NIGERIAN BUILDING \& ROAD RESEARCH INSTITUTE
FEDERAL MINISTRY OF SCIENCE AND TECHNOLOGY

PROCEEDINGS
 OF INTERNATIONAL CONFERENCE ON

SUSTAINABLE DEVELOPMENT GOALS
AND THE NIGERIAN CONSTRUCTION INDUSTRY:
CHALLENGES AND THE WAY FORWARD

SEPTEMBER 2018

Development of specification writing procedure for mixture proportions for laterite cement bricks using the Central Composite Design Approach

Alao, T. O^{1} and Jimoh, A. A^{2}
${ }^{1}$ timothy.alao@futminna.edu.ng;'2jimlahi@unilorin.edu.ng

Abstract

A specification writing procedure was developed to obtain component mixes to produce laterite-cement bricks meeting user-defined requirements. The procedure was developed using the Central Composite Design (CCD) of the Response Surface Methodology (RSM) of experimental design. It essentially focused on selecting component proportions to obtain response prediction for a three-component mixture for building bricks production using water, cement and laterite with percentage sand replacement. Compaction was carried out using the commercially available Hydrafrom Twin-M7 machine exerting a compactive effort of $10 \mathrm{MN} / \mathrm{m}^{2}$. Five blends of bricks were investigated with cement content ranging between 8-20 percent by weight of laterite and $0-20$ percent silica sand replacements. At the specified ages of 7 and 28 days, the compressive strength was measured using Testometric FS300CT Universal Testing Machine and responses were modeled as second order quadratic equations. An inverse relationship for response prediction for strength was obtained and compressive strength achievable ranges between $7.00-19.00 \mathrm{~N} / \mathrm{mm}^{2}$. A specification writing form is proposed which will enable the selection of constituent materials and acceptance criteria to be met to enable both cement and plastic bonds achievable.

Keywords: Specification writing, Form, laterite-cement bricks, Central Composite Design, Response Surface Methodology, Compressive strength

1.0 INTRODUCTION

The need to select a mixture to produce laterite-cement bricks satisfying user-defined requirements of strength and durability demands a higher complexity of the mixture design. To achieve this higher performance laterite bricks, the traditional method of using trial mixes would be incapable. These performance criteria could include mechanical properties such as strength, young modulus of elasticity, creep and shrinkage. It is desired, for site production, to obtain a standard which would form a basis for performance and acceptance criteria to be achieved. This can nonetheless be achieved except through specifications writing procedure.

Laterite, according to Gidigasu (1976) is described as a light to dark homogeneous, vesicular, unstratified and clinker-like soil material consisting mainly of oxides and hydroxides of aluminium, iron, manganese and silica which hardens on extraction and exposure. It is described as a class of pedogenics where the cementing materials are the sesquioxides content and should normally constitute not less than 50 percent of the mineralogical composition according to this definition. This definition describes the material in its natural form. However, for building construction purposes, cement is usually added to improve the
properties of the 6ricks.

Laterite bricks have a very good thermal property, shock and earthquake resistance (Hydraform, 2014),
 Gidigasu, 1976; Awoyera and Akinwumi, 2014; Hydraform, 2014) have tried to confirm the acceptability of its properties for a series of acceptance criteria. Among these properties include strength, absorption
building up to two-storey high.
Various attempts have also been made to improve laterite-cement material as a building material for sustainable housing construction. These include development and manufacturing of compression moulding machines for mechanical stabilization of bricks (Hydraform, 2014; NBRRI, 2013; Cinva Ram, 1999; Adeyemi, 1987). Stabilization of laterite soil with cement otherwise called soil-cement mixture was also investigated (Hydraform, 2014; Madu, 1984; Aguwa, 2009; Osunade and Fajobi, 2000) as well as stabilization with Locust Waste Bean Ash (Osinubi and Oyelakin, 2012), stabilization with Bentonite treatment (Amadi et al, 2011), stabilization with lime (Singh, 2006), among others. Other pozzolana treatments included Corn Cob Ash. Rice Husk Ash. Pumice Slag Ash. Burnt Clay Brick Ash, Sugarcane bagasse Ash. etc.

