A09: Continuous Block Hybrid Backward Differentiation Formula Algorithms for Stiff System of Ordinary Differential Equations Using Legendre Polynomial as Basis Function

Umaru Mohammed ${ }^{1}$, Ben Gbenro Akintububo ${ }^{2}$,Jamiu Garba ${ }^{3}$ and Mikhail Semenov ${ }^{4}$
${ }^{1,2,3}$ Department of Mathematics, Federal University of Technology, Minna, Nigeria
${ }^{4}$ School of Nuclear Science \& Engineering, Tomsk Polytechnic University, Russia email: ${ }^{1}$ umaru.mohd@futminna.edu.ng

Abstract

In this paper, a k-step, ($k=2,3,4$), Block Hybrid Backward Differentiation Formula for the solution of Stiff systems of Ordinary Differential Equation has been formulated through continuous collocation approach. k off - grid points were incorporated at interpolation in order to retain the single function evaluation characteristic, which is peculiar to Backward Differentiation Formula. The basic properties of numerical methods were analyzed and the methods were found to be consistent with a uniform order $2 k$, zero stable and as such, convergent. The region of absolute stability of the methods were analysed using the general linear method (GLM), plotted and found to be stable over a large region. The methods compute the solution of Stiff systems in a block by block way by some discrete schemes obtained from the associated continuous scheme which are combined and implemented as a set of block formulae. Numerical experiments were carried out and the results obtained, in comparison with the exact or analytical solutions and some methods found in literatures, show that the methods are efficient and accurate.

Keywords: Continuous Collocation, Hybrid Block Backward Differentiation Formula, Ordinary Differential Equation, Stiff systems, Legendre polynomial.

1. Introduction

In the study of vibrations, chemical reactions, and electrical circuits, initial-value problems of ordinary differential equation arise in the form,
$y_{1}^{\prime}=f_{1}\left(t, y_{1}, y_{2}, \ldots, y_{n}\right)$
$y_{n}^{\prime}=f_{n}\left(t, y_{1}, y_{2}, \ldots, y_{n}\right)$

which is usually treated in tandem with an initial condition

$$
\begin{equation*}
y_{n}\left(x_{n o}\right)=y_{n o} \tag{2}
\end{equation*}
$$

There exist certain classes of ordinary differential equations to which some numerical methods are not applicable. One of such classes is stiff system of ordinary differential equations.Stiff systems are characterized by the presence of transient and steady component. This characteristic makes the numerical solution unstable unless the step size is extremely small.Due to this restriction placed on the choice of step size, numerical solution of stiff system has been of great concern to researchers, most of who were able to come up with various formulations. Cooper (1969) and Baraffet al.(1997) described the results given by explicit methods as "consistently unsatisfactory" and "don't do a very good job" respectively. Both of them recommended implicit
multistep methods for the problem. Baraffet al.(1997) even suggested that where possible, one should change one's formulation of problem to avoid solving stiff ordinary differential equation.

A number of researchers have developed various implicit methods for the approximation of stiff system of ordinary differential equations. Abhulimen and Ukpebor (2018), Akinfenwa (2011), (2017), Biala (2015), Mehrkanoon et al., (2009), Ngwane and Jator (2012) and Chollom et al., (2014).

While Curtiss and Hirschfelder (1952) pioneered the use of Backward Differentiation Formula for the solution of stiff differential equation due to the restriction that A-stability puts on the choice of suitable methods for stiff systems, several successful efforts have been made by various researchers, Akinfenwa et al., (2011), (2013), Babangida et al., (2016), Bakari et al., (2018), Ehigie et al., (2013) and Nwachukwu and Okor (2018) in formulating various BDF based methods, including its higher derivatives, for its approximation.

Hybrid methods are obtained by incorporating off-grid (off-step) points in the derivation process in order to overcome Dahlquist Barrier theorem. (The order of LMM cannot exceed $k+1$ if k is odd or $k+2$ if is even). A k - Step continuous hybrid formula Special mention was made of hybrid methods in Akinfenwa et al (2011). They are obtained by incorporating off-grid (off-step) points in the derivation process in order to overcome Dahlquist Barrier theorem. (The order of LMM cannot exceed $k+1$ if k is odd or $k+2$ if is even).

A k-Step continuous hybrid formula is of the type,

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} y_{n+j}=h \sum_{j=0}^{k} \beta_{k} f_{n+j}+h \beta_{v} f_{n+v} \tag{3}
\end{equation*}
$$

see Akinfenwa et al., (2011). Where k is the step size, $\alpha_{k}=1, \alpha_{j},(j=0,1, \ldots k-1)$ and β_{j}, are unknown constantswhich are to be uniquely determined. Hybrid methods are characterized by their high accuracy and extended domain of stability.

2. Derivation of the Method

Here, it is assumed that the analytical solution of (1.01) can be approximated by a polynomial of the form,

$$
\begin{equation*}
y(x)=\sum_{j=0}^{i+c-1} \alpha_{j} p_{j}(x) \tag{4}
\end{equation*}
$$

where i and c are respectively, number of interpolation and collocation points, $\alpha_{j}{ }^{\prime} s$ are coefficient to be determined and $p_{j}(x)$ can be any orthogonal polynomial. In this case, Legendre polynomial is used which, on inspection, produces exactly the same continuous form as the popularly adopted power series.
Incorporating k off-grid points for every k -step method requires that the following conditions must be satisfied:

$$
\begin{equation*}
y\left(x_{n}\right)=y_{n} \tag{5}
\end{equation*}
$$

$y\left(x_{n+j}\right)=y_{n+j}, j=0,\left(\frac{1}{2}\right), 1, \ldots, k-\frac{1}{2}$
$f\left(x_{n+k}\right)=f_{n+k}$
where f implies the derivative of y.
(5), (6)and (7)result in $(i+c)$ system of equations which is solved through matrix inversion algorithm. This is with an intention to obtain values for α_{j} such that the continuous form of the method can be expressed as;

$$
\begin{equation*}
y(x)=\sum_{j=0}^{k-\frac{1}{2}} \alpha_{j}(x) y_{n+j}+h \beta_{k}(x) f_{k} \tag{8}
\end{equation*}
$$

2.1 2-Step Block Hybrid Backward Differentiation formula with 2 Off-grid Points (2SBHBDF).

