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Abstract - Modern computing devices use classical algorithms 
such as Rivest Shamir Adleman (RSA) and Elliptic Curve 
Digital Signature Algorithm (ECDSA) for their security. The 
securities of these algorithms relied on the problem and 
difficulty of integer factorization and also calculating the 
Discrete Logarithm Problems. With the introduction of 
quantum computers, recent research is focusing on developing 
alternative algorithms which are supposed to withstand attacks 
from quantum computers. One of such alternatives is the 
Hash-based Digital Signature Schemes. Chosen hash-based 
signature schemes over classical algorithms is because their 
security is on the hash function used and that they are meta-
heuristic in nature. This research work presents basic analysis 
and the background understanding of Stateful Hash-based 
Signature Schemes, particularly the Lamport One-Time 
Signature Scheme, Winternitz One-Time Signature Scheme, 
and the Merkle Signature Scheme. The three schemes selected 
are stateful, hence has common features and are few-time 
hash-based signature schemes. The selected Stateful Hash-
based Digital Signature Schemes were analyzed based on their 
respective key generation, signature generation, signature 
verification, and their security levels. Practical working 
examples were given for better understanding. With the 
analyses, Merkle Signature Scheme proves to be the best 
candidate to be used in the Bitcoin Proof of Work protocol 
because of its security and its advantage of signing many 
messages.   
 

Index Terms - Post-Quantum Cryptography, Hash-based  
  Digital Signature, Cryptocurrency, Bitcoim 

 

I. INTRODUCTION 
Among the widely used cryptographic primitives today 

is digital signature [3]. Digital signature algorithms are 
important today in modern communication because they 
provide and guarantee authenticity, integrity, and non-
repudiation. In secure communication protocol, digital 
signatures are used to protect software updates, online 
banking, e-commerce and other areas of applications such as 
electronic cash [12].  

Digital signatures used hash functions for effective and 
secure communication. Among the digital signature 
schemes used today are the Elliptic Curve Digital Signature 
Algorithm (ECDSA), Rivest Shamir Adleman (RSA), 
Digital Signature Algorithm (DSA) [5]. The security 
provided by these algorithms is as a result of the difficulty 
that exists in factoring large complex integers or computing 
Discrete Logarithm Problem. Shor, in 1994 developed a 
quantum algorithm that could factor large complex integers 

and as well solve the Discrete Logarithm Problem in 
polynomial-time [4]. It means that classical computers that 
use digital signatures are insecure. The insecurity of 
classical algorithms prompted the research of post-quantum 
digital signature algorithms that could withstand quantum 
attacks especially in electronic cash system (such as bitcoin) 
in the nearest future.  

Bitcoin as defined by [12] is a network of systems that 
does not have a central connection and by implication does 
not depend on a trusted third party for the processing of its 
transactions. Bitcoin transactions are recorded and 
maintained by a public ledger called the blockchain. Since 
its development by Satoshi Nakamato in 2008 [12], bitcoin 
has proven to be acceptable by many users as compared to 
other digital currencies. Bitcoin transactions are supported 
by the use of digital signatures. To transfer some coins to 
someone else, the current owner adds a link to a chain of 
blocks, thereby creating a new transaction.  

In bitcoin, the security of transactions relies on the 
Proof-of-Work (PoW) protocol which aimed at preventing 
double spending of the coin [1]. The PoW is a measure to 
find a pre-image of an output of a cryptographic hash 
function. The PoW technique will be insecure with the use 
of quantum computers. A quantum computer can apply 
Grover’s search algorithm to execute the PoW faster than 
classical computer that uses ECDSA or RSA [11]. With 
these limitations, hash-based digital signature schemes are 
therefore good alternative algorithms in securing bitcoin 
transactions. 

The research work is arranged this way: part II briefly 
summarizes relevant literatures of stateful hash-based digital 
signature Schemes; part III gives details explanation of 
some selected families of hash-based signature schemes; the 
authors in part IV discussed application of hash-based 
digital signature schemes as an alternative to ECDSA that is 
used in bitcoin security. Section V presents the research 
conclusion and recommendations for future work. 