Statistical experimental design procedure for mixture experiments was used to fix variable inputs to established design points. It generally employs the fitting of a second order quadratic model for each of the measured responses after removing insignificant terms in the model. The resulting response equations where insignificant terms are eliminated now become the response prediction equations. An advantage of this type of statistical experimental design procedure is that the responses can be characterized by an uncertainty (variabiity) which has an important implication for specification writing especially in site production (Simons et al, 14y9; Montgomery, 2001). These responses are always targeted at yielding a target or mean strength which implies that at least 95 percent of the results are expected to fall within the normal distribution curve or more precisely, probability $p \leq 0.05$.

The Central Composite Design (CCD) is essentially a factorial experimental design employed for modeling a response as a second order quadratic model, (Simon et al, 1999). Each response property can be optimized using the response surface method to obtain a second order quadratic model of the form (Montgomery, 2001):

where " y " the response is the property of the mixturc. The values $x s$ are the components and the parameters β_{i} and β_{y} are the linear and quadratic cocfficients fitting the experimental data for the linear and interactive terms respectively. The Ceniral Composite Design is run in 2 -level factorial design. In this method, the influence of all the variables, factors and the interaction effects are investigated at two levels consisting 2^{n} experiments

A characteristic rotatability designs in CCD used here implies that predicted values should have equal variance at locations equidistant from the origin (Simon et al, 1999: Montgomery, 2001). The
construction of the design matrix is a!so implementabie using the Design Expert statistical software (Design Expert, 2000).

2.0 MATERIALS AND METHODOLOGY

The laterite sample used was obtained from an existing burrow pit within Ilorin environs, Kwara State (KW-31, Elevation 317, and Coordinates 663093, 935109) using a method of disturbed sampling at depths $0.5 \mathrm{~m}-1.5 \mathrm{~m}$ depth. Two grading zones of silica sand, namely zones 2 and 3 sand otherwise called coarse (C) and fine (F) sands were used. The sand samples for Coarse and Fine sands were collected from the Stream beds within the tributaries of Asa River in Ilorin. Ordinary Portland cement complying with BS 3148, 1980 and NIS 444, 2003 respertively was used. The physical and geotechnical properties of the laterite sample used were: Liquid limit; 49%; plastic limit: 30.6% : plasticity index: 18.4%; specific gravity: 2.64; linear shrinkage: 10.1 mm ; maximum dry density: $1821 \mathrm{~kg} / \mathrm{m}^{3}$; optimum moisture content: 14.1%; colour: reddish brown; condition of sample: air dry; soil classification: A-2-7. Mineralogical properties include: iron oxide content: 18.01% and sesquioxide content: 42.21%.

Batching, mixing and casting of specimens using 100% laterite-cement mixture as a control, two percentage sand replacement with proportions of 10% and 20% silica sand was carried out. Brick samples ($96 \mathrm{~mm} \times 93.6 \mathrm{~mm} \times 145 \mathrm{~mm}$) were cured and tested at 7 and 28 days to obtain the compressive strength properties using a Testometric Universal Testing Machine Model FS300CT. ASTM C 170-90 test plan.

3.1 Methodology for estimation of constituent proportions within the design domain

The expression of the absolute volume of the mixture is expressed (Aguwa, 2009) as:

An augmented Simplex $[3,2]$ lattice design was initially used to obtain a design matrix whose vertices were $8 \%, 14 \%$ and 20% cement contents representing ratios $1: 12.5 ; 1: 7.14$ and $1: 5$ fitted in a manner as to yield an optimum within the design domain selected. This is shown in Appendix A.1. The pseudo component variables of all other binary, interior and centre points were transformed into their actual factor variables by the method described by Mama and Osadebe, (2014).

