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ABSTRACT 
 
This paper is concerned with the derivation and 
implementation of hybrid linear multistep method 
(LMM) for solving first order differential equations. 
The continuous and discrete schemes for k=4 
with one off-step point at interpolation were 
derived, where k is the step number of the 
method. The continuous hybrid formulations were 
evaluated at various points to obtain discrete 
schemes, which were used in block form for 
parallel or sequential solution of initial value 
problem (IVP). For acceptability, the schemes so 
derived in block form were tested for consistence, 
zero stability and convergence. Also provided are 
examples of initial value problems solved with the 
proposed schemes in block form.  
 

(Keywords: block method, linear multistep method, 
multistep collocation, continuous multistep (CM), self-

starting, zero-stability) 

 
 
INTRODUCTION 
 
The hybrid schemes have been developed since 
the 1960’s but these methods have not yet 
received a great deal of attention. Lie and Norsett 
(1989),  Onumanyi., et al (1994), Yahaya and 
Mohammed (2010) , Yahaya (2004) and 
Mohammed (2010) have all converted 
conventional linear multistep methods  including 
hybrid ones into continuous forms through the 
idea of Multistep Collocation (MC). The 
Continuous Multistep (CM) method, associated 
with conventional linear multistep methods 
produces piece-wise polynomial solutions over k 
steps for the first order differential system. 

This research work aims at deriving a four-step 
block hybrid method for numerical integration of 
ordinary differential equations. It allows the block 
formulation and therefore is self-starting and for 
appropriate choice of k, overlap of solution model 
is eliminated. 
 
 
Derivation of the Continuous and Discrete 
Block Hybrid Methods 
 
Using the general multistep collocation methods 
see (Onumanyi, et al., 1994), (Yahaya and 
Mohammed, 2010), and (Mohammed, 2010) lead 
to the following D-matrix; 
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Using maple software package gives the column 
of D

-1
which are the elements of the matrix C. the 

elements of C are then used to generate the 
value of continuous coefficient: 
 
               xxxxxxxx v 3210321 ,,,,,,, 

     (1) 
 
The values of the continuous coefficient (1) are 
substituted to give the continuous form of the 
four-step block hybrid methods with one off step 
point at interpolation. 
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Evaluating (2) at point 
 

 

,,,

2

342


 
n

nn xxxxxx

2

7


  
 
and its derivative at point 
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yield the following six discrete hybrid method 
which are used as a block integrator, 
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Equation (3) constitute the member of a zero-
stable block integrators of order (7,7,7,7,7,7)with  

T
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the application of the block integrators with n=0 
give the accurate values of y1,y2,y3 along with 
y4as shown in Tables 1-4. To start the IVP 

integration on the sub-interval
 40 , xx

. We 
compute(3), when n=0 i.e. the 1-block 4 point 
method as given in Equation (4) produces its 
unknown simultaneously without recourse to any 
starting method (predictor) to generate y1,y2,y3 
before computing y4. 
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Convergence Analysis of Block Hybrid 
Methods 
 
Recall, that, it is a desirable property for a 
numerical integrator to produce solution that 
behave similar to the theoretical solution to a 
problem at all times. Thus several definitions, 
which call for the method to possess some 
“adequate” region of absolute stability, can be 
found in several literatures. See (Lambert, 1973), 
(Fatunla,1992), and (Fatunla, 1994), etc. following 
(Funtula, 1992), the four integrator proposed in 
this report in Equations (3)  is put in the matrix-
equation form and for easy analysis the result 
was normalized to obtain; 
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(4)  
 
The first characteristic polynomial of the block 
hybrid method is given by: 
  

   10det ARAR 
 

 
Substituting the value of A

0
 and A

1
 into the 

function above gives: 
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Therefore,
.1,0  RR
The hybrid method is 

zero stable and consistence since the order of the 
method . And by (Henrici, 1962), the 

block hybrid method is convergent.  
 
 
Numerical Experiment 
 
In this paper we use newly constructed block 
hybrid methods and four step block hybrid 
Adams-mouton methods proposed by (Yahaya 
and Sokoto, 2010) to solve stiff and non-stiff initial 
value problems (IVP), in order to test for 
efficiency of the schemes derived. 
 
Example 1  
Consider the initial value problem  

 

  xexysolutionexact

hx

yyy







:

1.010

10,

          (5)
     
 
Example 2  
Consider the initial value problem  

 

  xexysolutionexact

hx

yyy

91:

1.010

10,9







   (6)
      
Firstly we transform the schemes by substitution, 
to get a recurrence relation. Substituting n=0, 4... 
and solving simultaneously using maple software 
package we obtain the required results displayed 
in tables  below.
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Table 1:  Example 1. 
 

