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Abstract 
In this paper we used tl C 
E d . E . ,e entre Mani"old th n enuc ·qu,librium (EE) Wi . 'J' eorem to analyzed the local stability of 
forces of infection and use i~ t e o~tamed the endemic equilibrium point in terms of 
the bifurcation analysis of th 

O 
an~yze !0 r the bifurcation of the model. We carried out 

bifurcation diagran, T1.e fie mo el Wtth four forces of infection which resulted into 
• 1 n orces o" · ,r. · secondary host transm • . 'J tnJectwn of vector-primary host and vector-1ss10ns were plotted . . t b . 'h bifurcation diagram rev l d h agams as,c reproduction number. T. e 

ea e t at the model exhibit forward bifurcation. 

Keywords: Stability, bifurcation, endemic equilibrium, yellow fever. 

I. Introduction 
In a dynamical system, bifurcation occurs when a small smooth change made to the parameter values (the bifurcation 
parameters) of a system causes a sudden qualitative or topological change in its behaviour. Bifurcations occur in both 
continuous systems and discrete systems [I]. A slight variation in parameter can caused a change in the differential system. 
The change in a parameter can also cause the stable equilibrium to change to unstable equilibrium [2]. 
Mathematical modelling of epidemics is aim at understanding the spread and control of an infectious disease within a host 
population [3 , 4). The basic reproduction number, R

0 
played a key role by providing the condition for the eradication or 

persistence of the epidemics [5 , 6, 7]. Indeed, assessing the direction of the transcritical bifurcation arising at Ro = 1 is a 
primary issue in epidemic modelling. For many compartmental epidemic models, if R0 is greater than unity, then the disease 

·11 d d 'bl · t wi·thin the host population· if R is less than the unity, then the infection cannot sustain itself w1 sprea an poss1 y pers1s , o • • • . 

[3 . ens the bifurcation at the criticality is said to _be a trans cnttcal forward ?•~rcat1on. However, in 
' 4, 8J. When th1 s happ ' lex This happens, in particular, when the model exh1b1ts the phenomenon of 

some cases the dynamics may ~e more comp. p. lies that a stable endemic equilibrium may also exist when R is less than 
backward bifurcation [8, 9). This occurrence nn . . . . . 0 

• . . th · henomenon has important pubhc health 11nphcattons because reducing 
unity. From the epidemiological pomt_ of view~ar~~iee disease elimination; the basic reproduction number must be reduced 
R0 bclow the unity is no longer sufficient tog . d t the elimination[IO) . 

. · d endemic states an ge . . . under a smaller threshold m order to avoi ptoms include fever, chills, loss of appetite, nausea, musc le pains 
Yellow fever is an acute viral disease . In 1110.st cas~s sym d by the yellow fever virus and is spread by the bite of the female . Th d1seaseiscause · [II] I .. , .. ·· ·1 · db particularly in the back, and headaches . e. d several species of mosqu1t~ . n cities 1t 1s ~nman y sp1 ea y 
mosq ·t 1 1 · ti t humans other prnnates an 'b leic acid (RNA) v1111s of the genus Flav,v,rns [ 12].B_ as1ca lly u1 o. t on y m ec s , . . is an Rt onuc . . . 
1110 · f h A d 1; species The vuus 

I 
squito Aedes aegypt1 however different mosqmtocs. for squitoes o t e e esaegyp · 

1 ti bite of t 1e mo . . ' . ti d y II . . V) · pread throug 1 ,e . . s a caJTier for this 1n fc ct1on . To con irm a suspectc case e ow Fever Virus (YF 1s s b . ,
1 

s·) can likewise se1ve a . '[I ) ] 
cxan I I · ·to (A edesal optc u. . (PCR) is requll'ed · b 1P e, t 1c ti ger mosqui Chain Reacuon b' f the yellow feve r mosquito Aedesal!g1p1i, but other 
lood sample testing with Polymei:as

1
e t ·ai,si,,itted through the ite 

O
. e as a vector for this virus. Like other Arbov iruscs Y Ji • V) · 1am y 1 . ·) al so sci v ' ' . . _ C ow fever virus (YF IS l1 . . (A ,dewlboptCl/15 can by a fe male mosquito when II rnges ts the blood of an n10. • · . nosqu1to e · · s 1s taken up ' . • 1 • 1 1 squJtoes such as the t1ge1 1 

