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1. Introduction 

Mycobacterium tuberculosis complex organisms 

are the cause of the airborne infectious disease known as 

tuberculosis (TB). Mycobacterium tuberculosis can cause 

disease in practically every organ of the body despite 

being largely a pulmonary pathogen. Mycobacterium 

tuberculosis infection can progress from host 

containment, in which the bacteria are isolated within 

granulomas (latent tuberculosis infection), to a 

contagious state, in which the patient will exhibit 

symptoms such as coughing up blood, having a fever, 

sweating excessively at night, and losing weight [1]. Only 

pulmonary TB that is active can spread. Drug-resistant 

tuberculosis is a major concern in many contexts, and it 

continues to be a major source of morbidity and mortality 

in many low- and middle-income nations [15]. As a lungs 

illness, tuberculosis is largely transmitted through an 

active infection of this vital organ. Respiratory droplets 

that contain the tubercle bacillus are used to spread 

tuberculosis. These are exhaled by people who have 

active tuberculosis, and contacts then breathe them in.  

The physical barriers found in the upper respiratory 

system will prevent the majority of droplets from entering 

the body, but those that are smaller than 12 m can get past 

these barriers and reach the lower respiratory tract and 

lungs [11].  The fight between the host and 
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infection starts when the germs come into contact with 

immune system cells. Alveolar macrophages consume 

inhaled droplets containing minuscule amounts of germs 

[12]. These macrophages carry the pathogen to draining 

lymph nodes while harboring it. A little granulomatous 

lesion forms and houses the germs. Ninety percent of all 

affected people can attest to this. They won’t get sick 

straight away. However, because the bacteria are still 

there, there is a chance that a disease could eventually 

manifest [14]. Illness will immediately follow primary 

infection in those with weakened immune systems. This 

is true, for instance, of HIV-positive people, for whom the 

chance of developing the condition within a year is 

significantly raised depending on the degree of 

immunodeficiency. People who successfully contain the 

infection for years are nonetheless at danger, and an 

epidemic could happen later when the immune system is 

compromised. Due to reactivation, an outbreak can 

happen. Although less probable, disease-causing 

reinfection is not completely precluded [10]. 

Understanding the clinical behavior of this pathogen in its 

sole native host is crucial in order to comprehend the 

molecular pathogenesis of Mycobacterium tuberculosis 

infection. The settings to which Mycobacterium 

tuberculosis must adapt are exclusively determined by its 
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natural history within its host because the pathogen has 

no known reservoir outside of humans. Aerosolized 

droplets harboring the contagious Mycobacterium 

tuberculosis are virtually completely responsible for the 

transmission of the disease tuberculosis [13]. These 

droplets are produced by a person who has 

Mycobacterium tuberculosis and are inhaled by someone 

who is not sick. There are four outcomes that could occur 

upon inhalation of Mycobacterium tuberculosis: 

immediate eradication of the organism. Persistent 

infection Active disease first appears (primary disease) 

and reappears years later (reactivation disease). 

Reactivation illness happens in 510 of people with latent 

infection who have no underlying medical conditions. 

Patients with HIV are significantly more likely to have 

reactivation. The interaction of elements attributed to the 

organism and the host determines these consequences [2]. 

2. Material and Method 

2.1 Computation of Disease Equilibriums 

A five compartment mathematical model was 

designed for Mycobacterium tuberculosis which includes 

the S-Susceptible, E-Exposed, I-Infected, V-Vaccinated 

and R-Recovered de- pending on the stage each 

individual falls on the compartment chain, which is given 

as follows: 

 
𝒅𝑺

𝒅𝒕
 = ω + πS − (µ + λI)S               (1) 

𝒅𝑬

𝒅𝒕
 = λSI − (µ + β + α)E              (2) 

𝒅𝑰

𝒅𝒕
 = βE − (µ + γ + δ)I (3) 

𝒅𝑽

𝒅𝒕
 = αE +  γ I − (µ + Ω)V           (4) 

𝒅𝑹

𝒅𝒕
= ΩV − πS − µR     (5) 

In the formulation of the above mathematical model some 

important assumptions were properly considered: 

1. Recruitment occurs only in the susceptible through 

birth. 

2. Individual can move to expose in an unsafe 

environment. 

3. Exposed individual can be infected through direct 

or indirect contact. 

4. Exposed individual can be vaccinated without 

being infected. 

5. Vaccinated individual can recover after a certain 

period. 

6. Recovered individual can move back to 

susceptible and start the chain all over if proper 

action is not taken. 