3.2 Determination of Dry Density/Optimum Moisture Content relationship and estimation of revised mixing water

The optimum moisture content corresponding to the maximum dry density was used to determine the quantity of mixing water to produce the maximum dry compacted soil per cubic metcr of the soil-cement mixture. The 4.5 kg rammer method was used in accordance with the procedure deseribed in BS 1377 (1990).

3.3 Revised mixing water estimation

The moisture required which corresponds to the maximum dry density was used to replace the starting mixing water. The calculated limits/domains for the five blends are as summarized in equations 3 (a) 3(e).

```
\(0.262 \leq x_{1} \leq 0.267\) )
\(0.259 \leq x_{1} \leq 0.262\)
\(\left.0.046 \leq x_{2} \leq 0.106\right\} \quad C C D-F 1\); (3c)
\(0.633 \leq x_{3} \leq 0.694\)
\(0.263 \leq x_{1} \leq 0.266\)
\(\left.0.046 \leq x_{2} \leq 0.106\right\} C C D-C 2 ; \quad\) (3d)
\(0 . \overline{5} 6 \leq x_{1} \leq 0.2 \overline{6} 8\)
\(\left.0.046 \leq x_{2} \leq 0.107\right\} \quad C C D-F 2\); (3e)
\(0.637 \leq x_{3} \leq 0.687\) )
```

The Letters C1, F1 and C2, F2 immediately after the hyphen represents Coarse (C) and Fine (F) sand. The figures 0,1 and 2 represents zero (0), ten (10) and twenty (20) percent silica sand replacement respectively.

3.4 Mathematical relationship between mixture proportions

sing the augmented [3,2] Simplex lattice design, the expression relating the new water requirement 17) was obtained as shown in equation (4). Detailed procedure for mixing water estimation was given Slao and Jimoh (2017). Once the ratio of cement to laterite has been selected, the mixing water Eisuirement can be estimated.
clco- $0 ; \quad Y=269.5-36.93\left(\frac{\text { Cement }}{\text { Laterite }}\right)$
Colo - C1;
CCD-F1;
CoD-C2;
(0ct) -F2;

$$
\begin{equation*}
Y=259.8-39.40 *\left(\frac{\text { Cement }}{\text { Laterite }}\right) \tag{4a}
\end{equation*}
$$

--ilarly, using the same Scheffe' augmented [3,2] lattice design, laterite quantity can be calculated $=$ the cement quantity has been select. The equations relating laterite quantity based on cement Crity selected is shown in equation (5).

$$
\begin{array}{lc}
L=1927-0.7767 * \text { Cement } & (5 a) \\
L=1956-0.9058 * \text { Cement } & (5 b) \\
L=1959-0.8697 * \text { Cement } & (5 c) \\
L=1928-0.7886 * \text { Cement } & (5 d) \\
L=1907-0.6749 * \text { Cement } & (5 e)
\end{array}
$$

Example of (onstruction of the CCD design matrix

- bounds represent the proportions of the constituent mixtures for low and high cement content of 8
-20 percent respectively as shown in rows (1) and (3) of Appendix A.2. Sample summary mixture mations estimation is shown in Table 1.

