
that of sixth order Runge-Kutta method for the purpose of analysis.

2. Equation of motion

Consider a steady two-dimensional laminar fluid flow over a stretching sheet.
The basic boundary layer equation can be written as [23],

(1)
∂u

∂x
+
∂v

∂y
= 0

(2) u
∂u

∂x
+ v

∂u

∂y
=
µnf
ρnf

∂2u

∂y2

where u and v are the velocity components along x and y axis respectively.
The boundary conditions for the problem are

(3) u = bx, v = V0 at y = 0 u −→ 0, as y −→∞

The effective density of nanofluids is given as

(4) (ρ)nf = (1− φ)ρf + φρs

where φ is the solid volume fraction of nanoparticles. while the effective dynamic
viscosity of the nanofluid given by Brinkman [19] as

(5) µnf =
µnf

(1− φ)2.5

Here the subscripts nf, f and s represent respectively the thermo-physical prop-
erties of the nanofluids, base fluid and the nano-solid particles.
By introducing the similarity transformation

(6) η =

√
b

vf
y, u = bxf ′(η), v = −

√
bvff(η)

where prime denotes differentiation with respect to η. Substituting Eq.(6) into
Eq.(2), the governing equation and boundary conditions reduce to

(7) f ′′′ = (1− φ)25
[
(1− φ) + φ

(
ρs
ρf

)]{
f ′2 − ff ′′

}
(8) f = −R, f ′ = 1 at η = 0, f ′ −→ 0, as η −→∞

here R = V0√
vb

, where R > 0 corresponds to suction and R < 0 for injection.

Eq (7) is nonlinear differential equation which can be solve analytically by HPM.
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3. Method of Solution

We will use HPM in order to obtain the solution of Eq.(7). Assuming f = φ
Eq.(7) can be written in following form

(9) ϕ′′′ + F (ϕ) = 0

in which

(10) F (ϕ) = −(1− φ)2.5A(ϕ′2(η)− ϕ(η)ϕ′′(η))

where

(11) A = (1− φ) + φ(
ρs
ρf

)

Let

(12) A∗ = (1− φ)2.5A

According to the homotopy perturbation method [25], we construct a homotopy
in the form

(13) ϕ′′′ − α2ϕ′ + p(F (ϕ) + α2ϕ′) = 0

with the initial conditions

(14) ϕ′(0) = 1, ϕ(0) = R, ϕ
′
(∞) = 0

When p = 0 (13) becomes a linearised equation ϕ′′′ − α2ϕ′ = 0 where α is an
unknown parameter to be further determined. When p = 1, the equation becomes
the original problem. The embedded parameter p monotonically increases from
zero to unit as the trivial problem, ϕ′′′−α2ϕ′ = 0, is continuously deforms to the
original problem, Eq. (9). By introducing the HPM, we assume that the solution
to (13) can be written as a power series in p.

(15) ϕ = ϕ0 + pϕ1 + p2ϕ2 + ...

Substituting (15) into (13) and equating the terms with the identical power of p,
we have

(16) p0 : ϕ′′′0 − α2ϕ′0 = 0, ϕ′0(0) = 1, φ0(0) = −R, φ′0(∞) = 0

(17) p1 : ϕ′′′1 − α2ϕ′ + α2ϕ′ + F (ϕ), φ′1(0) = 0, φ′1(0) = 0, φ′1(∞) = 0

where

(18) F (ϕ) = A∗(φ0ϕ
′′
0 − ϕ′20 )

The solution of (16) and (17) can be readily obtained, which reads

(19) ϕ0 = −R+
1

α
(1− eaη)
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(20) ϕ1 = −(α2 +A∗(Rα− 1))

2α2
ηe−αη

where

(21) α =
1

2

[
−A∗R+

√
(A∗R)2 + 4A∗

]
Therefore, we obtain

(22) ϕ(η) = ϕ0(η) + ϕ1(η)

Setting φ = 0 and R = 0, the present problem returns to the flow problem studied
by Crane. The exact solution for the velocity field is

(23) f(η) = 1− e−η

in the presence of nanofluid particles volume fraction (φ 6= 0) the exact solution
to Eq.7 satisfying the required boundary conditions is given by

(24) f(η) = e−αη

where

(25) α =
1

2

[
−A∗R+

√
(A∗R)2 + 4A∗

]
> 0

The shear stress at the surface of the sheet is defined as

(26) τw =
µnf
ρfu2w

(
∂u

∂y

)
y=0

=
1

(1− φ)2.5
(Rex)−

1
2 f ′′(0)

where Rex = uwx
vf

from (19) and (20) we obtain

(27) −f ′′(0) =
A∗(1−Rα)

α

4. Discussion

Fig. 1-3 have been made in order to see the effect of nanoparticle volume
fraction (φ) and suction/injection parameters (R) on the velocity components
respectively. It is found that for case the of suction in Fig. 1, the velocity
components f

′
decreases with an increase in (R) and also the boundary layer

thickness decreases. For the case of injection in Fig. 2, we have the opposite
effect. Fig. 3 is drawn for the effects of nanoparticles volume fraction for both
Ag- water and Cu- water on the velocity components f

′
. These figures show

that f
′

decreases by increasing φ. The wall shear stress in Eq.(31) for different
values of φ and (R) for both Ag- water and Cu- water are illustrated in Table
1-3. We present a comparison between the results obtained by present methods
and Raftari and Yildrin [27] when φ = 0 as shown 1n Table 1-2. Results show
that the methods are in good agreement with one another, because in all the
cases wall shear stress decreases when values of φ increases. Also in Table 3 wall
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shear stress increases when the values of (R) increases. Table 1 Comparison of
the values of f ′′(0) obtained by HPM, R-K and Raftari and Yildirim for the case
of Cu-water.

HPM NM Raftari and Yildirim[13]
φ f ′′(0) f ′′(0) f ′′(0)

0.0 0.861187421 0.86119052388192 0.81506
0.1 0.985840673 0.98584139003671 -
0.2 1.015662492 1.01566299627196 -

Table 2 Comparison of the values of f ′′(0) obtained by HPM, R-K and Raftari
and Yildirim for the case of Ag-water.

HPM K-R Raftari and Yildirim[13]
φ f ′′(0) f ′′(0) f ′′(0)

0.0 0.861187421 0.86119052388192 0.81506
0.1 1.020461564 1.02046203933190 -
0.2 1.064171650 1.06417193184000 -

Table 3 f ′′(0) for different values of R φ = 3, for the case of Cu-water.

HPM K-R
−R f ′′(0) f ′′(0)
-0.3 0.9884334570 0.988434152232045
-0.2 1.0477589250 1.047759377782990
-0.1 1.1110892120 1.111089488157890
0.0 1.1784866240 1.178486780450180
0.1 1.2499722850 1.249972368659860
0.3 1.4050826750 1.405082692594350

Figure 1: Velocity profile f ′ vs. η for R > 0 for the case. (a) Cu-water and (b)
Ag-water
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Figure 2: Velocity profile f ′ vs. η for R < 0 for the case. (a) Cu-water and (b)
Ag-water

Figure 3: Velocity profile f ′ vs. η for different values of φ for the case. (a)
Cu-water and (b) Ag-water
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