X Exact Solution 

Block Hybrid 
Method for k=4, 

off-grid at  

Block Hybrid 
Adams-
Moulton 

Method for k=4 

0.1 0.9048374180 0.9048374180 0.9048374173 

0.2 0.8187307531 0.8187307531 0.8187307526 

0.3 0.7408182207 0.7408182205 0.7408182202 

0.4 0.6703200460 0.6703200461 0.6703200456 

0.5 0.6065306597 0.6065306603 0.6065306588 

0.6 0.5488116361 0.5488116368 0.5488116354 

0.7 0.4965853038 0.4965853042 0.4965853031 

0.8 0.4493289641 0.4493289649 0.4493289635 

0.9 0.4065696597 0.4065696606 0.4065696588 

1.0 0.3678794412 0.3678794420 0.3678794404 

 
 

Table 2:  Comparison of Absolute Error for Example 1 (non-stiff). 
 

X Exact Solution 

Block Hybrid 
Method for k=4, 

off-grid at  

Block Hybrid 
Adams-
Moulton 
Method for k=4 

0.1 0.9048374180 0 7.36E-10 

0.2 0.8187307531 0 4.78E-10 

0.3 0.7408182207 2.000E-10 4.82E-10 

0.4 0.6703200460 1.000E-10 4.36E-10 

0.5 0.6065306597 6.000E-10 9.13E-10 

0.6 0.5488116361 7.000E-10 6.94E-10 

0.7 0.4965853038 4.000E-10 6.91E-10 

0.8 0.4493289641 8.000E-10 6.17E-10 

0.9 0.4065696597 9.000E-10 9.41E-10 

1.0 0.3678794412 8.000E-10 7.71-E10 

 
 

Table 3: Example 2. 
 

X Exact Solution 

Block Hybrid 
Method for k=4, 

off-grid at  

Block Hybrid 
Adams-
Moulton 
Method for k=4 

0.1 1.10517E+00 1.10501E+00 1.10399442 

0.2 4.49329E-01 4.49262E-01 0.449177460 

0.3 1.82684E-01 1.82678E-01 0.182461349 

0.4 7.42736E-02 7.42874E-02 0.074136190 

0.5 3.01974E-02 3.01985E-02 0.030109439 

0.6 1.22773E-02 1.22778E-02 0.012250498 

0.7 4.99159E-03 4.99238E-03 0.004976301 

0.8 2.02943E-03 2.03019E-03 0.002021930 

0.9 8.25105E-04 8.25289E-04 0.000821180 

1.0 0.3678794412 3.35538E-04 0.000334110 
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Table 4:  Comparison of Absolute Error for Example 2 (stiff). 
 
 

X Exact Solution 

Block Hybrid 
Method for k=4, 

off-grid at  

Block Hybrid 
Adams-
Moulton 
Method for k=4 

0.1 1.10517E+00 1.64936E-04 1.18E-03 

0.2 4.49329E-01 6.70433E-05 1.62E-04 

0.3 1.82684E-01 5.32080E-06 2.22E-04 

0.4 7.42736E-02 1.38386E-05 1.37E-04 

0.5 3.01974E-02 1.11920E-06 8.79E-05 

0.6 1.22773E-02 4.55150E-07 5.23E-04 

0.7 4.99159E-03 7.84514E-07 1.53E-05 

0.8 2.02943E-03 7.55940E-07 1.64E-06 

0.9 8.25105E-04 1.84229E-07 3.92E-06 

1.0 0.3678794412 1.99127E-06 1.35E-06 

 
 
 
Consider the absolute errors of the two methods 
above. A close observation of Table 2 shows the 
discrete scheme of the newly constructed block 
hybrid methods performs far better than the 
standard Adams-Moulton methods when applies 
to non-stiff equations. While a close observation 
of Tables 1 and 2 also show the discrete scheme 
of the newly constructed block methods performs 
little better than the standard Adams-Moulton 
methods when applies to stiff equations. 
 
 
CONCLUSIONS 
 
A collocation technique which yields a method 
with continuous coefficients has been presented 
for the approximate solution of first order ODEs 
with initial conditions. Two test examples have 
been solved to demonstrate the efficiency of the 
proposed methods and the results compare 
favourably with the exact solution and four step 
block hybrid Adams-Moulton methods.  
 
Interestingly, all the discrete schemes used in the 
Block formulation were from a single continuous 
formulation (CF).  
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