To derive a 2 -step backward differentiation formula with two off-grid points, the following specifications were considered; $k=2, i=4, c=1$ and $x \in\left[x_{n}, x_{n+2}\right]$. This results in a system of equations

$$
\begin{equation*}
Y_{\omega}=D \Psi_{\omega-n} \tag{9}
\end{equation*}
$$

where $Y_{\omega}=\left(y_{n}, y_{n+\frac{1}{2}}, y_{n+1}, y_{n+\frac{3}{2}}, f_{n+2}\right)^{T}, \Psi_{\omega}=\left(\alpha_{0}, \alpha_{\frac{1}{2}}, \alpha_{1}, \alpha_{\frac{3}{2}}, \beta_{2}\right)^{T}$ and

$$
D=\left(\begin{array}{ccccc}
1 & x_{n} & \frac{1}{2}\left(3 x_{n}^{2}-1\right) & \frac{1}{2}\left(x_{n}^{3}-3 x_{n}\right) & \frac{1}{8}\left(35 x_{n}^{4}-30 x_{n}^{2}+3\right) \\
1 & x_{n+\frac{1}{2}} & \frac{1}{2}\left(3 x_{n+\frac{1}{2}}^{2}-1\right) & \frac{1}{2}\left(x_{n+\frac{1}{2}}^{3}-3 x_{n+\frac{1}{2}}\right) & \frac{1}{8}\left(35 x_{n+\frac{1}{2}}^{4}-30 x_{n+\frac{1}{2}}^{2}+3\right) \\
1 & x_{n+1} & \frac{1}{2}\left(3 x_{n+1}^{2}-1\right) & \frac{1}{2}\left(x_{n+1}^{3}-3 x_{n+1}\right) & \frac{1}{8}\left(35 x_{n+1}^{4}-30 x_{n+1}^{2}+3\right) \\
1 & x_{n+\frac{3}{2}} & \frac{1}{2}\left(3 x_{n+\frac{3}{2}}^{2}-1\right) & \frac{1}{2}\left(x_{n+\frac{3}{2}}^{3}-3 x_{n+\frac{3}{2}}\right) & \frac{1}{8}\left(35 x_{n+\frac{3}{2}}^{4}-30 x_{n+\frac{3}{2}}^{2}+3\right) \\
0 & 1 & 3 x_{n+1} & \frac{1}{2}\left(x_{n+2}^{2}-3\right) & \frac{1}{8}\left(140 x_{n+2}^{3}-60 x_{n+2}\right)
\end{array}\right)
$$

Using matrix inversion technique with the aid of maple software, the values of $\alpha_{0}, \alpha_{\frac{1}{2}}, \alpha_{1}, \alpha_{\frac{3}{2}}$ and β_{2} were obtained
substituted into (8) and setting $k=x-x_{n}$ and evaluating at $x=x_{n}+2 h$ resulted in the main method

$$
\begin{equation*}
y_{n+2}=-\frac{3}{25} y_{n}+\frac{16}{25} y_{n+\frac{1}{2}}-\frac{36}{25} y_{n+1}+\frac{48}{25} y_{n+\frac{3}{2}}+\frac{6}{25} h f_{n+2} \tag{10}
\end{equation*}
$$

To obtain the additional schemes that combine with the main method to form a block, the first derivative of (8) was obtained and evaluated at $x=x_{n+\frac{1}{2}}, x=x_{n+1}$ and $x x_{n+\frac{3}{2}}$ which produced three other discrete schemesgiven as

$$
\begin{align*}
& f_{n+\frac{3}{2}}=\frac{1}{75 h}\left[9 h f_{n+2}-17 y_{n}+99 y_{n+\frac{1}{2}}-279 y_{n+1}+197 y_{n+\frac{3}{2}}\right] \tag{11}\\
& f_{n+1}=-\frac{1}{75 h}\left[3 h f_{n+2}-14 y_{n}+108 y_{n+\frac{1}{2}}-18 y_{n+1}-76 y_{n+\frac{3}{2}}\right] \tag{12}\\
& f_{n+\frac{1}{2}}=\frac{1}{25 h}\left[h f_{n+2}-13 y_{n}-39 y_{n+\frac{1}{2}}+69 y_{n+1}-17 y_{n+\frac{3}{2}}\right] \tag{13}
\end{align*}
$$

2.2 3-Step Block Hybrid Backward Differentiation formula with 3 off-grid points (3SBHBDF)

 In this case, $k=3, i=6, c=1$ and $x \in\left[x_{n}, x_{n+3}\right]$. Evaluating (1.8) at $x=x_{n}+3 h$, the main method below was obtained.$$
\begin{equation*}
y_{n+3}=-\frac{10}{147} y_{n}+\frac{72}{147} y_{n+\frac{1}{2}}-\frac{225}{147} y_{n+1}+\frac{400}{147} y_{n+\frac{3}{2}}-\frac{450}{147} y_{n+2}+\frac{360}{147} y_{n+\frac{5}{2}}+\frac{30}{147} h f_{n+3} \tag{14}
\end{equation*}
$$

and additional schemes were obtained in order to provide for the available number of unknown as

$$
\begin{equation*}
f_{n+\frac{3}{2}}=\frac{1}{4410 h}\left[300 h f_{n+3}-394 y_{n}+2925 y_{n+\frac{1}{2}}-9600 y_{n+1}+18700 y_{n+\frac{3}{2}}-26550 y_{n+2}+14919 y_{n+\frac{5}{2}}\right] \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
f_{n+2}=-\frac{1}{4410 h}\left[60 h f_{n+3}-167 y_{n}+1320 y_{n+\frac{1}{2}}-4860 y_{n+1}+12560 y_{n+\frac{3}{2}}-6045 y_{n+2}-2808 y_{n+\frac{5}{2}}\right] \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
f_{n+\frac{3}{2}}=\frac{1}{4410 h}\left[30 h f_{n+3}-157 y_{n}+1395 y_{n+\frac{1}{2}}-6840 y_{n+1}+400 y_{n+\frac{3}{2}}+6165 y_{n+2}-963 y_{n+\frac{5}{2}}\right] \tag{17}
\end{equation*}
$$