7. Birth rate and death rate are not equal. 

8. All parameters are non-negative. 

9. Death is liable to the entire compartment. 

Equilibrium states of mycobacterium tuberculosis 

model: At Disease Free Equilibrium (DFE): 

𝑑𝑆

𝑑𝑡
 = 

𝑑𝐸

𝑑𝑡
 = 

𝑑𝐼

𝑑𝑡
 = 

𝑑𝑉

𝑑𝑡
 = 

𝑑𝑅

𝑑𝑡
 = 0 

ω + πS − (µ + λI)S = 0 (6) 

λSI − (µ + β + α)E = 0 (7) 

βE − (µ + γ + δ)I = 0 (8) 

ΩV − πS − µR = 0 (9) 

αE + γI − (µ + Ω)V = 0 (10) 

Disease free equilibrium [DFE] state is a state with the 

absence of disease such that I = 0 then solving equations 

[6] - [10] the disease-free equilibrium is given as: 

{S0, E0, I0, R0, V0} = {
𝝎

{𝝁−𝝅}
, 𝟎, 𝟎, 𝟎, 𝟎, } (11) 

 

Diagram 1. Schematic diagram of the model 

Table 1. Parameter descriptions/interpretation. 

Model 

Parameters 

Description/Interpretation 

ω Recruitment into the uninfected Class S 

λ Susceptible Movement into the exposed 

Class E 

α Exposed Movement into the Vaccinated  

Class V 

Ω Recovered Movement into the Recovered  

Class R 

γ Infected  Movement into the Vaccinated 

Class V 

β Contact rate of exposed moving to Infected 

Class I 

μ Natural Death 

δ Death due to Infection from Class I 

π May return to the Susceptible Class S 
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Endemic Equilibrium State: This is an equilibrium state 

where infection is totally assumed to be present such that 

𝑰 ≠  𝟎 therefore it is given as: 

𝑺 =
𝝎

µ+ 𝝀𝑰 −𝝅
 

(12) 

𝑬 =
𝝀𝑺𝑰

µ+𝜷+𝜶
 

(13) 

𝑰 =
𝜷𝑬

µ+ 𝒆+ 𝜹
 

(14) 

 

𝑽

=
𝜶𝝀𝑺𝑰(µ +  𝒆 +  𝜹) +  𝒆𝜷𝑬 (µ +  𝜷 +  𝜶)

(µ +  𝒆 +  𝜹) (µ +  𝜷 +  𝜶) (µ +  Ω)
 

(15) 

𝑺 =
Ω𝑽 −  𝝅𝑺

µ
 

(16) 

Using equations (1) – (5) to show the Existence and 

Uniqueness of solution of the model under consideration, 

we proceed as follows : 

𝒅𝑺

𝒅𝒕
 = ω + πS − (µ + λI)S   (17) 

   
𝒅𝑺

𝒅𝒕
 ≥ −(µ + λI)S (18) 

Such that, S0 > 0 

S ≥ e{µ+λI−π}t • S0  
 (19) 

𝒅𝑬

𝒅𝒕
 = λSI − (µ + β + α)E 

(20) 

𝒅𝑬

𝒅𝒕
 ≥ −(µ + β + α)E 

(21) 

Such that, E0 > 0 

E ≥ e{µ+β+α}t • E0
 (22) 

𝒅𝑰

𝒅𝒕
= βE − (µ + e + δ)I (23) 

𝒅𝑰

𝒅𝒕
≥ −(µ + e + δ)I (24) 

Such that, I0 > 0 

I ≥ e{µ+e+δ}t • I0
 (25) 

𝒅𝑽

𝒅𝒕
= αE + eI − (µ + Ω)V (26) 

𝒅𝑽

𝒅𝒕
≥ −(µ + Ω)V (27) 

Such that, V0 > 0 

V ≥ e−{µ+Ω}t • V0
 (28) 

𝒅𝑹

𝒅𝒕
= ΩV − πS − µR (29) 

𝒅𝑹

𝒅𝒕
 ≥ −µR  (30) 

Such that, R0 > 0 

R ≥ e−µt • R0   (31) 

For uniqueness: 

𝑭𝟏  =  𝝎 +  𝝅𝑺 − (µ +  𝝀𝑰)𝑺 (32) 

𝑭𝟐  =  𝝀𝑺𝑰 − (µ +  𝜷 +  𝜶)𝑬   (33) 

F3 = βE − (µ + e + δ) (34) 

