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Abstract  

Measles is an airborne disease which spreads easily through the coughs and sneezes of those infected. Measles 

antibodies are transferred from mothers who have been vaccinated against measles or have been previously 

infected with measles to their newborn children. These antibodies are transferred in low amounts and usually 

last six months or less. In this paper a mathematical model of measles disease was formulated incorporating 

temporary passive immunity. There exist two equilibria in the model; Disease Free Equilibrium (DFE) and 

Endemic Equilibrium (EE).  The Disease Free Equilibrium (DFE) state was analyzed for local and global 

stability.  The Basic Reproduction Number 0R  was computed and used to carried out the sensitivity analysis 

with some parameters of the mode. The analysis shows that as contact rate   increases the 0R  increases and 

as the vaccination rate v  increases the 0R  decreases. Sensitive parameters with the 0R  were presented 

graphically. The disease will die out of the population if the attention is given to high level immunization.  

 

Keywords:  Basic Reproduction Number; equilibrium state; sensitivity; stability. 

1. Introduction  

Measles is an airborne disease which spreads easily through the coughs and sneezes of those infected. It may 

also be spread through contact with saliva or nasal secretions. Nine out of ten people who are not immune and 

share living space with an infected person will likely catch it. People are infectious to others from four days 

before to four days after the start of the rash. People usually do not get the disease more than once in a life 

time; indicating that once recovered from the disease, the person become permanently immune (Atkinson, 

2011).   

According to WHO, measles is one of the leading causes of death among young children even though a safe 

and cost-effective vaccine is available. In 2015, there were 134 200 measles deaths globally – about 367 deaths 

every day or 15 deaths every hour. Measles vaccination resulted in a 79% drop in measles deaths between 

2000 and 2015 worldwide. In 2015, about 85% of the world's children receive ’xone dose of measles vaccine 

by their first birthday through routine health services – up from 73% in 2000. During 2000-2015, measles 

vaccination prevented an estimated 20.3 million deaths making measles vaccine one of the best buys in public 

health. 

According to, Leuridan  et al. (2012), in developed countries, children are immunized against measles at 12 

months, generally as part of a three-part measles, mumps, and rubella (MMR ) vaccine. The vaccination is 

generally not given before this age because such infants respond inadequately to the vaccine due to an 
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immature immune system. Measles antibodies are transferred from mothers who have been vaccinated against 

measles or have been previously infected with measles to their newborn children. However, such antibodies 

are transferred in low amounts and usually last six months or less. Infants under one year of age whose maternal 

anti-measles antibodies have disappeared become susceptible to infection with the measles virus. A second 

dose of the vaccine is usually given to children between the ages of four and five, to increase rates of immunity. 

Sensitivity analysis tells us how important each parameter is to disease transmission. Such information is 

crucial not only for experimental design, but also to data assimilation and reduction of complex  nonlinear 

models, (Powell et al., 2005). Sensitivity analysis is commonly used to determine the robustness of model 

predictions to parameter values, since there are usually errors in data collection and presumed parameter 

values. It is used to discover parameters that have a high impact on 0R  and should be targeted for intervention 

strategies. 

In this paper, we formulated a mathematical model of disease incorporating temporary passive immunity. The 

existence of equilibrium point was verified and the local and global stability of Disease Free Equilibrium 

(DFE) were analyzed using basic reproduction number. We also carried out the sensitivity analysis of the basic 

reproduction number with some parameters of the model. 

2. Literature Review 

Abubakar et al, (2012), formulated a mathematical model for measles disease dynamics. They divided the 

total population into three compartments of: Susceptible S(t), Infected I(t) and Recovered R(t). In their model 

they did not consider vaccination rate, they did not compute basic reproduction number. 

Somma et al., (2015), modified the Maternally-Derived-Immunity Susceptible Infectious Recovered 

(MSIR) Model by adding the vaccination rate and death rate due to the disease to the existing MSIR 

model. They determined the basic reproduction number using next generation Matrix and Jacobian 

matrix methods. In their model they did not considered the immunity rate. 

Okyere-Siabouh   and Adetunde (2013), they formulated a mathematical model of Measles  with respect to 

Cape-Coast Metropolis. They consider Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological 

model. Their model assumes that individuals are equally likely to be infected by the infectious individuals in 

a case of an outbreak, except those who are immune. 