$f_{n+1}=-\frac{1}{2205 h}\left[15 h f_{n+3}-152 y_{n}+1800 y_{n+\frac{1}{2}}+2460 y_{n+1}-5680 y_{n+\frac{3}{2}}+1980 y_{n+2}-408 y_{n+\frac{5}{2}}\right]$
$f_{n+\frac{1}{2}}=\frac{1}{882}\left[12 h f_{n+3}-298 y_{n}-2235 y_{n+\frac{1}{2}}+4320 y_{n+1}-2780 y_{n+\frac{3}{2}}+1290 y_{n+2}-297 y_{n+\frac{5}{2}}\right]$
2.3 4-Step Block Hybrid Backward Differentiation formula with 4 off-grid point(4SBHBDF) In a similar way as in cases of $k=2$ and $k=3$ above, setting $k=4, i=8, c=1$ and $x \in\left[x_{n}, x_{n+4}\right]$, we obtained the block

$$
\begin{align*}
f_{n+\frac{1}{2}} & =\frac{1}{22830 h}\left[150 h f_{n+4}-5745 y_{n}-72387 y_{n+\frac{1}{2}}+158410 y_{n+1}-156450 y_{n+\frac{3}{2}}-127925 y_{n+2}-74305 y_{n+\frac{5}{2}}+27762 y_{n+3}-5210 y_{n+\frac{7}{2}}\right] \tag{20}\\
f_{n+1} & =\frac{1}{-479430 h}\left[1050 h f_{n+4}-17385 y_{n}+276360 y_{n+\frac{1}{2}}+901117 y_{n+1}-1894200 y_{n+\frac{3}{2}}+1161825 y_{n+2}-600040 y_{n+\frac{5}{2}}+210315 y_{n+3}-37992 y_{n+\frac{7}{2}}\right] \tag{21}\\
f_{n+\frac{3}{2}} & =\frac{1}{31962 h}\left[42 h f_{n+4}-391 y_{n}+4662 y_{n+\frac{1}{2}}-32354 y_{n+1}-27825 y_{n+\frac{3}{2}}+78435 y_{n+2}-30394 y_{n+\frac{5}{2}}+9478 y_{n+3}-1611 y_{n+\frac{7}{2}}\right] \tag{22}\\
f_{n+2} & =-\frac{1}{79905 h}\left[105 h f_{n+4}-597 y_{n}+6328 y_{n+\frac{1}{2}}-32942 y_{n+1}+130200 y_{n+\frac{3}{2}}-3675 y_{n+2}-123928 y_{n+\frac{5}{2}}+29033 y_{n+3}-4408 y_{n+\frac{7}{2}}\right] \tag{23}\\
f_{n+\frac{5}{2}} & =\frac{1}{479430 h}\left[1050 h f_{n+4}-368 y_{n}+36645 y_{n+\frac{1}{2}}-169610 y_{n+1}+502950 y_{n+\frac{3}{2}}-1235325 y_{n+2}+470687 y_{n+\frac{5}{2}}+450030 y_{n+3}-51690 y_{n+\frac{7}{2}}^{2}\right] \tag{24}\\
f_{n+3} & =-\frac{159810 h}{\left.1050 h f_{n+4}-2165 y_{n}+20664 y_{n+\frac{1}{2}}-89705 y_{n+1}+236600 y_{n+\frac{3}{2}}-436275 y_{n+2}+678440 y_{n+\frac{5}{2}}-333039 y_{n+3}-74520 y_{n+\frac{7}{2}}\right]} \tag{25}\\
f_{n+\frac{7}{2}} & =\frac{1}{159810 h}\left[7350 h f_{n+4}-7545 y_{n}+70070 y_{n+\frac{1}{2}}-292334 y_{n+1}+723975 y_{n+\frac{3}{2}}-1189475 y_{n+2}+1393070 y_{n+\frac{5}{2}}-1324470 y_{n+3}+626709 y_{n+\frac{7}{2}}\right] \tag{26}\\
y_{n+4} & =-\frac{35}{761} y_{n}+\frac{320}{761} y_{n+\frac{1}{2}}-\frac{3920}{2283} y_{n+1}+\frac{3136}{761} y_{n+\frac{3}{2} \frac{3}{2}}-\frac{4900}{761} y_{n+2}+\frac{15680}{761} y_{n+\frac{5}{2}}-\frac{3920}{761} y_{n+3}+\frac{2240}{761} y_{n+\frac{7}{2}}+\frac{140}{761} h f_{n+3} \tag{27}
\end{align*}
$$

3.0 Analysisof the Methods

3.1 Order of accuracy and Error constant

Following $\mathrm{S} u$ li (2014), let $y\left(x_{n+j}\right)$, the solution to $y^{\prime}\left(x_{n+j}\right)$ be sufficiently differentiable, then $y\left(x_{n+j}\right)$ and $y^{\prime}\left(x_{n+j}\right)$ can be expanded into a Taylor's series about point x_{n} to obtain
$T_{n}=\frac{1}{h \sigma(1)}\left[C_{0} y\left(x_{n}\right)+C_{1} h y^{\prime}\left(x_{n}\right)+C_{2} h^{2} y^{\prime \prime}\left(x_{n}\right)+\ldots\right]$
Where

$$
\begin{align*}
& C_{0}=\sum_{j=0}^{k} \alpha_{j} \\
& C_{1}=\sum_{j=0}^{k} j \alpha_{j}-\sum_{j=0}^{k} \beta_{j}, \tag{29}
\end{align*}
$$

$$
\left.C_{q}=\frac{1}{q!} \sum_{j=0}^{k} j^{q} \alpha_{j}-\frac{1}{(q-1)!} \sum_{j=0}^{k} j^{q-1} \beta_{j}\right]
$$

Definition 3.21: A Linear multistep method is said to be of order of accuracy p if $C_{0}=C_{1}=\ldots C_{p}=0, C_{p+1} \neq 0, C_{p+1}$ is called The error constants.
From our calculations, we have that the block methods of step number k has uniform order $2 k$ and the error constants are shown in tables 1, 2 and 3 below.