 
II. REVIEW OF RELATED LITERATURES 

The advent of quantum computing and its application 
capabilities called for an open research gap in post-quantum 
cryptography. It is in line with this motivation that [13] 
builds on the multi-time signature schemes recommended 
by Raph Merkle in 1979 and showed that the initial MSS is 
difficult to forge. The contribution to his work was the 
development of an improved version of the Merkle 
Signature Scheme with cost reduction in terms of key 



 
 

generation. However, [7] carried out analysis of Winternitz 
One-Time Signature Scheme (W-OTS) and its security 
levels. The research work proof that W-OTS is also difficult 
to forge when applied with pseudo-random functions. 
Comparative study of post-quantum hash-based digital 
signature was done by [9] using hierarchical method on 
different Hash-based Digital Signature Schemes. The 
research work suggests future implementation in Public Key 
Infrastructure (PKI). “Reference [10] considered using two 
hash-based digital signatures (L-OTS and W-OTS) to 
analyze their strength and security levels. The results 
showed that W-OTS signature length is shorter than the LD-
OTS”. 

 
III. HASH BASED DIGITAL SIGNATURE 

Hash-based digital signatures are either stateful or 
stateless. In stateful signature scheme, signing a message 
reads a secret key and the message then a signature is 
generated which include the updated secret key. This means 
that a signer must maintain a state that is modified every 
time a signature is issued. In stateless signature scheme 
(such as SPHINCS) has a large tree-of-trees, but at the 
bottom of the tree, are a number of Few-Time-Signature 
(FTS). A message is signed by a signer by picking a random 
FTS, and then authenticates that through the Merkle tree up 
to the root. Using FTS, you do not need to update any state 
when generating a signature [8]. The hash-based digital 
schemes discussed in this research work are mainly stateful 
hash-based signature schemes. The basic fundamental of 
hash-based signature schemes is the One-Time Signature 
scheme (OTS). The first and the most intuitive of OTS was 
developed by Lamport and Diffie in 1979 also known as 
Lamport Diffie One-Time Signature Scheme (LD-OTS). 
The OTS allows using a pair of key to sign one message at a 
time [6]. The use of one way function is the characteristic of  
LD-OTS and is given as: nnf }1,0{}1,0{: →  where n is a 
positive integer, and a hash function that is 
cryptographically secure given as: n

cH }1,0{}1,0{: * →  
 
A. Generating key pairs in LD-OTS 

Let’s assume LD-OTS signature key to be K with n2  
bit strings which has length n signature key selected 
randomly. Therefore: 

)2,(
001111 }1,0{]1[],0[],1[],0[...,],1[],0[( nn

Rnn kkkkkkK ∈= −−  (1) 
 
i. To verify LD-OTS: 
Let’s assume L to be the verification key to be computed 
given as: 

)2,(
001111 }1,0{]1[],0[],1[],0[...,],1[],0[( nn

nn llllllL ∈= −−  (2) 

Such that 1,0,10]),[(][ =−≤≤= jnijkfjl ii  (3) 
From (3), it is shown that key generation in LD-OTS needs 

n2  evaluation of function .f This means that n2 bit 
strings with length n is the requirement for both the signing 
key as well as the verification key. 
 
 
 
 

ii. Generating Signature using LD-OTS 
Suppose *}1,0{∈P  is a document to be signed by a 

signature key K illustrated in (1). 

Suppose )...,,()( 01 dmdmdmPq n−== denotes the 

digest of the message P . The signature of LD-OTS will be 
written as: 

),(
001111 }1,0{][],[...,],[( nn

nn dmkdmkdmk ∈= −−δ  (4) 
Note that the signatures are chosen as a function of the 
digest of the message .dm  In this signature,  thi  is the bit 

string and is given as ]0[ik when thi bit string in message 

digest dm equals zero (0) and ],1[ik  otherwise. In this case, 

no evaluation of f function is required in the signing. 

Therefore the signature length is 2n . 
 
iii. Signature verification with LD-OTS 

Given the signature ),...,( 01 δδδ −= n of the document 

P shown in (4), the message digest which is 
),...,( 01 δ−= ndmdm is calculated by the verifier. The 

verifier needs to check whether 
 ])[],...,[())(),...,(( 001101 dldlff nnn −−− =δδ   (5) 
In this equation, the verification of the signature requires 
n evaluations of the function .f  
 
iv. Application scenario 

Let’s the positive integer n be 3, and the hash function 
.8mod1};1,0{}3,0{: 3 +→ kkf �  

Let’s assume dm to be the hash value in the message P 
given as (1,0,1). The signature key is chosen as: 

]1[],0[],1[],0[],1[],0[( 001122 kkkkkkK = .Yields a 3 
by 6 matrix as: 