Fred et al. (2014), used a population with variable size to provide a framework. Their model relied on a 

compartmental model expressed by a set of ordinary differential equations (O.D.E) and partial differential 

equations (P.D.E) based on the dynamics of measles infections. The mathematical model equations, the 

mathematical analysis and the numerical simulations that followed served to reveal quantitatively as well as 

qualitatively the consequences of the mathematical modeling on measles vaccination. They performed the 

numerical and qualitative analyses of the model at different state variables. 

Derdei et al., (2014), formulated a MSIR model, they did not incorporate vaccination rate into their model. 

They did not analyze the stability of the model. 

Yano et al. (2016),   investigate the transmission dynamics of a Childhood disease outbreak in a 
community with direct inflow of susceptible and vaccinated new-born.  In their model they did not 
considered the maternally-derive- immunity and immunity rate. 
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3. Methodology  

3.1 Model Formulation 

The total population  tN  is divided into four compartment based on the epidemiological status of individuals: 

Maternally-Derive-Immunity  tM , Susceptible  tS , Infected  tI  and Recovered/Immuned  tR , 

  timet . In this model it is assume that the new babies are born into M   class and S at constant rate  . 

The proportion of the new born with immunity is   while the proportion of the new born without immunity 

is  1 . The new babies loss their immunity after some time at a rate  and move to susceptible class. The 

susceptible individuals become infected with measles at a contact rate  .  The susceptible class is vaccinated 

at a rate v  and thereby move to recovered/immuned class.  The treated infected individuals recover at a rate 

  and move to recovered/immuned class. The death rate due to disease   while the natural death rate of the 

entire population is  .  The schematic diagram and model equations for the measles transmission as discuss 

in this paper is presented below: 

 
Figure 3.1: Schematic Diagram of the Model 

 

 

 

 M
dt

dM
           (3.1) 

   SvM
N

SI

dt

dS



  1        (3.2) 

 I
N

SI

dt

dI



          (3.3) 

RvSI
dt

dR
           (3.4) 

Where  

RISMN           (3.5) 
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Table 3.1: Variables and Parameters of the Model 

Variables/Parameter Description 
N Total Population 

M  Maternally-Derived –Immunity 

S  Susceptible 

I  Infected 

R  Recovered/Immune 

  Recruitment rate 

  Immunity Rate 

  Contact Rate 

  Death Rate due to Disease 
  Recovery Rate 
  Natural Death Rate 
v  Vaccination Rate 
  Loss of Immunity Rate 

 

 

3.2 Existence of Equilibrium Points of the Model 

At equilibrium point  

0
dt

dR

dt

dI

dt

dS

dt

dM
         (3.6) 

Let  

   **** ,,,,,, RISMRISM          (3.7) 

be arbitrarily equilibrium point  

 

0*

1  MA           (3.8) 

  01 *

2

*

*

**

 SAM
N

IS



        (3.9) 

0*

3*

**

 IA
N

IS
          (3.10) 

0***  RvSI           (3.11) 

Where 

       321  and, AvAA        (3.12) 

From (3.10) we have 

0*

3*

*









 IA

N

S
         (3.13) 

0* I            (3.14) 

Or 

03*

*









 A

N

S
          (3.15) 

Equations (3.14) and (3.15) shows the existence of two equilibria; Disease Free Equilibrium (DEF) and 

Endemic Equilibrium (EE) respectively. 
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3.3 Disease Free Equilibrium (DEF) Point 

The Disease Free Equilibrium (DEF) is the absence of the disease in a population and equation (3.14) 

show the implies the disease. 

Let  

    00000 ,,,,,, ERISMRISM         (3.16) 

 

Disease Free Equilibrium (DEF) point. 

Substituting (3.14) into equations  (3.9) and (3.11) gives 
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           (3.17) 
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         (3.18) 
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R


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         (3.19) 

The Disease Free Equilibrium (DFE) point is given as  
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3.4 Basic Reproduction Number 0R  

Basic reproduction number 0R , is average number of secondary cases produced by a single  infection 

in a completely susceptible population. 

Applying next generation matrix operator to compute the Basic Reproduction Number of the model 

as used by Diekmann, et al., (1990),  and improved by ( Driessche,  et al., 2002).  
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x
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        (3.21) 

Where  

iF
 
are the new infections, while the iV  are transfers of infections from one compartment to 

another. 0E  is the disease-free equilibrium point. The basic reproduction number, 0R  is the 

largest eigenvalue or spectral radius of 1FV . 

http://en.wikipedia.org/wiki/Eigenvalue
http://en.wikipedia.org/wiki/Spectral_radius
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At DFE 
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3.5 Local Stability of Disease Free Equilibrium (DFE) 
0E  

Theorem 3.1: The Disease Free Equilibrium of the model system (3.1)-(3.4) is locally asymptotically 

stable if 10 R . 