1 yellow feve1_· v1n1 qtiit o ·rnd if the virus conccnt ra t1 011 1s i11 g 1 ~noug 1, 
WI · · toes t 1c I of the mos , ' 11 ch are transmitted vi a mosqui . ' . h the stoniac 1 
. r . . Viruses ieac 4] 1n1cc1ed human or other prunate. . licate there [ I · 
th · 1· I ell s and 1cp c virus can infect epi tbe ia c " d Tel· +..,348068037304 - . bu@fut1ninna .c u.ng, · ~ 
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Trans. Of NAMp 
In per . . . . . ~ t'on until illness) is 3- 6 days. The initial sym l 
includsons who develop symptoms, the incubation period (time fiom '.n cc\ bod aches, nausea, and vomiting, fati ~ orns k c sudden onset of fever , chill s, severe headache, back pa111, genera y to develop a more severe fo gu , and ;ca ncss. After a brief remi ssion of hours to a day, roug~ly I~% of cas~s prog~ess ntually shock and failure o;m of_the isease. The severe fom, is characterized by high fever , pund1ce, bleedmg, an eve multiple organs [ I 5] . Surviving the infection provides lifelong immunity [ 161• . t' s of two principal . In [ 17] the model of yellow fever epidemics was fonnulated which involves the mterac _1~~ d . t th communities; hosts (humans) and Vectors (aedewegypti mosquitoes). The host community was d1v1 __ e idn ? ree compartments of 
Su ·bl · ·ty was part1t1one mto two compartment 

sceptt e S(1) , Infected /(1) and Recovered R(t) while the vector communi . . s of 
S ·bt 

· h · He analyzed the local stability of the d 
uscepti e N(t) and Infective or virus carriers M(t) where / 2: 0 is t e tune. mo el 1cobian matrix and implicit function 

h · they formulated a model and incorp~rated the biology of the urban vector of yellow fever, t ~ m~srito Aedesaegyp1i, .es of the disease in the host (humans). From the epidemiological point of ~iew, the 111?squito ~I ows a Susceptible, j , Infective (SE)) sequence. In their, model the adult populations are subdivided accordmg to their status with respect irus. They assumed that there is no vertical transmission of the virus and eggs, larvae, pup~e and non parous _adults are susceptible. The humans are subdivided in sub-populations according to their status wi th respect to the illness as: ible (S), exposed (E), infective (I), in remission (r), toxic (T) and recovered(~)- . . :hey formulated a mathematical model of yellow fever dynamics incorporatmg secondary ho~t and two ~qu1hbrium :xist ; Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE) . In [20] they obtamed_ ~~e Disease Free rium (DFE) points, computed the basic reproduction number and analyzed the local and global stab1ht1es. paper, we obtained the Endemic Equilibrium (EE) point in terms of forces of infection and analyze the local stability entre manifold theorem as used in[21 , 22] . We carried out the bifurcation analysis of the model with four forces of -.,-----_:•n which resulted into bifurcation diagram where forces of infection of vector to primary host transmission{: and vector to secondary host transmission,(,, were plotted against the basic reproduction number of vector to prinary host transmission R,.,, and basic reproduction number vector to secondary host transmission R.,., , respectively. 
2. Materials and Methods 
Model Formulation 
The schematic diagram of the model is shown in figure 2. I. The dash line from infected human class, /. , to the non-carrier vector, V

1
, shows that the infected human individuals infect the non-carrier vector population while the dash line from carrier vector, V

2
, to the susceptible human population, Si,, shows the transfer of the virus from infected mosquito to susceptible human. So also, the dash line from infected monkey class, I,,,, to the non-carrier vector, v

1 
, shows that the infected monkey infect the non-carrier vector population while the dash line from carrier vector, V

2
, to the susceptible monkey population, Sm, shows the transfer of the virus from carrier vector to susceptible monkey. 

V 
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~~ 
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Figure 2.1: Schematic Diagram of the Model 
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Pt ions of the Model 
•ss11J11 d I r . . . 
" c dciails of 1hc 1110 ~ ,ormulat1on 1s given in [ 19] and [20]. 

fh , flowing assumptions were made: 
fhe,o 'bl . d. d. · 
. The suscept1 c vaccinate 111 1v1duals move to recovered/immune class; 

(1) The recovery rate, Y1, of humans include the treatment and natural healing of the infected individuals; . . 