)6,3(}1,0{
010101
101101
011001

∈
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�
�

�

�

	
	
	




�
 

 
The corresponding verification key can be computed as: 

)6,3(

001122

}1,0{
101010
111000
011100

]1[],0[],1[],0[],1[],0[(

∈
�
�
�

�

�

	
	
	




�

== llllllL

 

Given that the message digest )1,0,1(=dm ; this implies 
that the signature of the digest will be: 

)3,3(
012012 }1,0{

010
110
000

]1[],0[],1[(),,( ∈
�
�
�

�

�

	
	
	




�
=== kkkδδδδ  

Note that the LD-OTS signature keys must be used only 
once to avoid an attacker been able to know the signature of 



 
 

the digest. For example, if the security parameter n is 
chosen as 4; assuming the signer signs two messages whose 
digest are: 

)0111()1101( 21 == dmanddm maintaining the same  
signature key. These digests would give the following 
signatures as: 

]0[],1[],1[],1[(
])1[],1[],0[],1[(

01232

01231

kkkk
kkkk

=
=

δ
δ

 

From these signatures 21 δδ and the hacker understands 

]1[],0[],1[],1[],0[],1[ 001223 kkkkkk because the hacker 
can understand the signature key. The hacker may apply this 
information to determine the actual signatures of the two 
messages whose digests are given as: 

).1,1,1,1()0,1,0,1( 43 == dmanddm It would be difficult 
for the hacker to find the actual message provided the used 
hash function is secure.  
 
v. The Security of LD-OTS 
LD-OTS security depends on the cryptographic hash 
functions [6]. For the scheme to be flexible, any hash 
function could be used. The security notion of LD-OTS 
could be affected if the hash function f is inverted by an 
attacker who intends to forge the signature of the sender. 
For example; Let’s )(01001101 KfandK = be a 
given function that can converts 0’s with 1’s and vice versa. 
Then .10110010=L  Assuming Alice wants to sign two 
messages given as: 10101 =M and 11012 =M with the 
same private key .K By LD-OTS, Alice computes the 
corresponding signatures as: 10101 =δ and 

10112 =δ then send to Bob. By this, Bob knows 
,2,1 δδ and M1,M2. It will be easy for Bob to forge a new 

message 11113 =M with its corresponding signature 
10113 =δ by just combining the previous two messages. A 

signer has to save n*2 hash values in order to sign a 
message given as .}1,0{ nM =  To attain )2( 80O security 
level in LD-OTS, the hash function used must be at least 
160 bits. This means that both private and public keys are 
expected to be at least nn *320*2*160 = bits.  
 
B. (W-OTS) 

i. Generating Keys-W-OTS approach 
In LD-OTS, the signature key and signature generation 

is efficient, but the magnitude of the signature is large [9]. 
The aim of the W-OTS is to produce few signatures. The 
notion is one string in the OTS key should be able to sign 
many bits of the digest message. This can be illustrated as: 
Suppose nHH }1,0{:*}1,0{: → represent a function that is 
cryptographically secure with a parameter given as w  such 
that Nw ∈ is selected, then L  can be calculated. The 
variable L  represents the number of elements in the private 
key and has the following formula: 

Let � �wmHL /)(1 = and 
 �� �wwLL /112log2 ++=  

21 & LLofsumtheL =    (6) 

1L  represents the number of all the private key elements 
required for signing the message digest, when signing 

bitsw − simultaneously. Whereas 2L represents the 
number of private key elements to sign the checksum of the 
message digest. All elements of the private key are 
generated from the Pseudorandom Number Generator 
(PRNG) and consist of bitsn − each. That is; 

),...,( 10 −= lSkSkSk     (7) 
The public key is generated when F is applied to every  
element from the private key 12 −w times. The public key 
is supposed to be available to the public along with 
parameter w ,functions HandF . 

1...,,0);(12 −=−= LiforSkFPk i
w

i   (8) 

)...,,( 10 −= lPkPkPk     (9) 
The table I represent correlation in numbers of how key 
elements decrease and evaluations of F  increase while w  
also increases.  