Table 1：Sample Summary Mixture proportions in coded and actual variables

CCS－C										
The des an ratrx		x－water $x=$ cerent $x=1006$ aterte						Yı 1 ：-	Yご执：	$Y 3=0051$
Excerreat 0	Font	Varasas						Pesponse		
			coded			13： ag		$\mathrm{N} / \mathrm{T} \mathrm{TV}^{-}$	N／ヶヶ＊	$10=5$
		3.	x，	x_{i}	$\times 1$	$\times 2$	$\times 3$	1	$=$	三
1	Fsctors	\because	－1	-1	251.25	145.33	1570.30	5.45	10.47	25.52
2	$1=800{ }^{\text {a }}$	1	－1	-1	255	145.33	1576.30	モ．51	9.11	25.40
3	Facto a	－	1	\because	281.25	334.06	1576.30	12.51	15．65	38.00
4	－Ecto－シ	1	1	\therefore	こここ，「こ	354，6	1276.30	11.20	17．57	35.85
5	Ferto ${ }^{\text {a }}$	－1	，	：	251.8	145.33	181E．53	65	10.53	25.36
6	－scter	1		1	25． 5	145．33	12.5 .53	7.63	8.40	35.13
－	＝stor	\because	i	\square	281.2	334.05	1815.53	12.17	16.15	37.10
8	Facto＝	1	1	－	255.75	334．0	281E．3	12.40	17．28	35.94
9	A $=$	$\therefore 88$	－	\square	250.75	239,5	－743．45	9.5	13.02	31.69
10	2.3	1．68－	0	［	257.28	23959	1743.45	8.6	11.71	31.45
12	$\therefore=$	6	－1582	6	25.50	80.57	17.3 .45	4.37	3.85	2.84
：	2 a	E	1．85	\square	35.50	395.42	5743.46	14．7．	19.90	41.27
13		6	0	－ 28	25.50	239.6	1320.40	F．E	12.84	32.10
14	$\therefore=8$	\square	r	$\therefore 5 \mathrm{~S}$	23.36	239.59	1855．52	Es	13.93	31.10
i	$\because \div$	6	is	－	258.36	230.6	1743．46	56	13.12	31.57
：$=$	Cente	C	0	i	363.55	23959	－743．43	9.05	23.59	31.57
\because	$C \times \cdots+$	－	\bigcirc	\％	253.50	334.89	974.46	3.3	53.15	31.57
18	－－－	i	C	\square	25.5	2395	$17+3.46$	9.07	13． 88	31.57
12	$\therefore \cdots$	\bigcirc	\bigcirc	\square	\％35	230.59	27.45 .46	8.9	12，-7	31.57
I		\square	5	$!$	25，	23.56	－7\％．4E	97	－3．78	31.57

4．0 RESULTS AND DISCUSSION

The modeling of response predictions for brick strength at 7 and 28 days was carried out．The result of the study has shown that strength still remains the primary response prediction for describing all other properties．For example，the bricks with higher strength yield high Young＇s Modulus of elasticity and lower strain．

4． 1 Description of the selected model using the Central Composite Design method

The statistical significance with low probability value of $p \leq 0.05$ calculated shows that a model， coefficient and intercept are significant and should be included in the model．Similarly，other inferences and residuals are calculated，to validate the fitted model prediction．Here，all the interaction terms have been eliminated：which shows that they are not significant in the model．The general second order quadratic model is of the form：$-:^{-\quad-\quad-\quad \text { as shown in Tabse } 2 .}$

CCD－0；	$1 /\left(\mathrm{fc}_{n}\right)=0.21363-0.000856443 *$ Cement $\div 0.00000116686 *$ Cemen 2
CCT－Cl；	$1 /\left(\mathrm{fo}_{\text {O．}}\right)=0.2996-0.00147587 *$ Cement $+0.00000234307 *$ Cement＾2
CCD－F1；	$1 /\left(\mathrm{fc}_{228}\right)=0.23053-0.00101814 *$ Cement $+0.00000149142 *$ Cement＾2
CCD－C2；	$1 /\left(\mathrm{fc}_{28}\right)=0.29822-0.00141862$＊Cement $+0.00000209428 *$ Cement＾2
CCD－F2；	$1 /(\mathrm{fc}, 2 \mathrm{rs})=0.25648-0.00117542 *$ Cement $+0.00000169111 *$ Cement＾2

That 2(b) Response prediction for 7-day strength: CCD method

CCD-0:	$1 /(\mathrm{fc}, 7)=0.27845-0.000995268 *$ Cement $+0.00000121943 *$ Cement^2
CCD-C1:	$1 /\left(\mathrm{fc}_{, 7}\right)=0.44452-0.00217823 *$ Cement $+0.00000339415 *$ Cement $^{\wedge} 2$
CCD-F1;	$1 /\left(\mathrm{fc}_{77}\right)=0.2871-0.0011235 *$ Cement $+0.00000147466 *$ Cement^2
OCD -1.	$1 /\left(\mathrm{fc}_{77}\right)=0.39451-0.00176367 *$ Cement $+0.00000239979 *$ Cement^2
CCD-F2;	$1 /\left(\mathrm{fc},{ }_{7}\right)=0.35948-0.00146593 *$ Cement $+0.00000190695 *$ Cement^2