(ii) .· -d d . d . . . . . . th disease for life, 

(iii) The vaccinate an rccove,e susceptible and infected 111d1v1duals become permanently unmune to e 

The natural death rate of vectors f./, , include the death due to absence of blood meal; 
(iv) 

(v) The infected secondary host died with the infection since they do not have access to vaccination and treatment; 

') f ' r . f as V . . a2VJh s no effect on the 

(vi The forces o 111,ect1on o vector-human transmission .....L....!!...and human-vector transm1ss1on N a 
N,, h 

a2VJ., and 

forces of infection of vector-secondary host transmission a,s,,v, and secondary host -vector transmission N., 

• 
N., · · f he virus. 

vice visa because the contact between the humans and secondary host cannot cause the transm1ss1on o t 

JS a,S,,V, ( )s 
_!!..=A ,, -N- l' +P1i I, 

di I, 

Jlh_a,s,.v2_(r +p +o)I 
-;;;--,;:- h h I, h 

dR,, = vS" + y,,f" - µ"R" 
dt 

JV, -!I _ a1v,11, _ a,V,I,,, -(p +o )v 
di - ,. N,, N,,, ,. ,. I 

dV2 = a2V,I" + ay,J,,, -(1-,,. +c5Jv
2 

dt N" N,,, 

JS,,, = t\ - a,S,,.V2 - ,, S 

dt "' N '"' 

di,,, = a,S,,,V1 -(p + b' )! 
dt N,,, "' "' "' 

Where, 

N,, = S1, + 1 I, + R,, 

N,, = V, + V1 

N"' =S,,, +l,,, 

Table 2.1: Notation and definition of variables and parameter 

Symbol Description 

s,, {1) Number of susceptible humans at time 1 

!,, (,) Number of infectious humans at time 1 

R,,(,) Number of recovered/Immune human at time 1 

v,(,) Number of non-carrier vectors at time 1 

v~(,) Number of carrier vectors at time 1 

S,,, (t) Number of susceptible secondary host at time 1 

I (1) Number of infectious secondary host at time 1 
Ill 

N,, Total human population at time 1 

N,. Total vector population at time 1 

N,,, Total seconda,y vector population at time 1 

a, Effective virns Transmission rate from mosquito to humans 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2 .5) 

(2.6) 

(2 .7) 

(2 .8) 

(2.9) 

(2 .10) 
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8 ,, 

Y,, 
V 

S tabilit y and o·r . 
• 1 urcnt1on Analys is . . . S0 111111(1 , A l1i11111(111de , ./iyu, Al,d11/rul1111u11 u11d Og1111111111 

Effec ti ve virus Transmi ssion rat e from humans to mosq uito 
Effec ti ve virus Trans mi ss ion ra te from secondary host to mosq uito 
Effecti ve virus Transmi ss ion ra te from mosquito to secondary host 
Recruitment number of human popu lati on 
Recruitment number of mosquito popul ati on 
Recrui tment number of secondary vector popul ation 
Di sease -induced dea th ra te of humans 
Death rate of mosquito due to applicati on of insec ti cide 
Di sease-induced death rate of secondary host 
Natura l death rate of human population 
Natural death rate of mosquito population 
Natural death rate of secondary host population 
Recovery rate of human population due to drug administration 
vaccination rate for the human population 

Disease Free Equilibrium (DFE) Points 
The DFE is given as 

E " = (s" / 0 
R" V" V" s" I")-(/\.· O A.v !:_::._ O ~ o) #,, #, • #, • I • 2 • '"• '" - A.• , µ ,., Al • A) t , J..lm • 

(2 .11) 

Basic Reproduction Number, R
0 

Trans. Of NA Mp 

The basic reproduction number is the average number of secondary infections caused by a single infectious indivicmal during his/her entire infectious life time. Applying next generation matrix operator to compute the Basic Reproduction Number of the model [7 23 , 24] . The basic reproduction number is obtained by dividing the whole population into n compartments in which there are m < 11 infected compartments. Let x,,; = 1, 2, 3, . .. , m be the numbers of infected individuals in the ;•• infected compartment at time t . 
The largest eigenvalue or spectral radius of Fv- 1 is the basic reproduction number of the model. 
FV , = [8F~(E 0 )][8JJ; (£ 0 

)] 

1 

ox, ox, (2 .12) 
Where F, is the rate of appearance of new infection in compartment i , V, is the transfer of infections from one compartment i to another and £"is the disease-Free Equilibrium. 