TABLE I 
Differences between w , private key elements, and evaluations of F when 

n=256 
Key length 

(L) 
 

133 40 67 55 45 39 34 
 
 

Evaluation 
of F  

 

399 630 1005 1705 2055 473 8672 

Signature 
size in kb  

4.2 2.9 2.1 1.8 1.4 1.2 1.1 

 
ii. W-OTS Signing process 

To sign a message, the sender has to select the 
parameter w and L private and public keys. Thereafter, hash 
the message m with function H to produce a message 
digest ).(mH Next, the sender needs to slice the message in 
pieces so that each piece consist of bitsw− . If the 
message digest is not divisible by ,w the sender should 
append additional zeros in the most left position resulting in 

),...,( 10 −= ldmdmdm     (10) 

This is in base w2 notation. The checksum Cs  and dm  
can be calculated later. To do so, the sender has to calculate 
the sum of all differences between 1082 =w and each of the 

idm from the sliced message digest. This is done by using 
the equation, 

�
−

=

−=
11

0
2

l

i
i

w dmCs     

 (11) 
)...,,,( 1210 −= lCsCsCsCs    

 (12) 



 
 

Then, the sender needs to concatenate both the message 
digest, and the checksum to variable B. The variable B 
consists of L  elements in w2 notation given as: 

)...,,,( 110 −= lbbbB  
The new variable B is the actual message to sign. In other 
words, W-OTS signs both message digest and the checksum 
of the message digest. To generate the signature, the sender 
needs to apply ib many times the function F on input Sk 
from index i . 

1...,,0:)( −== LiforSkF i
bi

iδ   (13) 

110 ...,,( −= Lδδδδ     (14) 
Each of n-bit length which would yield the signature size of 

bitsL −  
 
iii. Signing a message  

Let’s assume that the sender has chosen Winternitz 
parameter to be w = 3 and a small message 
digest bitsmH 16)( = . Then )(mH would be expressed 
as: 

1000111001111010)( =mH  
Appending two zeros to the left, the message becomes: 

101000110010011110)( =mH   (15) 
The parameter L is calculated to be 8 elements each. Next, 
the sender slices the message digest 3 by 3 and append 
additional two zeros to the left as shown in equation (15) 

011100010111001001)...,,( 50 == dmdmdm  (16) 

Thereafter, the checksum Cs  of the message digest 
dm can be calculated. The sender has to calculate the sum 
of all differences between 1082 =w  and each of the idm  
from the message digest. This can be done with the 
following formula:  

i

l

i
dm−�

−

=

1

0

32 . 

Table II shows the calculation of the checksum for this 
particular instance, when 316)( == nandbitsmH  

This implies that: � � 6/)(1 == wmHdm  

The checksum Cs  needs to be converted to binary sliced 3 
by 3 bits with the extended zeros at the left position.  

),,,,( 54321,0 CsCsCsCsCsCsCs = = (1,  1,  7,  2,  4,  3)  

Thus, i
i

i

l

i

w dmdm −=− ��
−

=

−

=

16

0

3
1

0
22  

 = (8-1) + (8-1) + (8-7) + (8-2) + (8-4) + (8-3) 
  =  7 + 7 + 1 + 6 + 4 + 5 
  = 3010 
Thus, B = 3010   = 111102 
Padding B, gives,  011  110 
Concatenating both message digest and checksum to create 
B consisting of L = 8 elements 
B = d||C      (17) 
Using “13”, gives the following signatures; 

)18()(),(

||)(),(),(),(),(),()(

7
6

6
3

5
3

4
4

3
2

2
7

1
1

0
1

SkFSkF
SkFSkFSkFSkFSkFSkFBSig ==δ

In this instance, the signature size;  
,128168 bitsx ==δ since F is a length preserving 

function.  
TABLE II 

Calculation of checksum in W-OTS; when 3=w  
2w=23=8 8 8 8 8 8 8 
bi (binary) 001 001 111 010 100 011 

bi in decimal 1 1 7 2 4 3 
Checksum 7 7 1 6 4 5 

 
iv) W-OTS Signature verification process 

To verify the signature ),,( Pkmδ , the receiver has to 
perform similar calculations as the sender while signing. 
Knowing both function F and H along with parameter w , 
the receiver obtain all necessary information for signature 
verification. First, the message m is hashed to obtain 
message digest )(mH , then appending zeros in the most 
left position. Next, calculate the checksum Cs and append 
zeros to the most left if needed. 

i

L

i

w dCs −= �
−

=

11

0
2     (19) 

The receiver concatenates the message digest )(mH with 
checksum Cs  to create B containing L elements. 

CsdbbB ||)...,,( 60 ==  

The integer values from w
i inb 2 notation contain 

information about how many times a specific part of the 
signature has the function F been applied on. During the key 
generation phase, the sender has applied function F on 
private key elements 12 −w times to obtain the public key. 