Table 1: Order and Error constants for the proposed 2step Block Hybrid Backward Differentiation Formula

Method	Order, P	Error constant, C_{p+1}
(13)	4	$-\frac{29}{320}$
(12)	4	$-\frac{31}{160}$
(11)	4	$-\frac{111}{320}$
(10)	4	$-\frac{3}{40}$

Table 2: Order and Error constants for the proposed 3step Block Hybrid Backward Differentiation Formula

Method	Order, P	Error constant, C_{p+1}
(19)	6	$-\frac{159}{448}$
(18)	6	$-\frac{81}{224}$
(17)	6	$-\frac{501}{896}$
(16)	6	$-\frac{177}{224}$
(15)	6	$-\frac{1035}{448}$
(14)	6	$-\frac{15}{224}$

Table 3: Order and Error constants for the proposed 4-
step Block Hybrid Backward Differentiation Formula

Method	Order, P	Error constant, C_{p+1}
(20)	8	$-\frac{1335}{1024}$
(21)	8	$-\frac{12115}{1536}$
(22)	8	$-\frac{817}{3072}$
(23)	8	$-\frac{277}{512}$
(24)	8	$-\frac{12815}{3072}$
(25)	8	$-\frac{405}{1536}$
(26)	8	$-\frac{12145}{1024}$
(27)		$-\frac{35}{192}$

3.2 Consistency

Definition: A linear multistep method is said to be consistent if the following conditions are satisfied.
i. the order of accuracy $p>1$,
ii. $\quad \sum_{j=0}^{k} \alpha_{j}=0$,
iii. $\quad \rho^{\prime}(1)=\sigma(1)$, where $\rho(r)$ and $\sigma(r)$ are respectively, first and second characteristic polynomials of the methods.
Conditions i and ii were taken care of in section 3.1 since the order $p>1$ and $C_{0}=\sum_{j=0}^{k} \alpha_{j}=0$ in all cases.
For the third condition, the first and second characteristic polynomials were obtained and evaluated in what follows.
For all the methods, conditions for consistency are satisfied. Hence, they are consistent with uniform order of accuracy, $p=2 k>0$.
The summary of order of accuracy, error constants as well as the parameter for measuring consistency as obtained above are presented in Tables 4, 5 and 6.

Table 4: Parameters for determining consistency of 2-step Block Hybrid Backward Differentiation Formula

Method	Order, P	$\sum \alpha_{j}$	$\rho^{\prime}(1)$	$\sigma(1)$
(13)	4	0	-24	-24
(12)	4	0	78	78
(11)	4	0	-66	-66
(10)	4	0	6	6

Table 5: Parameters for determining consistency of 3-step Block Hybrid Backward Differentiation Formula

Method	Order, P	$\sum \alpha_{j}$	$\rho^{\prime}(1)$	$\sigma(1)$
(19)	6	0	-870	-870
(18)	6	0	2220	2220
(17)	6	0	-4380	-4380
(16)	6	0	4470	4470
(15)	6	0	-4110	-4110
(14)	6	0	30	30

Table 6: Parameters for determining consistency of 4-step Block Hybrid Backward Differentiation Formula

Method	Order, P	$\sum \alpha_{j}$	$\rho^{\prime}(1)$	$\sigma(1)$
(20)	8	0	-23680	-23680
(21)	8	0	480480	480480
(22)	8	0	-31920	-31920
(23)	8	0	80010	80010
(24)	8	0	-478380	-478380
(25)	8	0	160860	160860
(26)	8	0	-152460	-152460
(27)	8	0	420	420

3.3 Zero stability

The derived Hybrid Backward Differentiation Formula can be written in a block form as follows.

$$
\begin{equation*}
A^{(1)} Y_{\omega+1}=A^{(0)} Y_{\omega-1}+h B F_{\omega+1} \tag{30}
\end{equation*}
$$

whose first characteristics polynomial is given as

$$
\begin{equation*}
\rho(R)=\operatorname{det}\left[R A^{(1)}-A^{(0)}\right] \tag{31}
\end{equation*}
$$

Definition (ZERO STABILITY): The block method (30) is said to be zero stable if no rootof the first characteristic polynomial $\rho(R)$ satisfies $\left|R_{j}\right| \leq 1, j=1,2,3, \ldots$ and for those roots with $\left|R_{j}\right|=1$, the multiplicity must not exceed 2.

3.3.1 Zero stability of 2-step block hybrid backward differentiation formula with 2 off grid points.

Expressing methods (10), (11), (12) and (13) in the form (30),
$A^{(1)}=\left(\begin{array}{cccc}1 & -\frac{23}{13} & \frac{17}{39} & 0 \\ -6 & 1 & \frac{38}{9} & 0 \\ \frac{99}{197} & -\frac{279}{197} & 1 & 0 \\ -\frac{16}{25} & \frac{36}{25} & -\frac{48}{25} & 1\end{array}\right), A^{(0)}=\left(\begin{array}{cccc}0 & 0 & 0 & -\frac{1}{3} \\ 0 & 0 & 0 & -\frac{7}{9} \\ 0 & 0 & 0 & \frac{17}{197} \\ 0 & 0 & 0 & -\frac{3}{25}\end{array}\right)$ and $B=\left(\begin{array}{cccc}-\frac{25}{39} & 0 & 0 & \frac{1}{39} \\ 0 & \frac{25}{6} & 0 & \frac{1}{6} \\ 0 & 0 & \frac{75}{197} & -\frac{9}{197} \\ 0 & 0 & 0 & \frac{6}{25}\end{array}\right)$
$\rho(R)=-\frac{1000}{2561} R^{3}(R-1)=0$
$R=\{0,0,0,1\}$.
The method is zero stable since it satisfies $\left|R_{j}\right| \leq 1$.
3.3.2 Zero stability of 3-step Block Hybrid Backward Differentiation Formula with 3 off grid points.
Expressing methods (14), (15), (16), (17), (18) and (19) in the form (30),