Comparative compressive strength results using Central Composite Design

also be validated that the measured properties of bricks produced are largely dependent on the y of cement and compactive effort and this is shown in Table 3. Similarly, production of bricks 20 percent cement content design domain has shown reasonable results that would guide bricks that would be durable. The results of bricks also satisfy minimum code requirements pressive strength of load bearing walls: IS 3620 (1979) Indian Standards: 2.8MPa; Australian 2733 (1984): $2.0 \mathrm{~N} / \mathrm{mm}^{2}$; NIS 87 (2004) ‘SON': 2.8N/mm²; SANS 1215 (2008). South African Siandards: 3.5 MPa .

Thaik Zo Comparative compressive strength results using Central Composite Design

			$\begin{aligned} & \begin{array}{l} \text { Heydraform } \\ \text { (2014) } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Aguwa } \\ & (12009) \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { Guettria et } \\ \text { all } 12000 \end{array} \\ & \hline \end{aligned}$	Anoversa Alinwursi [2014]	CCO. 0	CCO. 61	CCD.F1	$\mathrm{CCO}-\mathrm{C} 2$	100. 72
\square	[1]	(3)	[4)	(5)	161	17	181	(9)	101	(11)	111
	penex	Compactive forNyim	10	4	15	2	10	10	10	10	10
E	\square		-	19	.	.	-	,	-	-	-
2	5	,	3	.	15.4	.	-	*	.	-	-
\square	13	ξ	.	35	.	-	-	-	-	-	\cdot
$\underline{-}$	7	$\frac{Z}{I}$	5	.	.	.	-	.	-	\cdots	\cdots
-	1	5	-	5.1	-	23	373	3.45	884	8.76	8.22
\pm	\pm	6	8	5.1	142	349	20.35	9.23	1063	1059	1009
\square	12	E	-	6.5	.	3.96	12.4	12.27	12 Ea	12.59	823
$\underline{\square}$	4	5	-	7.1	*	.	$14.0{ }^{\text {a }}$	$\underline{13}$	14.82	1468	1489
\square	S	8	20	.	.	.	-	-	.	-	
-	15	8	\cdots	83	-	.	15.8	14.61	16.6	65	178
-		${ }_{5}^{2}$	-	92	.	.	17.13	4,88	17.5	17.51	1885
$=$	P		12	9.6	-	\cdot	-	\cdots	.	-	\cdots
-	3		14	\cdots	-	*	-	-	.	-	-

-
- -ambers 5 through 11; columns (8) through (12) are estimated using the example in Section 4.16 -4 ansenes Central Composite method
- Timess C1, F1 and C2, F2 iminediately after the hyphen represents Coarse and Fine sand, 10 percent and 20 percent nowd ropectively

43 Eszmple on optimization of component mixes to meet user-defined requirement using approximate CCD design

- method starts as an iterative process by initially selecting a cement quantity and thus obtaining the -riod sreagth. The procedure is stated thus:

Sart by calculating the quantity of cement from within the limits suggested. The quantity of coment may be estimated by substitution of the reciprocal (inverse) of the compressive strength and finding the positive root of the quadratic expression representing the response prediction for strength
ii) Substitute the cement quantity in the equation expressing the compressive strength
iii) Calculate the inverse or reciprocal of the value obtained in (ii)
iv) Calculate the corresponding quantity of laterite from the equation relating the calculated cement quantity
v) Calculate the corresponding quantity of water from the equation relating the calculated cement/ laterite ratio
vi) Calculate cement:laterite ratio