0 
a.µ,. 

0 
A, (2 .13) 

a 2 A"µ" 0 
a 1 Ar,µ ,.. 

F= A, A, 

0 a, 0 

Where 
I\ /\ , 

A, = - and A,, =-
A ,, I\ ~ 

Ai 

0 
V= 

0 

0 0 

(2 .14) A, 0 

0 A, 
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nd Bifurcation Analysis . . . 
•1't" a su1b• I ., 

,,.t ~ 

J_ 0 
,1, 

I 0 
0 A. 

. 
1 

ing (2.13) by (2.15) gives 

111ulUP y a,p,, o 
0 --A, A., 

~ 0 
a ., A,_µm 

fJ/ I ,: 
A1A3 

AiA, 

0 
s. 0 
A, 

The characteristic equation of (2.16) is given by 

{ 

, [a3a, A,Pm + ala!A5µh 1 ]]= 0 
A· - _:...-.,- A A 1 

A
1
·A, A, 1 1 

Therefore, 

Hence, 
;., is the spectral radius of p(Fv-1

) 

Sm11ma Aki , d • 
• t11ta11 e, ltya, Ahdulra/1111011 and Ogwumu 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

a,a1A~µ/ + a 3a , A,,µ "' (2.19) 
R = , , 

0 A,A1A,· A_,-A4 

Trans. Of/VAMP 

There are two host populations and one vector in the model, and it was shown from the schematic di :igr:im in fig ure 1. I th:n 

the vector transmits the infection to human host and secondary host (monkey). Hence, the Basic Reproduction Number can 

be represented as, 

R, = JR,1, + R,.. or R0 
1 = R,;, + R,., 

(2 .20) 

Such that 
.. 2 

R a1a2Asµ,, (2.21) 
11, - 2 

A1A2A3 

which is the basic reproduction number of vector-primary host compartments and represents the infection from vect0r to 

human and human to vector in the absence of secondary host (monkeys). 

and 

R., = ap,A,,µ., 
(2.22) 

A31A, 

Which is the basic reproduction number of vector-secondary host compartments and represents the inl~ction ~,-0 111 , ·eL·tor to 

monkey and monkey to vector in the absence of primary host(humans). 

~ndcmic Equilibrium Point (EEP) in Terms of Forces of_lnfec_tion . 

~~ Endemic Equilibrium Point (EEP) in terms of forces ofmfect1onare computed for the b1furc:Jtion :in:i lysis. 

£" =(S,, J R •• •• •• •• •• •• ·· ) 
beth '" ~-V, . v,, s., . 1..)= (s,, , 1,, , R,,, V, , v, , S,. , , .. 

e Enctcm1c Equilibrium points 
A.-s"r 

Ii ~.,/ -A1s,:· = o 

(2 .23) 

(2 .24) 
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r 

11., ,(,_> '~ 

,', / A 1 • 

Whe-~c. · • 
(1 

A,, J1.~, 

A]A, I ; ,:;, ) 

11 1, (A I V I y},:;, 
A;/1 1, A, I{;, 

/I . z, J.. ;,', I{:, 
/I • (J.. ;,', I {,:,J 

A,(A, I},;:, I,(, ) 
I\ 

/I ,,, I /,.::,, 

/1 ,,,{:, 
A.lp,,, I ,(,, ) 

·r he l (l ltJ I r11rul111ion of human tJ I endemic: equi librium in terrr;.!'. r.,f :'r,,ce,; r,:rr::~t:c:: :.:: :;:-,3:: ~ 
S,:• I /,:• I/( 

/1
1
, . A,,{;, 

1 
/\ 1,(A2 v •I y;._;;, 

·A, 1 {;, 
1 

A 1 {A, I {;J. Az/11, A, + ).:;, ! 
A ,,(A,A, 1 A,{;J 

A , 111,(A, ➔ {;,) 
Where A , (p,, 1 r) 

~~, :;:~,;op,l::i:~;n "I ,cconclacy host at endemic equil ibrium in t= ~~.~~ ,fr'-=ou ~ ~ •C-C.; 

,,_ I ,C ' A.k ',(, )I 
t< /1,,(A, I,,(:~, ) 

A,(,,_' J.,J 
Substitutint (2.32 ) tJ 11d (2.33) into first eq uati on of (2 ,3 I J gi ve:,. 