$$
\left.A^{(1)}=\left(\begin{array}{cccccc}
1 & -\frac{288}{149} & \frac{556}{447} & -\frac{86}{149} & \frac{99}{745} & 0 \\
\frac{30}{41} & 1 & -\frac{284}{123} & \frac{33}{123} & -\frac{34}{205} & 0 \\
\frac{279}{80} & -\frac{171}{10} & 1 & \frac{1233}{80} & -\frac{963}{400} & 0 \\
-\frac{88}{403} & \frac{324}{403} & -\frac{2512}{1209} & 1 & \frac{72}{155} & 0 \\
\frac{975}{4973} & -\frac{3200}{4973} & \frac{18700}{14919} & -\frac{8850}{4973} & 1 & 0 \\
-\frac{24}{49} & \frac{75}{49} & -\frac{400}{147} & \frac{150}{49} & -\frac{120}{497} & 1
\end{array}\right), A^{(0)}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & -\frac{2}{15} \\
0 & 0 & 0 & 0 & 0 & \frac{38}{615} \\
0 & 0 & 0 & 0 & 0 & \frac{157}{400} \\
0 & 0 & 0 & 0 & 0 & -\frac{167}{6045} \\
0 & 0 & 0 & 0 & 0 & \frac{394}{14919} \\
0 & 0 & 0 & 0 & 0 & -\frac{10}{147}
\end{array}\right) \text { and } 1 \begin{array}{ccccccc}
-\frac{294}{745} & 0 & 0 & 0 & 0 & \frac{4}{745} \\
0 & -\frac{147}{164} & 0 & 0 & 0 & -\frac{1}{164} \\
0 & 0 & \frac{441}{40} & 0 & 0 & -\frac{3}{40} \\
0 & 0 & 0 & \frac{294}{403} & 0 & \frac{4}{403} \\
0 & 0 & 0 & 0 & \frac{1470}{4973} & -\frac{100}{4973} \\
0 & 0 & 0 & 0 \\
R=\{R)=-\frac{134481277728}{12243162971} R^{5}(R-1)=0
\end{array}\right) .
$$

The method is zero stable having it satisfied $\left|R_{j}\right| \leq 1$.
3.3.3 Zero stability of 4-step block hybrid backward differentiation formula with 4 off grid points
Expressing methods (20), (21), (22), (23), (24), (25) (26) and (27) in the form of (30),

$$
\left.\begin{array}{ccccccccc}
1 & -\frac{22630}{10341} & \frac{7450}{3477} & -\frac{18275}{10341} & \frac{10615}{10341} & -\frac{1322}{3447} & \frac{5210}{72387} & 0 \\
\frac{39480}{128731} & 1 & -\frac{270600}{128731} & \frac{165975}{128731} & -\frac{85720}{128731} & \frac{30005}{128731} & -\frac{39992}{901177} & 0 \\
-\frac{222}{1225} & \frac{4622}{3975} & 1 & -\frac{747}{265} & \frac{4342}{3975} & -\frac{1354}{3975} & \frac{527}{9275} & 0 \\
-\frac{904}{525} & \frac{3706}{525} & -\frac{248}{7} & 1 & \frac{17704}{525} & -\frac{1382}{175} & \frac{4408}{3675} & 0 \\
\frac{5235}{67241} & -\frac{24230}{67241} & \frac{71850}{67241} & -\frac{176475}{67241} & 1 & \frac{64290}{67241} & -\frac{51690}{470687} & 0 \\
-\frac{984}{15859} & \frac{12815}{47577} & -\frac{33800}{47577} & \frac{2075}{15859} & -\frac{96920}{67241} & 1 & \frac{24440}{111013} & 0 \\
\frac{70070}{626709} & -\frac{292334}{626709} & \frac{241325}{208903} & -\frac{1189755}{626709} & \frac{1393070}{626709} & -\frac{441490}{208903} & 1 & 0 \\
-\frac{320}{761} & \frac{3920}{2283} & -\frac{3136}{761} & \frac{4990}{761} & -\frac{15680}{2283} & \frac{3920}{761} & -\frac{2240}{761} & 1
\end{array}\right)
$$

$$
R=\{0,0,0,0,0,0,0,1\} .
$$

Having satisfied $\left|R_{j}\right| \leq 1$, the method is zero stable.

3.4 Convergence

Here, the convergence of the hybrid backward differentiation formula developed, is considered in agreement with the fundamental theorem of Dahlquist which states that, "The necessary and sufficient condition for LMM to be convergent is for it to be consistent and zero stable". (see Henrici, 1962). Following this theorem, the methods developed are convergent having satisfied the necessary and sufficient conditions of consistency and zero stability.

3.5 Region of Absolute Stability of the Method

Definition: The stability domain, otherwise known as stability region, of a numerical method is the set $S=\{z \in C:|R(z)| \leq 1\}$
The region of absolute stability is obtained using the general linear method (GLM), which is described as generalization of Runge-Kutta (multistage) methods and linear multistep (multivalue) methods.

The derived methods are written in the form
$\left[\begin{array}{c}Y \\ y_{i+1}\end{array}\right]=\left[\begin{array}{ll}A & U \\ B & V\end{array}\right]\left[\begin{array}{c}h f(Y) \\ y_{i+1}\end{array}\right]$
Where $A=\left[\begin{array}{ccccc}a_{11} & \cdot & \cdot & \cdot & a_{1 s} \\ \cdot & \cdot & & & \cdot \\ \cdot & & \cdot & & \cdot \\ \cdot & & & \cdot & \cdot \\ a_{s 1} & \cdot & \cdot & \cdot & a_{s s}\end{array}\right], B=\left[\begin{array}{ccccc}b_{11} & \cdot & \cdot & \cdot & b_{1 s} \\ \cdot & \cdot & & & \cdot \\ \cdot & & \cdot & & \cdot \\ \cdot & & & \cdot & \cdot \\ b_{s 1} & \cdot & \cdot & \cdot & b_{s s}\end{array}\right], Y=\left[\begin{array}{c}y_{n} \\ y_{n+\frac{1}{2}} \\ \cdot \\ \cdot \\ \cdot \\ y_{n+k}\end{array}\right]$ and $y_{n+1}=\left[\begin{array}{c}y_{n+k} \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ y_{n+k-1}\end{array}\right]$
Definition: For a general linear method (A, B, U, V), stability matrix $M(z)$ I defined by
$M(z)=V+z B(I-z A)^{-1} U$
and the characteristic polynomial is given by
$\varphi(\mu, z)=\operatorname{det}[\mu I-M(z)]$
Definition: A general linear method (A, B, U, V), is said to be A-stable if for all $z \in C^{-}, I-z A$ is non-singular and $M(z)$ is the stability polynomial.