𝑭𝟒 =  Ω𝑽 −  𝝅𝑺 −  µ𝑹 (35) 

𝑭𝟓 = 𝜶𝑬 +  𝒆𝑰 − (µ +  Ω)𝑽 (36) 

Table 2. Parameter values 

Parameters Values 

ω 8000 

λ 0.00008 

α 0.50 

μ 0.01 

Ω 0.35 

γ 0.070 

δ 0.30 

β 0.1 

π 0.010 

S0 11000 

E0 3500 

I0 500 

V0 375 

Ro 300 
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Then differentiating (32) - (36) we obtained the following equations: 

|
𝝏𝑭𝟏

𝝏𝑺
|  = | π − (µ + λI) |< ∞, |

𝝏𝑭𝟏

𝝏𝑬
| = 0 < ∞, |

𝝏𝑭𝟏

𝝏𝑰
| = | λS |< ∞, |

𝝏𝑭𝟏

𝝏𝑹
|  = 0 < ∞, |

𝝏𝑭𝟏

𝝏𝑽
|  = 0 < ∞ 

|
𝝏𝑭𝟐

𝝏𝑺
|  = | λI |< ∞,   |

𝝏𝑭𝟐

𝝏𝑬
| = |− (µ + β + α) |< ∞,|

𝝏𝑭𝟐

𝝏𝑰
| = | λS |< ∞,    |

𝝏𝑭𝟐

𝝏𝑹
|  = 0 < ∞,   |

𝝏𝑭𝟐

𝝏𝑽
|  = 0 < ∞. 

|
𝝏𝑭𝟑

𝝏𝑺
|  0 < ∞,|

𝝏𝑭𝟑

𝝏𝑬
| = | β |< ∞, |

𝝏𝑭𝟑

𝝏𝑰
| = | − (µ + e + δ) |< ∞, |

𝝏𝑭𝟑

𝝏𝑹
|  = 0 < ∞,   |

𝝏𝑭𝟑

𝝏𝑽
|  = 0 < ∞. 

 |
𝝏𝑭𝟒

𝝏𝑺
|  | π |< ∞,   |

𝝏𝑭𝟒

𝝏𝑬
| = 0 < ∞,   |

𝝏𝑭𝟒

𝝏𝑰
| = 0 < ∞, |

𝝏𝑭𝟒

𝝏𝑹
|  =  | −µ |<  ∞,   |

𝝏𝑭𝟒

𝝏𝑽
|  = | Ω |< ∞. 

  |
𝝏𝑭𝟒

𝝏𝑺
|  0 < ∞,   |

𝝏𝑭𝟒

𝝏𝑬
| = | α |< ∞,|

𝝏𝑭𝟒

𝝏𝑰
| = | e |< ∞, |

𝝏𝑭𝟒

𝝏𝑹
|  =  0 < ∞,   |

𝝏𝑭𝟒

𝝏𝑽
|  = | −{µ + Ω} |< ∞ 

 

It has been clearly shown that all partial derivatives of the 

whole system of equations [1] -[5] exist and it is also non- 

negative therefore it is finite, bounded and has a unique 

solution. 

2.2  Computation of Reproduction Number 

We then calculate the reproduction number R0: From 

equations (2) and (3) 

𝒅𝑬

𝒅𝒕
  = λSI − (µ + β + α)E 

𝒅𝑰

𝒅𝒕
   = βE − (µ + e + δ)I 

Where, 

R0 = ρ (FV −1) (37) 

F = (
𝟎 𝝀𝑺𝟎
𝟎 𝟎

) (38) 

and 

Vi    =    𝑽𝒊
− -  𝑽𝒊

+   (39) 

Vi= (
(µ +  𝜷 +  𝜶) 𝟎

− 𝜷 (µ +  𝒆 +  𝜹)
) 

(40) 

Where, 

J1    =  (µ +  𝜷 +  𝜶) 

J2    =  (µ +  𝒆 +  𝜹) 

V-1  =  (

𝟏

𝑱𝟏

 𝜷

𝑱𝟏𝑱𝟐

𝟎
𝟏

𝑱𝟐

) 

(41) 

F = (
𝟎

𝝀𝑺𝟎

𝑱𝟐

𝟎 𝟎
)     

 𝝀𝝎 

{µ − 𝝅}{µ + 𝒆 + 𝜹}
 

(42) 

𝑹𝟎 =  
 𝝀𝝎 

{µ −  𝝅}{µ +  𝒆 +  𝜹}
 

(43) 

2.3 Analytical Solution of the Governing Model 

Equation Via Homotopy Perturbation Method 

(HPM) 

The Homotopy Perturbation Method (HPM) was 

first discovered by Ji-Haun (2000). The Homo- topy 

Perturbation Method (HPM), which provides analytical 

approximate solution, is applied to various linear and 

non-linear equations. The homotopy perturbation method 

(HPM) is a series expansion method used in the solution 

of nonlinear partial differential equations.  