 

Proof 

In order to prove the theorem above, we are going to use the Jacobian Matrix stability techniques. 

The all eigenvalues of the matrix are expected to be less than zero (i.e. 0i ).   
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  00  IEJ            
(3.28) 
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The characteristic equation of (3.29) is given as  

 

         01 321121   AAAAAA
   (3.30) 

11 A , 22 A ,  3         
(3.31) 

 

It is observed that, 0,, 321   

But, 04   if  

   01 3211  AAAA          
(3.32)

  

  
1

1

321

1 


AAA

A 
          

(3.33) 
 

The Left Hand Side (LHS) of equation (3.33) is equivalent to the Right Hand Side of (3.26), therefore, 

10 R             
(3.34) 

 

Equation (3.34) proved the theorem 3.1. Equation (3.34), implies that, the disease will not persist in 

the population.  
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3.7 Global Stability of Disease Free Equilibrium (DFE), 
0E  

Theorem 3.2: The DFE, 0E  of the model system is globally asymptotically stable if 10 R . 

Proof 

To establish the global stability of the disease-free equilibrium, we construct the following  Lyapunov 

function: 

 

  IARISMV 3,,, 
          (3.35)  

Differentiating (3.35) with respect to t  gives  
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Since 0SS   and 0NN   
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FUTMINNA 1ST SPS BIENNIAL INTERNATIONAL CONFERENCE 2017 pg. 234 

 IRA
dt

dV
10

2

3            
(3.40) 

 

  

When 10 R , the derivative 0
dt

dV
 and 10 R , the derivative 0

dt

dV
 Consequently, the largest 

compact invariant set in  








 0,,,,
dt

dV
RISM , when 10 R , is the singelton 0E . Hence, 

LaSalle’s invariance principle, LaSalle (1976) implies that 0E  is globally asymptotically stable in 

 . This completes the proof. 

 

3.8 Endemic Equilibrium (EE) Point 

The Endemic Equilibrium (EE) is the persistence of the disease in a population and equation. 

Let  

    1******** ,,,,,, ERISMRISM         (3.41) 
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Where, 

**

**
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N

I
             (3.44) 

Is the force of infection  

From (3.43) 
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********** RISMN           (3.46) 
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Substituting **I and 
**N  into (3.44) gives  
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Where, 
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 03212 1 RAAAB            (3.51) 

Therefore, equation (3.49) becomes 

  01 0321

**

1  RAAAB          (3.52) 

3.9 Bifurcation Analysis 

We illustrate the phenomenon of Bifurcation by considering the equation (3.52) resulting from the endemic 

equilibrium. The estimated parameter values in table 4.1 are used to plot the diagram. 

 

Figure 3.2: Forward Bifurcation Diagram for the Model 

In figure 3.2 above, the two equilibrium points exchange stabilities depending on the value of 0R . A 

transcritical/forward bifurcation in the equilibrium points occur at 10 R . If,  10 R  the disease free 

equilibrium (DFE) is stable. But if 10 R , the endemic equilibrium exists and it is stable while the disease 

free equilibrium is a saddle point. Thus there is a forward bifurcation because in the neighbourhood of the 

bifurcation point, the force of infection, 
**  is an increasing function of 0R . 

 

4 Results and Discussion 

4.1 Sensitivity Analysis of the Basic Reproduction Number, 0R  with Some Parameter of the Model 

Unstable DFE 

Stable EE 

Stable DFE 
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Sensitivity indices allow us to measure the relative change in a variable when a parameter changes. The 

normalized forward sensitivity index of a variable with respect to a parameter is the ratio of the relative 

change in the variable to the relative change in the parameter. When the variable is a differentiable function 

of the parameter, the sensitivity index may be alternatively defined using partial derivatives. 

 

In determining how best to reduce human mortality and morbidity due to measles, the sensitivity indices 

of the basic reproduction number to the parameters of the model was calculated following similar 

approaches as in Arriola and Hyman (2005), Chitnis et al. (2008), Mikuchi et al. (2012) and Abdulrahman 

et al. (2013). The normalized forward sensitivity indices with respect to a parameter value, P is defined 

as 

0

00

R

P

P

R
S

R

P 





          

(4.1) 

Where, 

  ,,, vP            
(4.2) 

The sensitivity indices of the parameters of the basic reproduction number 0R were calculated using Maple 

13 software.  See appendix B, for the estimation of variables and parameter values used in sensitivity 

analysis as shown on Table 4.1 below.  