., 11,A,A,11,,(A, I ~,j1.;,', I 1.:,:) (2 35) 
A, ,, A,(A , I,,(_ I ,(, ),A,A, I A,J..:;l 

a/,;.;,/1,, 
A,A

1 
i A,{;, 

a ,,( ,, 
~ I::,, 

(2 ] (,> 

( 2 n, 
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1,a: . 1; - ~ 

1
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' ""va11de J' 
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,C,"" A, Ai + ,l:·,+ {:, A, +,1_;:, 
I t ·· and 1.. I Nole t ,a , A.... /\,""' are l 1e force of . fi . 

I in ecttons f 
(2.38) 

Trans. 0/NAMP 

Spcctively. l was assumed that ti, . o secondary h re . . . , e infected ost to mos ·t d ans of transm1ss1on 1s through 
11 . secondary h qui oes an mosquitoes to secondary host n1c . 1osqu1to bit H ost cannot i fi h . . I un,an and human lo mosquitoes i.e 1•• •• e. ence, they a k n ect umans even 1f they have contact, since the 1 • , . /1, ::: ,1_ _ re ta en as • . . . "ore (2 3 5) becomes ""' "" - 0 · zero m the force of mfect1ons of mosquitoes to r11ere1• , . 

a ,A2 A1,u,,A;,', (A, +,(;_) 
).:;, " A.(A, + A;,'J A, A2 + A

1
,( ;, ) 

substituting (2 .36) into (2.39) gives 
(A,'A/ +a2 A.1 A, p , k / + (2A1A2A/ A, +a, A AA 

(2 .39) 

. 
- i iµ, -a1a,A,A µ 2k• 

+ (A 2 A 2 -2 - ' h •h (2.40) 1 2 Al -a1a, A A Aµ 2)-o G ,··
2 + G,,1_·: + G3 = 0 1/1.rli - i 

- I :!: .S Ii -

Where, (2.41) 
G, =A/ A,' + a 2 A3 A1µ, 1 
G, = 1A1A2A/ A1 +a2A1AA3µ, -a1a 2 A2A

5
µ/ 

Gi = A1
2 
A/ A3 

2
(1- R,,) 

(2.42) 

Note also that, x: and ,l"" are the force of · fi • ' h v In ecttons Of mo ' assumed that, the infected seconda h . squitoes to human and human to mosquitoes respectively. It was . ry ost cannot mfect hum . through mosquito bite. Hence they aretake . ans even tf they have contact, since the means of transmission is . , n as zero m the fi f . fi . . mosqmtoes to secondary host, i.e. x· = , .. _ orce o m ecttons of secondary ·host to mosqU1toes and ''" /\,,,., -0 -Therefore, (2.38) becomes 
,·· a3.{:,, 
"··· r x·) \A4 + ,.,,, 
Substituting (2 .37) into (2.43) gives 
(A/ +a3A3~::,

2 +(2A/ A, +a3A3A, -a3a,A,A,, µ_:;,, +(A/ A/-a
3
a,A,A,,µJ=o 

H1.{;,,
2 
+Hi{:,, + HJ= 0 

Where, 

H, =A,' + a3A3 l 
H2 = 2A/ A, +a,A.3 A, - a,a,A,A6 

H3 = A,' A/(1-R,J 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

The quadratic equation (2.41) and (2.45) can be analyze for the possibility of multiple equilibria whenever the associated reproduction number is greater than or less than unity. The coefficient G1 is always positive and G
3 

is positive if Rvh < 1 and 
negative if R > 1. Hence, this leads to the following remark: ,,,, . 

Remark 2.1 
The model equation (2.1) to (2 .7) has 

1. Precisely one unique endemic equilibrium if G3 < 0, R,.1, > l, 
ii . Precisely one unique endemic equilibrium if G2 < 0 and G3 = 0 or G/ -4G,G3 = O, 
iii . Precisely two endemic equilibria if G3 > 0, G2 < 0 and G/ -4G1Gi > 0, R,1, < 1and 
iv. No endemic equilibrium otherwise. 

