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Abstract 

In this paper we modified the MSIR Model  by adding the vaccination rate and death rate due to 

the disease to the existing MSIR model. We verified the positivity of the solution and obtained 

the Disease Free Equilibrium (DFE) of the model. We also determined the basic reproduction 

number using next generation Matrix and Jacobian matrix methods. 
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1. Introduction 

MSIR  model is a mathematical model of infectious disease. For many infections, including 

measles, babies are not born into the susceptible compartment but are immune to the disease for 

the first few months of life due to protection from maternal antibodies (passed across the 

placenta and additionally through colostrum). This added detail can be shown by including an M 

class (for maternally derived immunity) at the beginning of the model. 

In 1927, W. O. Kermack and A. G. McKendrick proposed the RIS   model in which they 

considered a fixed population with only three compartments: susceptible, )(tS  ; infected, )(tI ; 

and removed,  )(tR . Later an additional compartment is added, M(t), .RISM   

In epidemiology, the next-generation matrix is a method used to derive the basic reproduction 

number, for a compartmental model of the spread of infectious diseases. This method is given by 

Diekmann et al. (1990)
[3]

 and was further analyzed by Driessche and Watmough (2002).
[8]

 To 

calculate the basic reproduction number by using a next-generation matrix, the whole population 

is divided into n  compartments in which there are nm   infected compartments. Let 

mixi ...,,3,2,1,   be the numbers of infected individuals in the thi  infected compartment at 

time t. 

mailto:Sam.abu@futminna.edu.ng
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http://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
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2 
 

The next-generation matrix (NGM) is the natural basis for the definition and calculation of 0R  

where finitely many different categories of individuals are recognized. According to Diekmann 

et al., (2000) and Murray (2002), the basic reproduction number denoted by 0R , is the expected 

number of secondary cases produced, in a completely susceptible population, by a typical 

infective individual. It is one of the most useful threshold parameters, which characterize 

mathematical problems concerning infectious diseases. If 10 R , this implies that, on average an 

infected individual produces less than one new infected individual during the infectious period 

and the infection can be wiped out. Conversely, if 10 R , then , each infected individual 

produces, on average, more than one new infection, and the disease is spread in the population. 

For a single infected compartment, 0R  is simply the product of the infection rate and the mean 

duration of the infection. The estimation of reproductive numbers is typically an indirect process 

because some of the parameters on which these numbers depend are difficult, if not impossible, 

to quantify directly. A commonly used indirect approach involves fitting a model to some 

epidemiological data, providing estimates of the required parameters.
[1] 

 

In this paper we verified the invariant region of the model, the positivity of solution of the 

model. We also calculated the disease free equilibrium DFE, and the basic reproduction number 

using next generation matrix and Jacobian matrix methods.  

2. Modified Model 

MM
dt

dM
        (1)  

SvSIM
dt

dS
)(        (2) 

ISI
dt

dI
)(         (3) 

vSRI
dt

dR
         (4) 
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Where, 

M = Maternally-derived-immunity 

S = Susceptible class 

I = Infected class 

R = Recovered class 

N = Total  Population; .RISMN    

 = Contact  rate 

= recruitment rate 

 = natural death rate 

 = death rate due to disease 

 = loss of temporal immunity period 

 = recovery rate 

v = vaccination rate 

Model Assumption 

We added vaccination rate and  death rate due to disease in the existing MSIR model.   The 

infants are born into  M class and after some time, the immunity period,   expires and the 

infants move to S  class. The  S , class is vaccinated at the rate v , and  R  class where they 

remain recovered for life i.e. no loss of immunity after recovery from infection or immunization.   

Invariant Region 

The total population size N   can be determined by  

RISMN   
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dt

dR

dt

dI

dt

dS

dt

dM

dt

dN
  

IN
dt

dN
           (5) 

Theorem 1:      ),,,( RISM    
+  be any solution of the system (1) to (4) with non-

negative initial conditions. 

The solution of the system (1) to (4) are feasible for all 0t  if they enter the invariant region 

. 

Proof: 

From equation (5) in absence of the disease 0   and (5) becomes 

N
dt

dN
           (6) 

 N
dt

dN
  

By theorem on differential inequality, Birkhoff and Rota (1982), we have 




 N0 , hence  

tkeN   , where k is a constant. 

Therefore, the feasible solutions set of the model (1) to (4) enters the region 

  { ),,,( RISM                 
   

 
}      (7) 

which is a positively invariant (i.e. solutions remain positive for all times, t) and the model is 

well posed and biologically meaningful. 

Positivity of Solutions 

Lemma 1 
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 Let the initial data be  {                        
   

 
}   . then the solution set 

{                   } of the system (1) to (4) is positive for all 0t . 