 

 

Table 4.1: Values for Parameters used for Sensitivity Analysis 

Variables Values per year Source  

 0M
 

82,010,000 B9 

 0S  7,099,464,364 B10 

 0I  254,918 B3 

 0R  118,270,718 B4 

N  7,300,000,000 B1 

  139,000,000 B2 


 
0.9 B12 

  0.53 B6 
  0.47 B5 
  0.008 B7 
  0.39 B11 
v  0.85 B8 

  0.61 B13 
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Table 4.2: Sensitivity Indices of 0R to Parameters of the model, evaluated at the parameter 

values given in Table 4.1 

Parameter Low transmission  

Sensitivity Index 

High transmission 

Sensitivity Index 

  1.000000000 1.00000000 

  -0.466269843 -0.3172588832 

v  -0.9906759907 -0.9878419453 

  -0.01241351242 -0.006270226538 

 

Table 4.2 shows that all the parameters have either positive or negative effects on the basic 

reproduction number,
0R . The positive parameters will increase the basic reproduction number while 

the negative parameters will decrease the basic reproduction number. The contact rate,   has the 

highest sensitivity index follow by vaccination rate, v  and recovery rate,   and immunity rate  has 

the lowest sensitivity analysis.  

 

4.2 Graphical Representation of Basic Reproduction Number with Sensitive Parameter 

 



FUTMINNA 1ST SPS BIENNIAL INTERNATIONAL CONFERENCE 2017 pg. 239 

 
Figure 4.1: The Graph of Basic Reproduction Number against different values of Vaccination Rate 

Figure 4.1 shows that as vaccination rate increases with time the Basic reproduction number decreases. It is 

observe that, with increase in vaccination rate, the basic reproduction number decrease to almost zero. 

 

 

 

Figure 4.2: The Graph of Basic Reproduction Number against different values of Contact Rate 
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Figure 4.2 shows that as contact rate increases with time the Basic reproduction number increases. It 

also show that low contact rate gives low basic reproduction number. The children  infected with 

measles should be separated from those that are not infected. 

  

 
Figure 4.3: The Graph of Basic Reproduction Number against different values of Immunity Rate 

Figure 4.3 shows that as immunity rate increases with time the Basic reproduction number decreases. The 

immunity depends on vaccination and treatment. 
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Figure 4.4: The Graph of Basic Reproduction Number against different values of Recovery Rate 

 

Figure 4.4 shows that as recovery rate increases with time the basic reproduction number decreases. It is 

observe that, with increase in recovery rate, the basic reproduction number decrease to almost zero. 

 

5 Conclusion 

The model equations are formulated using first order ordinary differential equation. The existence of 

Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE) was proved. The Disease Free 

Equilibrium (DFE) is locally asymptotically stable if  10 R  and globally asymptotically stable if 

10 R  . The bifurcation analysis reveal that the model exhibit forward bifurcation if 10 R .  

Four parameters of the model were used to carried out the sensitivity analysis with the basic 

reproduction number 0R . The contact rate  , is the most sensitive parameter that will increase the 

basic reproduction number 0R  while the vaccination rate v  is the most sensitive parameter that will 

decrease the basic reproduction number 0R . Other parameter that were used in sensitivity analysis 

are immunity rate   and recovery rate  . 

The graphical representation of the basic reproduction number 0R  with these sensitive parameters 

give the better understanding on how the parameters affect the basic reproduction number 0R  

negatively or positively. Measles will die out of the population if attention is given to high level 

immunization of children. The rural dweller should be sensitizing on the risk of contracting the 

disease. The susceptible individuals should not share the same living space with the infected 

individuals 
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Appendices 

Appendix A: Reported Measles Cases by WHO Region 2015 and 2016, as of November 2016 

Table A1: Reported Measles Cases by WHO Region 2015, as of November 2016  

WHO Region Member 

States 

Reported 

(Expected) 

Total 

Suspected 

Total 

Measle

s 

Clinical 

Confirme

d 

Epidemiologica

l Link 

Laborator

y 

Confirmed 

Data 

Received 

Africa 41(47) 86984 55263 21111 26163 7989 Nov-16 

America 34(35) 18670 210 0 0 210 Nov-16 

Eastern 

Mediterranean 

21(21) 34654 14053 639 4559 8855 Nov-16 

Europe 50(53) 28025 26776 19835 1014 5926 Nov-16 

South-East Asia 11(11) 114726 90860 64484 22353 4023 Nov-16 

Western Pacific 27(27) 143289 67756 22337 611 44808 Nov-16 

Total 184(194) 426348 254918 128406 54700 71811  

Source: WHO (2016) 