Solution of the Model Equations 

Using the following initial conditions (44) on the 

governing model equations (1 –5) 

S(0) = S0, E(0) = E0, I(0) = I0, V (0) = V0, R(0) = R0 (44) 

We then let, 

S = a0 + pa1 + p2a2 + 

E = b0 + pb1 + p2b2 + 

 I = c0 + pc1 + p2c2 + 

V = d0 + pd1 + p2d2 + 

R = e0 + pe1 + p2e2 + 

(45) 

Applying HPM on (1) - (5) using (48) we obtain the 

following equations; 

 

𝑷𝟎: 𝒂𝟎
′ = 𝟎

𝑷′: 𝒂𝟏
′ + 𝝀𝒂𝟎𝒄𝟎  +  𝝁𝒂𝟎 −  𝝅𝒂𝟎 −  Ѡ = 𝟎

𝑷𝟐: 𝒂𝟐
′ + 𝝀𝒂𝟏𝒄𝟎 +  𝝀𝒂𝟎𝒄𝟏 + 𝝁𝒂𝟏 −    𝝅𝒂𝟏 = 𝟎

}  

(46) 

𝑷𝟎: 𝒃𝟎
′ = 𝟎

𝑷′: 𝒃𝟏
′ + (µ +  𝜷 +  𝜶)𝒂𝟎 − 𝝀𝒂𝟎𝒄𝟎  = 𝟎

𝑷𝟐: 𝒃𝟐
′ + (µ +  𝜷 +  𝜶)𝒃𝟏 −  𝝀𝒂𝟎𝒄𝟏 + 𝝀𝒂𝟏𝒄𝟎 = 𝟎

} 

(47) 

𝑷𝟎: 𝒄𝟎
′ = 𝟎

𝑷′: 𝒄𝟏
′ + (µ +  𝜸 +  𝜹)𝒄𝟎 − 𝜷𝒃𝟎  = 𝟎

𝑷𝟐: 𝒄𝟐
′ + (µ +  𝜸 +  𝜹)𝒄𝟏 −  𝜷𝒃𝟏 = 𝟎

} 

(48) 
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𝑷𝟎: 𝒅𝟎
′ = 𝟎

𝑷′: 𝒅𝟏
′ + (µ + Ὠ)𝒅𝟎 − 𝜶𝒃𝟎 −  𝜸𝒄𝟎  = 𝟎

𝑷𝟐: 𝒅𝟐
′ + (µ + Ὠ)𝒅𝟏 − 𝜶𝒃𝟏 −  𝜸𝒄𝟏  = 𝟎

}  

(49) 

𝑷𝟎: 𝒆𝟎
′ = 𝟎

𝑷′: 𝒆𝟏
′ + 𝝅𝒂𝟎 − 𝝁𝒆𝟎 −  Ὠ𝒅𝟎  = 𝟎

𝑷𝟐: 𝒆𝟐
′ + 𝝅𝒂𝟎 − 𝝁𝒆𝟏 −  Ὠ𝒅𝟏  = 𝟎

} 

(50) 

Solving (46) - (50) by direct integration method for P0 

using (44) we obtain the following 

𝒂𝟎 = 𝑺𝟎
𝒃𝟎 = 𝑬𝟎
𝒄𝟎 = 𝑰𝟎
𝒅𝟎 = 𝑽𝟎
𝒆𝟎 = 𝑹𝟎}

 
 

 
 

  

(51) 

Where S0, E0, I0, V0 and R0 are all constants initial 

conditions. 