Remark 2.2 
The model equation (2 .1) to (2 . 7) has . . . . 

i. Precisely one unique endemic eqmhbnum if H 3 < O' R,,,, > 1' , 
. . d ·c equilibrium if H , < oand H, = oor Hi- -4H1H 3 =0 , 11. Precisely one unique en emi - - , 

. · · · ·f o H <0 and H ,- -4H1H3 >0 , R..,,, < land iii . Precisely two endemic eqmhbna I H) > ' i -

iv . No endemic equilibrium otherwise . 

. • 
0
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Tran.~. Of NAl'.f p 

Local Stabilit 
From the rcst;itofbEndcmic Equilibrium . ·11 be proved by using Centre Manifold Thcor 
bifurcatio d ' a ove, the following theorem is stated which WI en, and n iagram d . 
Theorem 2 I· . . . . G <O ' G 11 - 4G, G, > oand R,1, > I, an is locally stab1 . · · The endemic equilibrium point £", exist 1f G.1 > 0 , 2 c 1f 
R,. > I and unstable if R . 
Usin 1 ,i, < 

1 
· . l'I d of backward or forward b1furcatio 

Ill d gl t ie _Center Manifold theory as used by l 21] to investigate the like 1100 n of the 0 c · Thi s 1s ac 1· I r II · Let ' comp 1s 1cd by renaming the factors as ,o ows 

s. =, Y, . I. =, I ' R - I 
• 2 ' " - .\ \ . I = v . I', = ,, S = 11 I = ,, Where · ' · ·• · · ,. "' · ,.. "' · 1 

Y1 + y, + y -1 
- 1 - ' Y. + Y5 = I , J'. + y

7 
= I B . 

Y using vector notation 

y =(v., Yi, Y_,. Y. , Yi , Y, , Y1Y ' 
the model (2 1 ) (2 . . 
dY · to .7) can be re-written m the form of 
di°: F(v) ' 

with 

F==(r. . J;_ , J;,J •. h , J;, , f 1Y 

as follows; 
di• 
~ = f, = A - a,y,y, 
dt ' • N. -A,y, 

dy"!. = f , = a,y ,y~ - A , 
dt · N• ,_1 , 
dy, 
-;; = ./; = vy, + Y,,Y, - l'•Y., 

dy~ = J: = a .:!Y.iY"!. + a _,Y.1Y1 -A ,, 
~ ' ~ N_ L, 

dv,. av v.; 
--'--=/, =A -~-,, " dt t, "' N,, r m. ti 

dJ•1 = f = a .Y.Ys - A y 
dt 1 N,. • i 

The Jacobian matrix of the model at DFE is given as 
-A, 0 0 0 - a,81 

-A, 0 0 181 

r, -µ, 0 

)(£.) = 0 -a1B: 0 - A, (I -a,B, 
0 a 1B1 0 -A, a,B, 
0 0 0 - a, B, - µ_ 

0 0 0 0 a, B, - A .. 

(2.4 7) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2 .52) 

(2 .53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2 .58) 

(2.59) 

The following theorem will be used to detern1ine whether the model system (2 .1) - (2 .7) exhibit a backward or forward 
bifurcation at R0 = I 

/ 

-'• L .!on:!.!:....'--........;.":..:.'".:... .. c...• •~r,_. -----:--; 

fl u i:i 

i .... 
JO•· 

Nhbl.
U t-'l ; 

figu re 2.2: Bifurca1: n Diagram for Mosquiiors 10 l·lumun lnfcclion f igur~ 2.3 : Bililrca1ion Diagram for Mosquilocs 10 Secondary I-J osi lnfec1ion 
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ft,corcm 2.2:(22], consider the followin 
g general system of . . 

!!!.. = j (1•. ¢). f '.ll " X'.11 ➔ '.l!"and J e c1 (•w· 1 ) h . ord rnary differential equations with a parameter ¢ such that 

d 
. x .11 w ere O IS an Tb . . 