1,...2,1,0:)(12 −== − liforSkFPk i
w

i  

),...( 10 −= lPkPkPk  
Combination of this information implies that the receiver 
has appliedy the function F on the parts of the signature 

biw −−12 times to reconstruct the sender’s public key. 
Thereby verify the signature. 

)...,,( 1−= li δδδ
    (20) 

ii
biw PkF =∀ −− )(: 12 δ     (21) 

If the calculated values match the sender’s public key, then, 
the signature is valid, otherwise it would be rejected.  
 
v. Signature Verification scenario  

Considering the signing process in subsection (iii), 
where it is necessary to calculate the message digest ),(mH  

slicing it up and interpret it as integer values in w2 notation 
is required. 
Given that Cs  = 3010  = 111102 
Appending one zero to the most left position to Cs  and 
dividing by w  implies; Cs  = 011  110 



 
 

Concatenate the message digest )(mH with the checksum 
Cs  to create B containing L elements gives:  

2110011011100010111001001||)( == CmHB  (22) 
Interpreting these values as integers, gives; 
B = ( 1, 1, 7, 2, 4, 3, 4, 2)10   (23) 
Since parameter 3=w , then the sender needed to apply 

function F to all private key elements 12 −w times (which 
is 7 times) to generate the public key. Thereafter, applying 
the formula 

ii PkbiF
w

?)(: 12 =−∀ − δ  to reconstruct the sender’s 
public key to give: 

)24()(),(),(

),(),(),(),(),(

7
2

6
4

5
3

4
4

3
2

2
7

1
1

0
1

δδδ
δδδδδ

FFF
FFFFFPki =

  
vi. Security of W-OTS   

“Reference [17] was the first to proof that a generic W-
OTS is difficult to forge under adaptive chosen message 
attacks”. There are two security properties that are 
applicable to W-OTS; pseudorandom property and key one-
wayness. These security properties make W-OTS quantum 
resistant.  
 
C. Merkle Signature Scheme (MSS) 

The MSS is based on hash trees (known as Merkle 
trees) and it is a one-time signature like the LD-OTS. It was 
introduced by R. Merkle in 1979 as an alternative to the 
traditional digital signature (RSA, DSA). The advantage of 
MSS is that it is tested to be resilient to quantum computer 
attacks. The MSS security is the present of the hash function 
used [14]. 
 
i. Key generation in MSS 

MSS can only be used to sign a few number of 
messages using one public key [3]. The total number of  
messages is nN 2= . In MSS key generation, the public 

keys (pubkey) iχ are generated first then the private keys 

iγ with n2 OTS scheme. Given private key iγ , with 
ni 21 ≤≤ , a hash value )( ii Hh γ= is calculated and with 

these hash values ih , a hash tree is built. Fig 1 illustrates  a 
Merkle tree of height H = 3. 

 
Fig 1. Merkle hash tree with height H = 3 [7] 

 
As seen in fig. 1, the verification keys are 70 ,...,γγ ,                  

while 70 ,...χχ are the signature keys.   

jia , is referred to as the nodes of the tree, were i represents 

the level at which the nodes are located (for example 10 ,a  
is level zero, node 1). The node level is the gab from the 
node to a particular leaf. For example, a leaf has level 

0=i and the root has level ni = . The hash values ih are 

the leafs of the tree, such that ii ah ,0= . The inside nodes 
are the hash value of the concatenation of its two children. 
For example;  

).||()||( 1,10,10,21,00,00,1 aaHaandaaHa ==          

This is how the tree is made up. This include n2 leafs and 
( 12 1 −+n ) nodes. The tree has a root and it is given as 

0,na and it is referred to as the public key. 
 

i. Generating Signatures in MSS 
Signing a message M  can be achieved by signing first 

with OTS to obtain the signature “sig” and by utilizing the 
public key and private key pairs ),( ii γχ  respectively. The 

route in the hash tree from 1,0a to the root could be 

represented as A. The path A consists of 1+n nodes, that is, 

nAA ,...,0 with 1,00 aA = being the leaf and 

.0, pubkeyaA nn ==  In calculating the path A, all 

entities of the nodes nAA ,...,0 are needed. Note, iA is an 

entity of 1+iA . This node is called the authentication path 

iauth such that;  