Proof 

From (1) 

MM

MMM

MMM

)(

)()(













 

)(  


M

M
         (8) 

Integrating (8) we have  

    00 )(   teMtM   since 0)(        (9) 

Using (2)  

SvSvSIMS )()(    

)( v
S

S



           (10) 

Integrating (10) we have 

    00 )(   tveStS  since 0)(  v       (11) 

Using (3)  

IISII )()(    

)(  


I

I
         (12) 

Integrating (12) we have 

    00 )(   teItI   since 0)(        (13) 
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Using (4) 

RvSRIR    




R

R
          (14) 

Integrating (14) we have 

    00  teRtR   since 0         (15) 

Therefore, all the solutions of equations of system (1) to (4) are positive for all 0t . 

3 Existence of Equilibrium Points 

At equilibrium 0
dt

dR

dt

dI

dt

dS

dt

dM
 

Let  **,*,*, RISME  be the equilibrium points of the model system 

0 MM           (16)  

0)(  SvSIM          (17) 

0)(  ISI          (18) 

0 vSRI           (19) 

Existence of Disease Free Equilibrium (DFE),  E0 

In the absence of the disease, this implies that   0* I , therefore the above system (16) to 

(19) reduces to  

0 MM           (20)  

0)(  SvM          (21) 

0 RvS           (22) 
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Let )(),(),(   cvba  

From (20) 

a
M


*           (23) 

From (21) 

 

ab
S


*           (24) 

From (22) 





ab

v
R


*           (25) 

Hence, the DFE is: 

  






 






ababa
RISMEE ,0,,**,*,*,0  

i.e. 

 
        






























 vv
RISMEE ,0,,**,*,*,0   (26) 

4. The Basic Reproduction Number 0R , using Next Generation Matrix. 

We therefore compute the basic reproduction number 0R , using the next generation operator 

approach by Driesshe and Watmough, (2002). This method is described as follows: 

Assume that there are n  compartments so that the first m  compartments correspond to infected 

individuals. Let  xFi  be the rate of appearance of new infections in compartment i .  xVi

   be 

the rate of transfer of individuals into compartment i  by all other means, other than the epidemic 
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and  xVi

  represents the rate of transfer of individuals out of compartment . The disease 

transmission model consists of the system of equations 

   xVxF
dt

dx
ii

i           (27) 

Where  

      xVxVxV iii

          (28) 

 

We then compute matrices F  and V  which are mm  matrices, where m  represents the 

infected classes, defined by 

  0x
x

F
F

j

i




 and  0x

x

V
V

j

i




        (29) 

 Where 0x  is the DFE 

Now, the matrix 1FV  is known as the next-generation matrix. The largest eigenvalue or spectral 

radius of 1FV  is the basic reproduction number of the model. 

 1

0

 FVR            (30) 

Where  A  is the largest eigenvalue or spectral radius of matrix A  

We will only consider the infected class of the model (3) 

 ISI
dt

dI
   

   SIFxFi  1          (31) 

    IVxVi   1         (32) 

 
  




















0x

I

F
F        (33) 

     



 0x

I

V
V         (34) 

http://en.wikipedia.org/wiki/Eigenvalue
http://en.wikipedia.org/wiki/Spectral_radius
http://en.wikipedia.org/wiki/Spectral_radius
http://en.wikipedia.org/wiki/Eigenvalue
http://en.wikipedia.org/wiki/Spectral_radius
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 11V          (35) 

   






1FV        (36) 

We now calculate the eigenvalue to determine the basic reproduction number, 0R , by taking the 

largest eigenvalue. Our work is easy since the matrix is  11 matrix. 

Therefore,  

 

   






0R        (37) 

 

5. The Basic Reproduction Number 0R , using Jacobian matrix. 

In this method we are going to use  our model equations (1) to (4). This is to verify whether the 

next generation matrix will give us the same result with Jacobian method. 

 
 



































v

cSI

SbI

a

J

0

00

0

000

       (38) 

At DFE 

































v

cd

db

a

J

0

000

0

000

       (39) 

Where  

ab
d


  

0 IJ   
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0

0

000

0

000





































v

cd

db

a

      (40) 

     0  cdba        (41) 

Equation (41) is the characteristics equation 

From (41) we have 

cdba  4321   and,,   

therefore,   

   
   

   









v

v
v 4321   and,,  

Hence, the Basic reproduction number is the largest eigenvalue (i.e. 4  ) 

At Disease Free 0I  i.e. 00 R  

    0  v  

     v       (42) 

 

   
1









v
       (43) 

 

   








v
R0       (44) 

We observe that (37) and (44) are the same. 

 

6. Results 
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The basic reproduction number, 0R  of next generation matrix and Jacobian matrix are the same, 

this is an indication that any of the two methods can be used to calculate the 0R . 10 R , implies 

that the disease will die out from the population with time while 10 R  implies that the disease 

will persist in the population with time if the necessary measures are not taken. From (37) or (44)  

10 R  if the numerator is less than the denominator and vice versa. 

7. Conclusion 

The feasible solutions set of the model (1) to (4) enters the region   which is positively 

invariant and the model is well posed and biologically meaningful. The equilibrium points exist 

for the Disease Free that was calculated, we also discovered that the basic reproduction number, 

0R  for the next generation matrix and that of Jacobian matrix are the same. 
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