1 , 
equ, 1 num point of the system (i .e. J(O, ¢)= O) for all ¢ and 

M =t..,f (o, o)=[ ~r, (o, o)lis the linearizati . 

z . . ~,·, ) on matrix of the system around the equilibrium O with ¢ evaluated at 0. 

" · ero rs a s.1mple eigenvalues f 

iii . Matrix M has a right eigenve~t M a
nd all other eigenvalues of M have negative real parts. 

b I , 
ors r and left · 

Lei /;. e t 1e k" component of/ and eigenvectors I corresponding to zero eigenvalues. 

" ?/ r. 
0 = L I, 1;r 1 ~ ( 0, 0) 

(2 . 60) 

'-' • J•I 01,011 

b= f, 'i'i 
81

·1, (o. o) 
l.l. /• I 8y18a1 

(2.61) 

The local dynamics of the system around the e · • . . . 
· · 

d b > O then a backwa d b'fu . quilibnum pornt 1s determined by the signs of a and b particularly, ,fa> 0 

an , r I rcat1on occurs at ¢ = 0 . 

The local dynamics of (2.4 I) are totally governed b h • 

_ * . . Y t e signs of a and b . 

Suppose a, - a is the chosen bifurcation parameter and when Ro = I and solve for a, ti-om 

R = a,a1Asµh 1 + a)a4A1P,., 

" A1A1A_1
1 

A3

1 
A4 

(2.62) 

1 
= a1a 1A5µh 

1 
+ a)a4A1,µ., 

A1A1A/ A/ A4 

(2.63) 

Thus, the centre manifold theory can be used to analyze the dynamics of (2.1 )-(2. 7) at a, =a• . It can be shown that the 

Jacobian matrix (2.59) at a, =a* has a right eigenvector associated with the zero eigenvalues given by 

,. = (,i ' 'i ' lj ' r4 ' 1s ' 16 ' r., y ' 
Multiplying (2 .59) by (2.64) and equate to zero gives 

Right eigenvectors are: 

a,B, 
J", =--;:-I~ 
r - a,B, r 
1- Al s 

(A,a,yhB, - A1a1 vB,) 
r: ..:.....:.~"--'--~-rs 

J A,A1µh 

(A,a,a,B,81 + A1a.,a,B,B,) r. 

,;- . A1A.,A, l 

r: __ a,B, r 
6 - $ 

µ., 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

a,B, 
,, =A'i 

where:. > o and is called a free right eigenvector. 
. . 

. 

5 • • 2 59) has left eigenvector associated with the zero eigenvalues at a, - a• . Given by 

Furthennore the Jacobian matnx ( · 

' r 

(2.11) 

1=(t,, l1,l,.l,.l5 .l,.,I,), 1
. 

1 
in by(2.7l)andequatetozerogives 

Taking the transpose of (2.59) and mu tip Y g 

The left eigenvectors are: 
(2. 72) 

I, = I, = I, = I,, = 0 

I_ B1a1 I 
2 ---;;- ) 

(2 .73) 

(2 . 74) 

Ba 
11 =71

, 
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For which 1 . 
' > O is a free left eigenvector. 

The computation of a and b . 
From the I d 1 • . f Fat DFE are given by 
0, no e sySlem (2 .1) - (2 .7) the associated non-zero partial derivatives 0 

_£=_!!..J._ (2.75) ay,ay, N, 

a'.r, - a, 
0 ·, a. •, - N,, 

l ' 
__!:___£_ = - a~ cl~ /~ a ' 
(~•~{_"!l ·~ N,,. ~ = -N 
a' r ,, ., 

_.J.J_==a~ o·.r\ a, 
~,·., (~v1 N1i • 0 1., ~v

1 
= N 

o'f, a ., 
a;:a;; =-< 
a'1, a 

a;:a;,= N:, 
From (2 .60) andconsidering (2 .75) to (2 .80), it follows that, 

(2.76) 

(2 .77) 

(2.78) 

(2.79) 

(2.80) 

a=l,1;r, Na, +t,r, ,~ a , +l,r,r, a , +/,.,.!!..:_ {2 .81} 
I, N N ,,.N 

Substituting (2 .65), (2.66), (2.68), (2.69), (2.70), (2 .73) and (2.74) into (2 .81) gives 
(2 .82) a= -1,,._' [a, 'a,B,B, + a,a,' B,B, ]-/,: (A,a,a,B,B. + A,a,a,B,B, )[a,a,B, + a,a,B, ] 

. A1A:N1i A.J.1,..N. '~ A1AJA~ A!NA A~N .. 

