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Abstract ' —_—

In this paper, we developed and analysed the diseas‘e-freci eqyzltbrzum State
mathematical model Jor the dynamics of yellow fever infection in a population With Vitg]
dynamics, incorporating vaccination as control measure. We obtained the effective basi;

reproduction number, R. which can be used to control the transmission of the diseqge and

hence, established the conditions for local and global stability of the disease free equilibriyy,

hey

Keywords: Yellow fever, Disease-free equilibrium state, Effective basic reproduction NUmber
Stability.

1.0.  Introduction .
Yellow Fever, non contagious, infectious disease, caused by a virus, and characterized in severe
cases by high fever and jaundice. Originally yellow fever was believed to be exclusively a
disease of humans, but research has revealed that it also affects monkeys and other animals. It js
believed that diseased monkeys of Africa and tropical America are the primary source of
infection and that carrier mosquitoes transmit the infection to humans. This type of the disease,
which occurs only sporadically in human beings, is known as Jungle yellow fever. If infected
individuals move into a populated area, they may be bitten by a semidomestic species of
mosquito, such as Aédes aegypti, which lives close to human habitations. These feed on the
blood of humans and are the chief transmitting agents in epidemics of urban yellow fever. The
World Health Organization (WHO) estimates that there are 200,000 cases of yellow fever
worldwide each year, causing about 30,000 deaths annually.

In order to find an efficient way to control an infection, it is of great importance (0
establish its transmission dynamics. One main goal of mathematical epidemiology is 1

to the best of our knowledge no work has been published on the disease. In this work X
therefore complement and extend the work of Akinwande (1995) and Akinwande (1996) ¥

. . o, T o i
incorporating vital dynamics, Immunization, standard incidence, and disease induced death d
to yellow fever infection. ’

178



] £ Development Journal of Science and chhnology Research, Vol. 2, No. 1, 2013
papdn RS Vol 2,
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MO, fpe. human population into 4 compartments and the vector population into 2
i (s 35 Jescribed below:
) enis

S seeptible humans at time
U

Il \/accif‘a‘Cd humans at time ¢

I pofecte _
yered humans at time

4 humans at time !

RecO
qusceptible vectors at ime ¢

Infected vectors at time ¢
\}(')
il o
| (’) Total number of vector population at time ¢
fi

Total number of human population at time ¢

¢ model has the following parameters.

h
ol per capital birth rate of humans
b
; Per capital birth rate of the vectors
; Per capital natural death rate of humans
[: Per capital natural death rate of humans
jzﬂ’- Number of vector per human host
Ny
) Yellow fever-induced death rate
b, Effective contact rate for humans

Vaccine efficacy
Immunization coverage rate forS and therefore p = éc is the effective
immunization rate for S
Loss (waning) of vaccine immunity
s Rate of moving from S, to S,

B Effective contact rate for vectors
¢
(

« Rate of moving from acutely infected classes to chronically infected / removed
classes

': Rate of recovery from I toR
*~ Model equations

he . ‘ .
Model equation equations are given below

ds .1
70Ny S a —(p+py)S M
NI'I
di ‘#S ~(v+mp, +6)1 @
H
v

& S PS (w4, v o)
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where,
NH(t)=S(t)+I(t)+V (t)+R() O
and :
N, @®)=S, @©)+I, ) ®)
So that
dN
dtH =(by — My )Ny = ©)
and
dN,
d =(bv —H )NV (10)

r the normalised quantities. Since, it is better apq .,
(convenient) to analyze our model in terms of proportions of quantities instead of zss ler
populations as described in Busenberg et al. (1990), Akinwande (1996), Li et 4] (193193]
Hethcote (2000), Tumwiine et al. (2007), Capasso (2008) and Benyah (2008). This can be g, )
by scaling the population of each class by the total populations N . We let .