Definition: A general linear method (A, B, U, V), is said to be L-stable if it is A-stable and $\rho(M(\infty))=0$ or the stronger condition, $M(\infty)=0$.
To obtain and plot region of absolute stability (also known as domain of absolute stability)

Elements of the matrices $\mathrm{A}, \mathrm{B}, \mathrm{U}$ and V were obtained from interpolation and collocation points and then substituted into the stability matrix (33) and the stability function (34).
3.5.1 Region of Absolute Stability for 2-step Hybrid Backward Differentiation Formula

The method, in block form, has coefficients

$$
\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & \mid & 0 & 1 \\
0 & -\frac{25}{39} & 0 & 0 & 0 & \mid & \frac{23}{13} & -\frac{1}{3} \\
0 & 0 & \frac{25}{6} & 0 & 0 & \mid & 0 & -\frac{7}{9} \\
0 & 0 & 0 & \frac{75}{197} & -\frac{9}{197} & 0 & \frac{17}{197} \\
0 & 0 & 0 & 0 & \frac{6}{25} & \mid & -\frac{36}{25} & -\frac{3}{25} \\
--- & --- & --- & --- & --- & -\mid- & --- & --- \\
0 & 0 & 0 & 0 & \frac{6}{25} & \mid & -\frac{36}{25} & -\frac{3}{25} \\
0 & 0 & -\frac{25}{6} & 0 & \frac{1}{6} & \mid & 0 & -\frac{7}{9}
\end{array}\right]
$$

With stability polynomial,

$$
\begin{equation*}
\varphi(\mu, z)=\frac{1}{3}\left[450 \mu^{2} z^{2}-60857 \mu z-1767 \mu^{2} z-450 \mu^{2}-2775 \mu z-298 \mu+504\right] \tag{35}
\end{equation*}
$$

The plot of region of absolute stability is shown in figure (3.1) where it is found that the method is stiffly stable with stiffness criteria, $D=0.43$.

Figure 1: Region of Absolute Stability of 2-Step Hybrid Backward Differentiation Formula
3.5.2 Region of Absolute Stability for 3-step Block Hybrid Backward Differentiation Formula The method, in block form, has coefficients

$$
\left(\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \mid & 0 & 0 & 1 \\
-\frac{294}{745} & 0 & 0 & 0 & 0 & \frac{4}{745} & \mid & -\frac{288}{149} & -\frac{86}{149} & -\frac{2}{15} \\
0 & -\frac{147}{164} & 0 & 0 & 0 & -\frac{1}{164} & \mid & 0 & \frac{33}{123} & \frac{38}{615} \\
0 & 0 & \frac{441}{40} & 0 & 0 & -\frac{3}{40} & \mid & -\frac{177}{10} & \frac{1233}{80} & \frac{157}{400} \\
0 & 0 & 0 & \frac{294}{403} & 0 & \frac{4}{403} & \mid & \frac{324}{403} & 0 & -\frac{167}{6075} \\
0 & 0 & 0 & 0 & \frac{1470}{4973} & -\frac{100}{4973} & \mid & -\frac{3200}{4973} & -\frac{8850}{4973} & \frac{394}{14919} \\
0 & 0 & 0 & 0 & 0 & \frac{10}{49} & \mid & \frac{75}{49} & \frac{150}{49} & -\frac{10}{147} \\
- & - & - & - & - & - & -\mid- & - & - & - \\
0 & 0 & 0 & 0 & 0 & \frac{10}{49} & \mid & \frac{75}{49} & \frac{150}{49} & -\frac{10}{147} \\
0 & 0 & 0 & \frac{294}{403} & 0 & -\frac{100}{4973} & \mid & \frac{324}{403} & 0 & -\frac{167}{6045} \\
0 & -\frac{147}{164} & 0 & 0 & 0 & -\frac{1}{164} & \mid & 0 & \frac{33}{123} & \frac{38}{615}
\end{array}\right)
$$

The stability polynomial was obtained and the plot of region of absolute stability is shown in figure 2 where it is found that the methodis stiffly stable with stiffness criteria, $D=10$

Figure 2: Region of Absolute Stability of 3-Step Hybrid Backward Differentiation Formula

3.2.5.3 Regionof Absolute Stability for 4-step Hybrid Backward Differentiation Formula

The coefficients of the method, is expressed as
$\left[\begin{array}{ll}A & U \\ B & V\end{array}\right]$

$$
\begin{aligned}
& \text { Where } A=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-\frac{7610}{24129} & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{50}{24129} \\
0 & -\frac{68490}{128731} & 0 & 0 & 0 & 0 & 0 & -\frac{150}{128731} \\
0 & 0 & -\frac{1522}{1325} & 0 & 0 & 0 & 0 & \frac{2}{1325} \\
0 & 0 & 0 & \frac{761}{35} & 0 & 0 & 0 & \frac{1}{35} \\
0 & 0 & 0 & 0 & \frac{68490}{67241} & 0 & 0 & -\frac{150}{67241} \\
0 & 0 & 0 & 0 & 0 & \frac{710}{15859} & 0 & \frac{50}{15859} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{53270}{208903} & -\frac{2450}{208903} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{140}{761}
\end{array}\right) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& B=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{140}{761} \\
0 & 0 & 0 & 0 & 0 & \frac{7610}{15859} & 0 & \frac{50}{15859} \\
0 & 0 & 0 & \frac{761}{35} & 0 & 0 & 0 & \frac{1}{35} \\
0 & -\frac{68490}{128731} & 0 & 0 & 0 & 0 & 0 & -\frac{150}{128731}
\end{array}\right] \\
& \text { and } V=\left[\begin{array}{cccc}
-\frac{3920}{2283} & -\frac{4900}{761} & -\frac{3920}{2283} & -\frac{35}{761} \\
0 & -\frac{20775}{15859} & -\frac{12815}{47577} & -\frac{2165}{333039} \\
\frac{297}{197} & 0 & -\frac{4706}{525} & -\frac{199}{1225} \\
-\frac{30045}{128731} & -\frac{165975}{128731} & 0 & -\frac{17385}{901117}
\end{array}\right]
\end{aligned}
$$

The stability polynomial was obtained and the plot of region of absolute stability is shown in Figure. 3 below where it is found that the methodis stiffly stable with stiffness criteria, $D=20$.