From (2.82) 
a < 0 (2 .83) 
The value of b is also obtained from (2 .61) 
For the sign of b , the associated non-zero partial derivatives of F at DFE are 

o' f, _ y, A,, (2 .84) 
oa,0•, -- N,, =- A,N,, 

a'J; =1'.!.. ~ 
aal!v~ N,, A.JV,, 

Since " =~ 
• I A, 

Therefore, 
' ,•1, , a'J 

b;/1Lr, ~+11Lr, ~ 
1 .1 0 \ aa, J•I O)\ Oa 1 

b=-1,,;~+l.r, ~ 
A,N, . A,N,, 

But 1, = o 
Therefore, 

/ 
A,. b= ,,5-

- A,N,, 

Substituting (2 . 73) into (2.88) gives 

h = a,B,A, l,r, 
A,A,N,, ·. 

Since / > o and ,. > O then b > 0 
' ' · ·1 ·b · . I I t bl a<O Hence, the ende1111c equ1 1 num 1s oca s a e . 

(2.85) 

(2.86) 

(2.87) 

(2 .88) 

(2.89) 

Figure 2.2 and 2.3 clearly show the ex!stence of a unique stable equilibrium and the model undergoes the phenomenon of 
forward bifurcation . The diagrams exh1b1ts a globally stable disease-free equilibrium when R I R < 1 and an unstable 

1/, < ' \'fl/ 

stale if R,.,, > I, R,,,, > 1 while it is evident that a unique stat:~ endemic equilibrium emerges from the bifurcation point R,,, = 1, 
R = 1 and increases rapidly when R,.,, > I and R,.,,, > I· It is clear that the disease-free state exists for all R,.,, and R,.,,, while an 
e~demic equilibrium only exists for R,,, > I and R,.,,, >I. 
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J. Res ult and Di scuss ion 
In figure 2.2, the two equilibrium . . f 

mosquitoes to human R /\ t ~oin ts exchange stabilities depending on the value of basic reproduction nu.m~er 0 

' ., · ranscnt1cal/ forward b·c • . . . . . If the disease 
Tb . ( 1,urcat1on m the equil1bnum points occur at R • = J. , R,; < I 

free cqui I n um DFE) is stable But if • • ct· free 
. . . · R .• > I, the endemic equilibrium exists and it is stable while the isease 

equtl 1bnum 1s a saddle point. Thus ther . . _ . . . · t the 
~ of infec tion of • e is a forward bifurca tion because in the neighbourhood of the b1furcat10n pom ' 
,orcc mosquitoes to huma -·· · · . 

n, I. ,, is an increasing function of R . 
In fi gure 2.3 , the two equilibrium · . . . ·• . · b of 

t d 
poin ts exc hange stabiln1es depending on the value of basic reproduction num er 

rnosqu1toes o sccon ary hos t /\ . . . If the 
_ . . . ' R_ · transcnti ca l/ forward bifurcation in the equilibrium points occur at R_ = 1- ' R...., < 1 

disease free equil1bnum (DFE ) is stabl B . . . • , di free 
. . . . e. ut I f R,m > J, the endemic equilibrium ex ists and It 1s stable while toe seas.e 1 

equilib riu m 1s a saddle point Th h • • · · th 
f · i • f . · us t ere is a forv:ard bifurcation because in the neighbourhood of the bifurcation pomt, e 

force o m ect1on o mosqunoes to secondarv host -·· . . . fu . f 
· , , I. 1s an mcreasmg nct1on o R . 

4. Conclusion , m · • 

In thi s paper, the mathematical m d I f II f fi d ordinarv 
. . . 0 e O ye ow fever dynamics was developed using a system o irst or er · 1 

d1fferenual equation. The local stability analysis showed that, the Endemic Equilibrium (EE) is stable since a < 0, b > O-

B1furcat1on a~~lys1s showed that the model exhibited forward bifurcation which implies there is no co-existence of stable 
endemic equil1bnum at R I a d - . 1 ct· ted from the 

,. < n R_ < I , to this effect the disease can be put under cootro or era ica 
popul ation. 
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