Consider equations (1 — 6) fo

S I 14 R .S, ._L
§=——i=—y =—— =55 =i, =——
NH NH NH NH NV NV

denote the fractions of the classes s, IV,R,S, and], in the human and vector population

respectively. This is done by differentiating the fractions (using quotient rule) with respectt
time, £.
then simplifying, we have from (1-10)

%: g =By Ji,s +@ —(p+by )s +Jsi (11)
di . L o2

;1?=,BH]1VS —(7+my +8)i +0i (12)
dv

— ~(w+by v +ovi (13)
dr . )

Et_zyl ~b, r+0n (14
ds, )

— =b Bis, bys, (19)
di, , ,

” =R is, =b,i, (16)

in the biological - feasible region:
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. =0Vl
Q0= s+1+v +r=l,sv+iv =1 } (17)
e shown 10 be posmvclly' lnvgnanl with respect to the system (11)—(16). We note that
1S Ct]| yman and vector popu ation size N, andN,, does not appear in (11)~(16); this is as a

e (ol ltof the homogeneity of the equations in (1)~(6).
©

odel Analysis L
W getermine the existence of equilibria PoInts; computing the effective basic reproduction
e nOr i establishing the conditions for stability of the equilibria points.
befs :
et
Existence of disease free equilibrium state, E ¥

3, . disease free equi'librium stgte we have absence of infection. Thus, all the infected classes
u { o 1610 and the entire population will comprise of susceptible. '
yill silibrium state the rate of change of each variable is equal to zero. i.e.
Aed gs di _dv _dr _ ds, di, _
I d At dt dt dt
575 i,)= (s S AI S ) at equilibrium state. Thus, substituting into (11)~(16)

i = r*=i," =0, we obtained the disease - free equilibrium state given by:

i & ww w+b
(s7i"w ors, i, )=( - ,0,1,0) (18)

W+b, +p’ @+b, +p

1, Effective basic reproduction number, R,

consideration of stability of a disease-free equilibrium gives certain conditions under which
gisease will die out or stay in the population called the Basic reproduction number, R, . Using the
neit generation operator technique described by Diekmann and Heesterbeek (2000) and
sibsequently analyzed by Van den Driessche and Watmough (2002), we obtained the effective
basic eproduction number, R of the equations (11)-(16) which is the spectral radius (p) of the
nextgneration matrix, K

i€,

R.=pK , where K = FV™

Now,

ol O B i V:(}/+,u,,+5) 0
Bs 0 0 b

R .= M ‘=1 . 19
¢ \}bv(7+,uH+§) =D -

3, e ibri

3 Local stability of disease free equilibrium, E )

’e Used the Jacobjan stability approach to prove the stability of the disease free equilibrium
%€ Using the relation

Fel-s—i—y 0

Thug

)

anq
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allows us as explained in Hethcote (2000), Benyah (2008) to attack (1), )
(16)

subsystem:
i b, =By Ji,s + ¥ ~(p+by )s +Jsi Stud“n
EI‘— H.] v H gl‘li
di o )
_(;_zﬂﬂjivs —(r+uy +0)i +0i
s | R
D = ps—(w+by v +0vi
gt ' (%)
b= i (1-4,)-byi
dr (25)

Linearization of the equations (22)-(25) at E, gives the Jacobian matrix

_(p+bH) 0 7)) _ﬂﬂjs.
0 ~(y+u, +6 0 s
J (Ef )___ (7 Hy ) By Js
p 0 ~(w+by) O
0 A, 0 b, o)
Using elementary row-transformation, we have
—(p+bH) 0 @ _ﬂﬂjs-
0 ~(7+my +9) 0 By is’
g pw -pBy js’
J(E; )= 0 0 —(w+b, )+ H
(5,) @bl
0 0 0 b, + :q/ﬂuls (27)
(7+Hy +5)

Thus, the eigenvalues are
b, (0+p+by,)
——(p+b, ) <0, A =—(7+ty +8)<0, Ay=—— 22<0
A==(p+by,)<0, & ==(r+p +6)<0. 4 ibn)

and :
b, (7+ My +5)+@,3H,J'S'
(v+my +9)

A=

now, for 4, to be negative, \ve must have
=b, (¥ + iy +5)+A’ﬂﬁjs.