Figure 3: Region of Absolute Stability of 4-Step Hybrid Backward Differentiation Formula

4. Numerical Experiments

In this section, the efficiency of the hybrid method formulated in section 2 is tested on some problems of stiff system of ordinary differential equations. The self-starting method is implemented efficiently by combining the methods as simultaneous numerical integrator for IVPs for example, the method (17) - (30) are combined to obtain the initial conditions at x_{n+2}, $n(\bmod 2) \neq 0$ and $0 \leq n \leq N$ using computed values $y\left(x_{n+2}\right)$ over sub-interval $\left[x_{0}, x_{2}\right]$.

Problems on Stiff System

$$
\begin{array}{ll}
y^{\prime}=-y+95 z, & y(0)=1 \\
z^{\prime}=-y-97 z, & z(0)=1, t \in[0,1], h=0.0625,0.03125
\end{array}
$$

Exact solution: $y(t)=\frac{95}{47} e^{-2 t}-\frac{48}{47} e^{-96 t}$

$$
z(t)=\frac{48}{47} e^{-96 t}-\frac{1}{47} e^{-t}
$$

This problem was solved in Biala et al. (2015), Ehigie et al. (2013) and Sahiet al. (2012). The absolute error in the results obtained with the new method for $h=0.0625$ and $h=0.3125$ are shown in Figures4.1a and 4.1b while comparison between the proposed method and existing methods is shown in Table 4.1.

$$
\begin{align*}
& y_{1}^{\prime}=998 y_{1}+1998 y_{2}, y(0)=1 \\
& y_{2}^{\prime}=-999 y_{1}-1999 y_{2}, z(0)=1
\end{align*}
$$

Exact solution: $y_{1}(t)=4 e^{-t}-3 e^{-1000 t}$

$$
y_{2}(t)=-2 e^{-t}+3 e^{-t} t \in[0,], h=0.1
$$

This was solved in Akinfenwa et al. (2011) and Ehigie et al. (2013). The absolute error in the results obtained with the new method is shown in figure 4.2 while comparison between the proposed method and existing methods is shown in Table 4.2.
$4.3 \quad y^{\prime \prime}+1001+1000 y$
Reduced to:

$$
\begin{aligned}
& y^{\prime}=z, y(0)=1 \\
& z^{\prime}=-1000 y-1001 z, z(0)=1
\end{aligned}
$$

Exact solution: $y(t)=4 e^{-t}-3 e^{-1000 t}$

$$
z(t)=-2 e^{-t}+3 e^{-t}, \quad t \in[0,], \quad h=0.1
$$

This was solved in Abhulimen and Omeike (2011), Abhulimen and Okunuga (2018), Akinfenwa et al., (2014) and Ehigie et al., (2013). The absolute error in the results obtained with the new method is shown in figure 4.3 while comparison between the proposed method and existing methods is shown in Table 4.3.
4.4

$$
\begin{aligned}
& y_{1}^{\prime}=-1002 y_{1}+1000 y_{2}^{2}, y_{1}(0)=1 \\
& y_{2}^{\prime}=y_{1}-y_{2}\left(1+y_{2}\right), y_{2}(0)=1
\end{aligned}
$$

Exact solution: $y_{1}(x)=e^{-2 x}$

$$
y_{2}(x)=e^{-x}, x \in[0,1], h=0.02 .
$$

This was solved in Akinfenwa et al., (2013). The absolute error in the results obtained with the new method is shown in figure 4.4while comparison between the proposed method and existing methods is shown in Table 4.4.

Figure 4.Absolute Error in the Proposed Methods for Problem 4.1 with $\boldsymbol{h}=0.0625$

Figure 5.Absolute Error in the Proposed Methods For Problem4.11 with $\boldsymbol{h}=0.03125$

Table7: Comparing the Absolute error in the proposed method with existing methods found in literature for problem 1.

	Biala et al (2015)	Abhulimen and Omeike (2011)	Abhulimen and Ukpebor (2018)	Ehigie and Okunuga (2013)	Sahi et al (2012)	New Method
	y_{n}	y_{n}	y_{n}	y_{n}	y_{n}	y_{n}
H	z_{n}	z_{n}	z_{n}	z_{n}	z_{n}	z_{n}
	4×10^{-10}	3.2×10^{-10}	5.0×10^{-8}	3.4×10^{-9}	9×10^{-11}	9.25×10^{-11}
0.0625	8×10^{-10}	2.4×10^{-10}	7.0×10^{-10}	3.6×10^{-9}	1×10^{-8}	9.56×10^{-11}
0.0312	7×10^{-12}	1.2×10^{-10}.	6.0×10^{-8}	3.4×10^{-9}	4×10^{-12}	7.8×10^{-13}
5	7×10^{-14}	8.1×10^{-10}	1.0×10^{-10}	3.5×10^{-9}	4×10^{-12}	1.1×10^{-16}

Figure 6: Absolute Error in the Proposed Methods For Problem 2

Table 8: Comparing the Absolute error in the proposed method with existing methods found in literature for problem 2.

Akinfenwa, et al (2011)	Ehigie et al (2013)	New Method
y_{n}	y_{n}	y_{n}
z_{n}	z_{n}	z_{n}
4.183×10^{-13}	4.18×10^{-13}	1.36×10^{-14}
2.092×10^{-13}	8.92×10^{-18}	6.82×10^{-15}

Figure 7: Absolute Error in the Proposed Methods For Problem3

Table 9: Comparing the Absolute error in the proposed method with existing methods found in literature for problem 3.

	Abhulimen and Omeike (2011)	Abhulimen and Okunuga (2018)	Akinfenwa et al (2014)	New Method
H	y_{n}	y_{n}	y_{n}	y_{n}
0.1	1.4×10^{-8}	5.29×10^{-9}	1.56×10^{-14}	4.65×10^{-16}

Figure 9: Absolute Error in the Proposed Method For Problem4

Table 9: Comparing the Absolute error in the proposed method with existing methods found in literature for problem 4.