Table A2: Reported Measles Cases by WHO Region 2016, as of November 2016 

WHO Region Member 

States 

Reported 

(Expected) 

Total 

Suspected 

Total 

Measle

s 

Clinical 

Confirme

d 

Epidemiologica

l Link 

Laborator

y 

Confirmed 

Data 

Received 

Africa 42(47) 46474 28126 12459 11085 4582 Nov-16 

America 34(35) 9564 65 0 0 65 Nov-16 

Eastern 

Mediterranean 

20(21) 19763 4518 153 947 3418 Nov-16 

Europe 50(53) 3849 2537 241 385 1910 Nov-16 

South-East Asia 11(11) 86302 63169 51015 11004 1150 Nov-16 

Western Pacific 27(27) 100517 55620 27594 638 27388 Nov-16 

Total 184(194) 266469 154035 91462 24059 38513  

Source: WHO (2016) 
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Appendix B: Estimation of Variables and Parameter Values 

It is difficult to get a reliable data, we estimated the parameter values based on the available data from the 

World Health Organization (WHO), Population Reference Bureau and reliable related literature. The estimates 

are clearly explained in the following sub-sections. 

B1: The Total Population, N  

 According to Population Reference Bureau, the world total population at 2015, is 7.3 billion. 

 000,000,300,7N   

B2: Recruitment Number,   

According to Population Reference Bureau the birth rate per year is 
000,1

19
  

The number of new birth in  2015 is  139, 000, 000.  

Therefore, 

000,000,139    

B3: Number of Infected, I  

The WHO estimate that, there are 254, 918 cases of measles worldwide each year, resulting in 134,200 deaths. 

(See Table A1) 

  I = 254, 918 

B4: Number of Recovered/Immune, R  

Recovered/Immune Human population, R = recovered + immune 

From B3 the number of cases is 254, 918 and number of death is 134,200. 

Recovered= 254, 918 -134,200 = 120,718 the number of surviving infants in 2015 is 139,000,000 

and the percentage of vaccinated is 85%. Therefore,  

Vaccinated = 85% of 139,000,000 =118,150,000. 
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Hence,  

Recovered/Immune Human population, 000,150,118718,120 R
  

718,270,118R  

B5: Recovery Rate,   

From B3 and B4 

cases ofNumber 

Recovered
  

47.0
254,918

120,718


 

B6: Disease Induce death rate,   

From B3 the number of cases of measles is 254,918 and the number of death from measles is 134,200 

 cases ofNumber 

 measles fromDeath  ofNumber 
  

53.0
 254,918

 134,200
  

B7: Natural Death Rate,   

According to WHO, the death rate is 8 deaths per 1,000. Therefore, 

008.0
1000

8
  

B8: Vaccination rate, v  

According to, WHO in 2015, about 85% of the world's children received one dose of measles vaccine. 

Therefore, 

  85.0v
 

B9: Maternally-Derived-Immunity, M
 

According to Millennium Development Goal (MDG4), every year nearly 41% of all under-

five child deaths are among newborn infants, babies in their first 28 days of life or the neonatal 
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period.  

0139,000,00 of %59M   

000,010,82M   

B10: Number of Susceptible, S  

Recall RISMN   therefore, 

 RIMNS   

 718,270,118918,254000,010,82000,000,300,7 S
  

636,535,200000,000,300,7 S
 

364,464,099,7S  

B11: Loss of immunity,   

According to WHO Immunization coverage fact sheet, national immunization schedule reported that, only 61% 

of children received 2 doses of measles. Therefore, 

0.39 %39 
 

B12: Contact Rate,    

According to, Atkinson, (2011), nine out of ten people who are not immune and share living space with an 

infected person will catch it. Therefore  

 9.0
10

9
  

B13: Immunity Rate,   

WHO doctors recommend that two doses of the vaccine be given at six and nine months of age to ensure 

immunity and prevent outbreaks, as about 15% of vaccinated children fail to develop immunity from the first 

dose. According to WHO Immunization coverage fact sheet, national immunization schedule reported that, only 

61% of children received 2 doses of measles. Therefore, the Immunity Rate,   is assumed to be 

   61.0  

 

 

 