Substituting (51) into (46) - (50) and solve by direct 

integration method for P1 , we obtain the following 

equations. 

a1 = (ω + πS0 − µS0 − λS0I0)t 

b1 = (λS0I0 − (µ + β + α)E0 

c1 = (βE0 − (µ + δ + γ)I0)t 

d1 = (γI0 + αE0 − (µ + Ω)V0)t 

e1 = (ΩV0 − µR0 − πS0)t 

(52) 

Similarly, Substituting (51) and (52) into (46) - (50) and 

solve by direct integration for P2, we obtain the following 

equations.

a2 =  π(ω + πS0 − µS0 − λS0I0) − µ(ω + πS0 − µS0 − λS0I0)      𝒕
𝟐

𝟐
    

          (λ(βE0 − (µ + β + α)I0)S0 − λI0(ω + πS0 − µS0 − λS0I0) 

(53) 

b2 =   π(ω + πS0 − µS0 − λS0I0)I0 + λS0(βE0 − (µ + δ + γ)I0    𝒕
𝟐

𝟐
 

         −(µ + β + α)(λS0I0 − (µ + β + δ)E0 

(54) 

c2 =   (β(λS0I0 − (µ + β + α)E0) − (µ + δ + γ)(βE0 − (µ + δ + γ)I0)) 𝒕
𝟐

𝟐
 (55) 

d2 =   γ(βE0 − (µ + δ + γ)I0 + α(λS0I0 − (µ + β + α)E0   𝑡
2

2
                                             

  −(µ + Ω)(γI0 + αE0 − (µ + Ω)V0 
(56) 

e2 =   Ω(γI0 + αE0 − (µ + Ω)V0 − µ(ΩV0 − µR0 − πS0)   𝒕
𝟐

𝟐
 

          −π(ω + πS0 − µS0 − λS0I0) 

(57) 

But, from (45) we have, 

S = a0 + pa1 + p2a2 + · · ·  

E = b0 + pb1 + p2b2 + · · ·  

I = c0 + pc1 + p2c2 + · · · 

V = d0 + pd1 + p2d2 + · · 

R = e0 + pe1 + p2e2 + · · · 

(58) 

then, we let, 

limp→1 S(t) = limp→1(a0 + pa1 + p2a2 + · · · ) = a0 + a1 + a2 + · · · 

limp→1 E(t) = limp→1(b0 + pb1 + p2b2 + · · · ) = b0 + b1 + b2 + · · ·  

limp→1 I(t) = limp→1(c0 + pc1 + p2c2 + · · · ) = c0 + b1 + c2 + · · · 

limp→1 V (t) = limp→1(d0 + pd1 + p2d2 + · · · ) = d0 + d1 + d2 + · · ·  

limp→1 R(t) = limp→1(e0 + pe1 + p2e2 + · · · ) = e0 + e1 + e2 + · · · 

(59) 

This implies that, 
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S(t)= limp→1 S(t) = limp→1(a0 + pa1 + p2a2 + · · · ) = a0 + a1 + a2 + 

S(t) = S0 + (ω + πS0 − µS0 − λS0I0)t + πω + πS0 − µS0 − λS0I0) − µ(ω + πS0  

µS0λS0I0) −λ(βE0− (µ + δ + γ)I0)S0 − λI0(ω + πS0− µS0 – λS0I0)    𝒕
𝟐

𝟐
 

(60) 

E(t)= limp→1 E(t) = limp→1(b0 + pb1 + p2b2 + · · · ) = b0 + b1 + b2 + · ·  

E0 + (λS0I0 − (µ + β + α)E0)t)  λ (ω + πS0 − µS0 − λS0I0)I0 + λS0(βE0    

− (µ + δ + γ)I0 −(µ + β + α)λS0I0 − (µ + β + δ)E0   𝒕
𝟐

𝟐
 

(61) 

I(t) = limp→1 I(t) = limp→1(c0 + pc1 + p2c2 + · · · ) = c0 + b1 + c2 +  

I(t) =   I0 + (βE0 − (µ + ω + λ)I0)t)   β(λS0I0 − (µ + β + α)E0− (µ + δ + γ)βE0 

            − (µ + δ + γ)I0     

(62) 

V (t) = limp→1 V (t) = limp→1(d0 + pd1 + p2d2 + · · · ) = d0 + b1 + d2 +  

V(t) = V0 + (γI0 + αE0 − (µ + Ω)V0)t +  γ(βE0 − (µ + δ + γ)I0 + α(λS0I0 

− (µ + β + α)E0 −(µ + Ω)(γI0 + αE0 − (µ + Ω)V0    
𝒕𝟐

𝟐
      

(63) 

R(t) = limp→1 R(t) = limp→1(e0 + pe1 + p2e2 + · · · ) = e0 + e1 + e2 + · · ·  

R(t) =   R0 + (ΩV0 − µR0 − πS0)t    Ω(γI0 + αE0 − (µ + Ω)V0) − µ(ΩV0 − µR0 − πS0)  

π(ω + πS − µS − λS I )  𝒕
𝟐

𝟐
   

(64) 

 

3. Results and Discussion 

Figure 1 depicts the graph of Infected class against 

time for different values of infectious rate β and it was 

observed that the, Infected class gets more populated as 

infectious rate increases. 