	Akinfenwa et al (2013)	New Method
	y_{n}	y_{n}
h	z_{n}	z_{n}
	9.1102×10^{-13}	2.12×10^{-21}
0.02	1.2527×10^{-12}	7.89×10^{-17}

5 Conclusion

In this paper, a continuous (k-step) Block Hybrid Backward Differentiation Formula of order $2 k$ have been developed by the interpolation and collocation techniques with the incorporation of k off-step points at interpolation for the approximation of the solutions of stiff system and system of fuzzy of ordinary differential equations. The Legendre polynomial of first kind was employed as basis function, which of course, produces exactly the same continuous form as the popularly adopted power series on inspection.

Analysis of basic properties of numerical methods was carried out and findings show that the methods are of maximum order $2 k$ in general and the 2 -step block hybrid backward differentiation formula is of optimal order. They are consistent, zero-stable and convergent. The stability region was plotted using the idea of General Linear Method (GLM). The methods were reformulated and stability polynomials were obtained and found to have a moderate region of absolute stability.

The schemes were implemented as block method and therefore have the capacity to generate k simultaneous solutions at different points in a single application of the methods.

Four test problems have been considered and compared with existing methods to test the efficiency and accuracy of the new methods.

REFERENCES

Abhulimen C.E \& Omeike G.E (2011). A sixth-order exponentially fitted scheme for the numerical solution of systems of ordinary differential equations. Journal of Applied Mathematics \& Bioinformatics, vol.1, no.1, 2011

Abhulimen C.E \& Ukpebor I.A (2018). A New Class of Third Derivative Fourth-Step ExponentialFitting NumericalIntegrator for Stiff Differential Equations. International Journal of Mathematical Analysis and Optimization: Theory and Applications Vol. 2018 pp. 382-391

Akinfenwa O, Ahmed A \& Kabir O (2014). A Two Step L_{o} Second Derivative Hybrid Block Method for Solution of Stiff Initial Value Problems. Nigeria Journal of Mathematics and Applications Volume 23, (2014) 30-38

Akinfenwa O.A \& Jator S.N (2011). A Self-Starting Block Adams Method for Solving Stiff
Ordinary Differential Equation. The 14th International Conference on Computational Sciencesand Engineering.Retrieved from: http://www.researchgate.net/publication/220775474.

Akinfenwa O.A, Abdulganiy R \& Okunuga S.A (2017). Simpson's 3/8-Type Block Method for Stiff Systems of Ordinary Differential Equations. Journal of the Nigerian Mathematical Society. Vol. 36, Issue 3, pp.503-514, 2017.

Akinfenwa O.A, Jator S.N \& N.M Yao (2011). Implicit Two Step Continuous Hybrid Methods with Four Off-StepPoints for Solving Stiff Ordinary Differential Equation. World Academy of Science, Engineering and Technology. International Journal of Mathematical and Computational Engineering Vol:5, No.3, 2011

Akinfenwa O.A, Jator S.N and Yao N.M (2011). An Eighth Order Backward Differentiation Formula with Continuous Coefficients for Stiff Ordinary Differential Equations. World Academy of Science, Engineering and Technology. International Journal of Mathematical and Computational Engineering Vol:2, No.2, 2011.

Akinfenwa O.A, S.N Jator \& Yao N.M (2013). Continuous Block Backward Differentiation Formula for Solving Stiff Ordinary Differential Equations. Computers and Mathematics with Application 65 (2013) 996-1005

Babangida B, Musa H \& Ibrahim L.K (2016). A New Numerical Method for Solving Stiff Initial Value Problems. Fluid Mechanics: Open access 2016, 3:2 DOI:10.4172/2476-2296,1000136

Bakari I, Skwame Y \& Kumleng G.M (2018). An Application of Second Derivative Backward Differentiation Formula Hybrid Block Method on Stiff Ordinary Differential Equations. Journal of Natural Sciences and Research. Vol.8, no. 8, 2018

Baraff (1997). Physically Based Modelling: Principles and Practice Implicit Methods for Differential Equations. Robotic Institute, Carnegie Mellon University.

Biala T.A, Jator S.N, Adeniyi R.B \& Ndukum P.L (2015). Block Hybrid Simpson's Method with Two Off-Grid Points for Stiff Systems. International Journal of Nonlinear Science. Vol.20(2015) No.1, pp. 3-10.

Chollom G.M, Kumleng G.M \& Longwap S (2014). High Order Block Implicit Multistep Method for the Solution of Stiff Ordinary Differential Equations. International Journal of Pure and Applied Mathematics. Volume 96, No. 4 2014, 483-505.

Cooper G. J (1969). The Numerical Solution of Stiff Differential Equations. Edinburgh, Scotland. North Holland Publishing Company-Amsterdam

Curtiss C.F \& Hirschfelder J.O (1952).Integration of Stiff Equations. VOL. 38, 1952 Mathematics: The Naval Research Laboratory, Department of Chemistry, University ofWisconsin, Madison, Wisconsin.

Ehigie J.O. \& Okunuga S.A. (2014). A stiffly stable second derivative block Multistep formula with Chebyshev Collocation points for stiff problems International Journal of Pure and Applied Mathematics Volume 96 No. 4 2014, 457-481 Retrieved from: http://www.ijpam.eudoi: http://dx.doi.org/10.12732/ijpam.v96i4.4

Ehigie J.O, Okunuga S. A. \& Sofoluwe A. B. (2013). A Class of Exponentially fitted Second Derivative Extended Backward Differentiation Formula for solving Stiff problems. fasciculi mathematici Nr 51.
Mehrkanoon S, Majid Z.A \& Suleiman M. (2010). A Variable Step Implicit Block Multistep Method for Solving First Order ODE's: Journal of Computational and Applied Mathematics 233 (2010) 2387-2394:

Nwachukwu G.C \& Okor T (2018). Second Derivative Generalized Backward Differentiation Formulae for Solving Stiff Problems. IAENG International Journal of Applied Mathematics, 48:1, IJAM_48_1_01

Sũ li E (2014).Numerical Solution of Ordinary Differential Equations. Mathematical Institute, University of Oxford.

Sahi R. K, Jator S.N \& Khan N.A (2012). A Simpson’s type second derivative method for stiff systems. International Journal of Pure and Applied Mathematics. Volume 81, No. 4 2012, 618-633.