<0
(7+u, +9)

Simplifying, gives

A/ﬂHjs.
bV (y+iuH +5)
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&< | A is negative, implying all the eigenvalues have negative real parts, w
o l'l (:Zl the following result.
1sh
a0l ‘ i
¢ o 8 The disease- free equilibrium E s of the mode] is locally asymptotically stable
e

eor
Th lfR( < l.

(LAS)

Globa stability of disease free equilibrium, E,

14 " miological implication o.f the t.he':(?rem is that yellow fever can be eliminated (control)

e er;:e opulation when R <1, if the initial size of the sub-populations of the model are in the
"’wt f attraction of the DFE' .

fasin 0 0 ensure that the disease is independent of the initial size of the sub-populations of the

In O erl)_( 6), it is necessary to show that the DFE is globally- asymptotically stable (GAS). One
odel ( approach in studying the global asymptotic stability of the DFE is to construct an
commogate Lyapunov function (Li et al., 1999, Fall et al., 2007, Huo et al., 2010, Garba and

Oef; 2010). However, we applied the result introduced by Castillo-Chavez et al. (2002).

theorem 2: The disease- free equilibrium E of (1)-(6) is globally asymptotically stable (GAS)
i Q ifR c <l.

proof: TO establish the global stability of the disease free equilibrium, the two conditions (H1)
and (H2) a8 in Castillo-Chavez et al. (2002) must be satisfied for R, <1. We rewiiie the model

(3.11)in the form:
iy X _G(X,X,):G(X,,0)=
%oopx,x), B2GX)OM0=0 9
where X 1=(s*,v‘) and X2=(.i‘,i *),with the components of X, € ®* denoting the uninfected

population and the components of X, € R* denoting the infected population.

The disease-free equilibrium is now denoted as

. : w+b _
E =(X,0), X, = o
W+by, +p W+b, +p

Now, for the first condition, that is globally asymptotically stability of X l', we have

d.

i:b,, =By ji,s + @ =(p+by )s +si (1
di ’ h o RS

E:ﬂli.]lvs_(}/+ﬂH+5)l+§lz (12)
dv

s ~(@+by, )v +vi (13)
dr

a ! —b,r+or l4)
ds,

E:bv _A/isv _—bV s\' (15)

di ;
o " Bis, =byi, By jiys —(y+py +0)i +6i°
(16)
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&:F(X],()): bll+(.w._(:0+bu')s‘ ‘1'2“’1
dt yoX; ~((z)+l),, )v
a linear differential equations.
Solving, we have
oy bty bty L, |
s (t)= - e " rs (0)e Ptby )
= 0v6,) (ovs,) ©)
* = pS‘ _ pS‘ ~(w+b, ) * ~(w+by, )
) (t)= + "
v ) (w+b,) (a)+b,,)e v (0)e
Now, clearly we haves” (t)+v"(r) > 1as s — co, regardless of the vajy, of 5*
§
a)+bH 0 (0) ﬂndvn

oy

Thus X f= < 5 is lob 11 .
| [a)+b,, +0 w+b, +le giobally asymptotically stable,

Next, for the second condition, that is G(XI,X2)= AX, - G(Xsz)
Az[—(ywﬁ +6) ﬂyjs'}

, We haye
Bs,’ by
This is clearly an M-matrix (the off-diagonal elements of A are non-negative
By ji,s (v +y +6)i +6i?

G(X.X,)= Byis, =byi,

),

then,

i’
G(X,X,)=AX,-G(X,X,)=| 0

1e.
G(x,.X,)=[8i*0]
Since all parameters are assumed non-negative, we have
5i*20
It is thus obvious that G(X 1»X,)>0. Hence, the proof is complete.

4.0. Conclusions

In this paper, we have presented a mathematical model which incorporated some impomfI
factors that play significant role in the transmission dynamics and control of yellow fever, Theé
factors are: vital dynamics, immunization, standard incidence, and disease induced deafh d;f:t‘
yellow fever infection. Our analysis reveals that the disease can be control if the effecl{ve ;{
reproduction number, R is less than one regardless of the initial population profile. This me*

. 5 : redut
that every effort must be put in place by all concerned to prevent the virus infection by
R strictly less than unity.
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