Using the same problem statement:
i) Starting with the lowest limit of cement (absolute volume $=0.046$) represents 145 kg of cement, that is $(0.046 \times 3150=145 \mathrm{~kg})$, where unit weight of cement is $3150 \mathrm{~kg} / \mathrm{m}^{3}$
ii) Substituting the cement quantity in the equation
${ }^{1 / f c_{23}}=0.21363-0.0008564+3 \cdot 1+5-0.00000116686 \cdot 145^{2}=0.113979$
i) The inverse is $8.77 \mathrm{~N} / \mathrm{mm}^{2}$
ii) The corresponding quantity of laterite from equation (8) relating the calculated cement quantity $=1927-0.7767 *$ cement; gives $\left(1927-\left(0.7767^{*} 145\right)\right)=1814.3785 \mathrm{~kg} / \mathrm{m}^{3}$.
iii) The corresponding quantity of water from the equation relating the calculated cement/ laterite ratio is:water $=269.5-36.93 *$ cement/laterite. This substitution gives $=[269.5-$ $\{36.93 *(145 / 1814.3785)\}]=266.55 \mathrm{~kg} / \mathrm{m}^{3}$
iv) The cement:laterite ratio is $145 / 1814.3785=1: 12.5(8 \%$ cement content)

5.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the CCD method, it has been shown that a specification writing for composite bricks satisfying user-specified requirements is practicable. Similarly, in using this method, responses capable of achieving target mean strengths can be developed. This procedure is implementable computationally. Either fine or coarse sand within grading zones 2 and 3 can be used, the blends are suitable and yielding nearly same results within the domain of cement:laterite considered.

REFERENCES

Adeyemi, M. B. (1987). Experimental Determination of Extrusion Pressures and Properties of Laterite Bricks Made Using a Continous Horizontal Extrusion Process. International Journal for Development Technology, Volume 5, pp. 39-47.
4 _wwa. J. I. (2009). Study of Compressive Strength of Laterite-Cement Mixes as a Building Material. Assumption University Journal of Technology Volume 13, No. 2 pp. 114-120.
13o, T. O. and Jimoh, A. A. (2017). Performance Criteria design of mixture proportions for laterite-cement bricks using the Schéffé Mixture Approach. Journal of Research Information in Civil Engineering, University of Ilorin, Ilorin, Nigeria. Vol. 14, No. 3, pp. 1626-1649.
1 madi, A. A., Aguwa, J. I. and Eberemu, A. O. (2011). Variations in Plasticity Characteristics of Lateritic Soils Associated with Bentonite Treatment. Nigerian Journal of Technological Research. Federal University of Technology, Minnna, Volume 6, No. 1
152733 (1984). Concrete Masonry units. Standards Australia
4.STM C 170 (1990). Standard Test Methods for Compressive Strength of Dimension Stone. ASTM, Philadelphia, USA
Awoyera, P. O. and Akinwumi, I. I. (2014). Compressive Strength Development of Cement, Lime and Termite-hill Stabilized Laterite Bricks. International Journal of Engineering and Science (IJES), Covenant University. Volume 3, Issue 2.
ES 1377 (1990). Methods of Testing Soils for Civil Engineering Purposes. British Standard Institute, London. Cirva Ram. (1999). A technical handbook/manual for the CINVARAM Brick Machine Design-Expert, (2000).
S.r-Ease Corporation, www.stat-ease.com