)||(1 iii authAHtoequalisA + . To get the number of 

nodes n ; 10 ,..., −nauthauth are required to calculate all the  
nodes in the path ‘A’. These nodes are calculated and saved 
as 10 ,..., −nauthauth respectively. The final signature of 

message M is: )||||||'('' 110 −= nauthauthauthsigsig in 
MSS. 

 
iii. How to Verify a Signature  

To verify any signature, the receiver must know the 
pubkey, the message M and the signature; 

).||||,...,||||'( 110 −= nauthauthauthSigSig Firstly, the 

receiver checks the OTS 'Sig of a given message M. If the 

'Sig is true, then the receiver can calculate )(0 iHA γ= by 
performing hashing operation on the public key of the OTS.  

 
iv. The security of MSS 

The MSS security as explained by [7] is forward secure, 
one-time signature, and collision resistant. A cryptographic 
hash function G is collision resistant if it is hard to find two 
inputs that hash to the same output. Given p  and q , such 
that )()( qGpG = and ( qp ≠ ). However, to forging an 
MSS, an attacker is required to compute the pre-images and 
second pre-images hash function.  

 
 



 
 

D. Comparison of L-OTS, W-OTS, and MSS 
In table III, it is shown that the L-OTS key size is 

22n and that of W-OTS is ,np while in MSS the private 

key size are in the range of 
ni 21 ≤≤ . To generate a key, 

L-OTS requires n2 evaluation of function ,f W-OTS 

requires )12( −ωt evaluation of function ,f  and in the 

MSS, the key generation is 
H2 (H is the tree height). L-

OTS and MSS does not use function f for signature 

generation, while W-OTS requires )12( −wt parameters. 

On the use of function f for signature verification, L-OTS 
needs to use the value of parameter n for signature 
verification, W-OTS needs to apply the parameters 

)12( −wt to verify signatures; while MSS requires the 

parameters 2/)12( −wt for the same process. The summary 
of these analyses is illustrated in table III. 

 
TABLE III 

Comparison between L-OTS, W-OTS, and MSS Schemes 
Parameters L-OTS W-OST MSS 
Key size 22n  2≥w  ni 21 ≤≤  

Key 
generation 

2n 
evaluation 

of f  

t(2w-1) 
evaluation of 

f 

2H leaves 

Signature 
length 

2n  )(tn  Sig’||auth0, …,||authn-1 
 

f  for 
Signature  
generation 

Not used  
t(2w-1) 
 

Not used 

Use of   f for 
signature 

verification 

n   
t(2w-1) 
 

 
t(2w-1)/2 

 
Security 
levels 

Hash 
function 

used 

EU-CMA Pre-image of the 
hash function 

Note: n is a positive integer, w is Winternitz parameter, t is 
the bits string, and f is the hash function. 

 
IV APPLICATION OF HASH-BASED DIGITAL 

SINGNATURES ON BITCOIN CRYPTOCURRENCY 
Bitcoin uses two cryptographic primitives to secure its 

transactions [2]. The first primitive is the Proof of Work 
(PoW) protocol, and the second is the Digital Signature 
Algorithm (DSA). This work focused on the PoW protocol.  
In bitcoin, the function used is; 

))(256(256)( RSHASHArH = where; .256bitsn =  
The difficulty in PoW is explained thus: Suppose a message 
M has a target T, to locate r so that .),( TrmH ≤ H is 
model as a random function such that the algorithm to find 
r is  to apply a brute force attack. PoW enables a miner to 
find a valid block. The miner increases the nonce r until a 
block is valid and a reward is granted. For example, using 
classical algorithms, the probability of finding an item of 
data in a bitcoin ledger is 2/3 queries; a quantum miner can 
apply Grover’s search methods to perform such search 
operations in a polynomial time with less queries.   
 
 

 
V. CONCLUSION 

Hash-based signature schemes are an alternative for 
quantum attacks. This research critically explains the basic 
foundation of the three (3) hash-based digital signatures (L-
OTS, W-OTS and MSS). The research proceed further to 
show the basic working principles of these schemes and 
comparing them in terms of key generation, signature 
generation, verification and their security levels. The 
comparative analysis is in table III. Based on the study, 
MSS is considered most suitable for bitcoin security.              
MSS permits a user to generate many signatures with one 
public key as compared to L-OTS and W-OTS. There are 
many variants of MSS (stateful signature scheme) and other 
stateless signature schemes that where not discussed in this 
work. Further research work can be done in this area with 
the aim of identifying the most suitable hash-based digital 
signature scheme for bitcoin cryptocurrency.      
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