Figure 2 shows the graph of Infected class against 

time for different values of natural death rate µ and it was 

observed that the, population of the infected class reduces 

as natural death increases. 

Figure 3 shows the graph of vaccinated class against 

time for different values of natural death rate µ and it was 

observed that the, vaccinated class reduces in population 

as natural death rate increases. 

Figure 4 depicts the graph of vaccinated class 

against time for different values of recovery rate Ω and it 

was observed that the, vaccinated class reduces in 

population as recovery rate increases. 

Figure 5 displays the graph of recovered class 

against time for different values of recovery rate Ω and it 

was observed that the, recovered class increased in 

population as recovery rate increases. 

Figure 6 shows the graph of recovered class against 

time for different values of transmission rate back to 

susceptible class π and it was observed that the, 

population of recovered class reduces as transmission rate 

back to susceptible class increases. 

Figure 7 depicts the graph of exposed class against 

time for different values of contact rate λ and it was 

observed that the, exposed class increased in population 

as contact rate increases. 

Figure 8 displays the graph of susceptible class 

against time for different values of natural death rate µ 

and it was observed that the, susceptible class decreased 

in population as natural death rate increases. 

Figure 9 shows the graph of susceptible class 

against time for different values of contact rate λ and it 

was observed that the, susceptible class decreased in 

population as contact rate increases. 

Figure 10 displays the graph of susceptible class 

against time for different values of recruitment rate ω and 

it was observed that the, susceptible class increased in 

population as recruitment rate increases. 

Even if we have a high rate of recovery, Figure 6 

shows that the population will still be susceptible to 

Mycobacterium tuberculosis. It confirms that people are 

not immune to the disease because they can still return 

and become vulnerable to it through the transmission 

parameter,  which  lowers  the population after recovery. 
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Fig 1. Graph of Infected class against time for different 

values of β. 

Fig 2. Graph of Infected class against time for different 

values of μ. 

  

Fig 3. Graph of Vaccinated class against time for 

different values of μ. 

Fig 4. Graph of Vaccinated class against time for 

different values of Ω. 

  

Fig 5. Graph of Recovered class against time for different 

values of Ω. 

Fig 6. Graph of Recovered class against time for 

different values of π. 
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Fig 7. Graph of Exposed class against time for different 

values of λ. 

Fig 8. Graph of Susceptible class against time for 

different values of μ. 

  

Fig 9. Graph of Susceptible class against time for 

different values of λ 

Fig 10. Graph of Susceptible class against time for 

different values of ω. 

 

 

 

According to Figure 1, there will be an exponential 

growth in the number of infected people if more people 

are exposed to the disease through the infectious rate and 

become infectious, which will cause the disease to spread 

quickly throughout the population. Figure 4 demonstrates 

how a sharp decline in the vaccina- tion class resulted 

from more people recovering from the illness. Figure 7 

also shows that the disease is spread throughout the 

community due to an increase in contact rates, which 

lowers the population that is vulnerable in figure 9. But 

in general from Figure 5, we saw that, more persons are 

overcoming the disease, as evidenced by the 

Mycobacterium tuberculosis recovery count. 

4. Conclusion 

Mathematical model with five compartments have 

shown and properly analyze how mycobac- terium 

tuberculosis can spread across human being. The SEIR 

model was extended to SEIVR by assuming a vaccinated 

class (V-Class) which clearly show in the result that if 

individuals in Exposed class (E-Class) skips the V-Class 

then the individual goes to the infected class (I- Class) 

directly because of how contagious mycobaterium 

tuberculosis is. The Mycobacterium tuberculosis 

vaccination is long term process although it effectiveness 

is seen through the rate at which Ω moves from V-Class 

to R-Class. So an alternative solution was created using 
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the model by reducing the contact rate (β) which flows 

between the E-Class and I-Class in other to lower the rate 

of I-Class and Death due to disease Infection as shown in 

the figures 1 -11. Consequently, when the Recovery Rate 

is high, the Infected Population experiences a significant 

decrease, while the Recovered Population exhibits 

exponential growth. As a result, the disease diminishes, 

and the Susceptible Population grows. In conclusion, it 

can be inferred that the disease has a propensity to fade 

away over time. 
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