FHWA. (1999). Concrete Mixture Optimization Using Statistical Methods. Available at http://www.fhwa.dot. pov oublications. [December 10, 2014]
Entigasu, M. D. (1976). Laterite Soil Engineering. Elsevier Scientific Publishing Company
Esettala, A., Abibsi, A. and Houari, H. (2006). Durability Study of Stabilised Earth Concrete under Both Laboratory and Climatic Conditions of Exposure. Construction and Building Materials, Volume 20, pp. 119-127
Hy draform (2014). Available at www.hydraform.com [July 10, 2014]
IS 3620 (1979). Laterite stone block for masonry. Bureau of Indian Standards. New Delhi
Madu, R. M. (1984). The Influence of Soil Chemical Composition on Cement Treated Laterites. Proceedings of the Eight Regional Conference for Africa on Soil Mechanics and Foundation Engineering, Harare.
Mama, B. O. and Osadebe, N. N. (2011). Mathematical Model for the Optimization of Compressive Strength of Laterized Sandcrete Blocks. Nigerian Journal of Technology Vol. 30, No. 2, June 2011.
Montgomery, D. C., (2001). Design and Analysis of Experiments. $5^{\text {th }}$ Edition, John Wiley \& Sons, New York, pp. 427-473.
SBRR (2014). Available at www.nbrri.gov.ng [July 10, 2014]
\I (2004). The Specified Minimum Strength for Sandcrete Blocks Tested at 28days. Standard Organization of s geria
Cisinubi, K. J. and Oyelakin, M. A. (2013). Optimizing Soil-Cement-Ash Stabilization Mix for Maximum Compressive Strength: Case Study of the Tropical Clay Sub-Base Material Stabilized with Cement-Locust Bean Tirse Ash. West African Built Environment Research (WABER) Conference Proceedings. Volume 2, pp. 1207 1218.

Dsunade, J. A. and Fajobi, A. B. (2000). Some Engineering Properties of Laterite/Cement Masonry Blocks Made with Hand-Operated Moulding Machine: Granite Fines and Admixtures as Factors. Journal of Agricultural Engineering and Technology, Volume 8, pp 44-50
SANS 1215 (2008). Concrete Masonry Units". South African National Standards
Simon, M., Snyder, K. and Frohnsdorff, G. (1999). Advances in Concrete Mixture Optimization. Advances in Concrete Durability and Repair Technology Conference, University of Dundee, Scotland, UK. Thomas Telford Publishing, pp 21-32.
Singh, A. (2006). Soil Engineering in Theory and Practice. Volume 1, Fourth Edition. CBS Publishers and Distributors. Pages 725-759.

APPENDIX

Appendix A.1: An augmented $[3,2]$ Simplex lattice points
Appendix A.2:
Never marrin : Optimum Moisture Content using an augmented [3, 2] Simplex lattice

5/no.	Coordinate Points		Pseudo component ratios $x_{1}=w a t e r, x_{2}=$ cement, $x_{3}=1$ aterite			Actual components ratios			Actual component mixes, m^{3}					
			x_{1}	x_{2}	x_{3}	x_{1}	x_{2}	${ }^{3}$						
			X1	X 2	$\times 3$	water	Cement	Laterite	water	cement	laterite			
(1)	(2)					(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
1		A1	1	0	0	1.83	1.00	12.50	0.266	0.046	0.688			
2	PURE	A2	0	1	0	1.09	1.00	7.14	0.265	0.077	0.658			
3		A3	0	0	1	0.78	1.00	5.00	0.261	0.106	0.633			
4	BINARY	A12	1/2	1/2	0	1.46	1.00	9.82	0.266	0.058	0.677			
5		A13	1/2	0	1/2	1.31	1.00	8.75	0.265	0.064	0.670			
6		A23	0	$1 / 2$	1/2	0.94	1.00	6.07	0.264	0.089	0.647			
7	CONTROL	C1	1/6	2/3	1/6	1.16	1.00	7.68	0.265	0.072	0.663			
8		C2	2/9	1/6	1/6	1.53	1.00	10.36	0.266	0.055	0.679			
9		C3	1/6	1/6	2/3	1.01	1.00	6.61	0.264	0.083	0.653			
10	CENTRE	0	1/8	1/3	1/3	1.24	1.00	8.21	0.265	0.068	0.667			

The highlighted are the upper and the lower limits on the domains of constituent proportions by weight and volume
The quantities in columns 9, 10, 11 are the respective unit weights per m^{3} of the mixture proportions for water, cement and Lurites respectively
-41, A2, A3 represent pure blends, A12, A13, A23 represent binary blends, C1, C2, C3 represent control points and O represents $-\mathrm{o}=$ point fitted in the factor space

Appendix A.3: Laterite-cement Mix Design form

