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 31 

ABSTRACT:  32 

Artificial Neural Network (ANN) and Random Forest models for predicting the weight of rumen fill of cattle and 33 

sheep were developed. Data on weight of rumen fill were collected from studies that reported body weights, 34 

measured rumen fill and stated diets fed to animals. Animal and feed factors that affected rumen fill were identified 35 

from each study and used to create a dataset. These factors were used as input variables for predicting the weight 36 

of rumen fill. For ANN modelling, a three-layer Levenberg-Marquardt Back Propagation Neural Network was 37 

adopted and achieved 96% accuracy in prediction of the weight of rumen fill. The precision of the ANN model’s 38 

prediction of rumen fill was higher for cattle (80%) than sheep (56%). On validation, the ANN model achieved 39 

95% accuracy in prediction of the weight of rumen fill. A Random Forest model was trained using a binary tree-40 

based machine-learning algorithm and achieved 87% accuracy in prediction of rumen fill. The Random Forest 41 

model achieved 16% (cattle) and 57% (sheep) accuracy in validation of the prediction of rumen fill. In conclusion, 42 

the ANN model gave better predictions of the weight of rumen fill compared to the Random Forest model and 43 

should be used in predicting rumen fill of cattle and sheep. 44 

 45 
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INTRODUCTION 61 

The weight of herbage or roughage in the rumen (rumen fill) is determined by total feed intake and the rate at 62 

which ingested feed leaves the rumen (Weston and Hogan  1971). Rumen fill regulates long term-term roughage 63 

intake through satiation, influences feeding behaviour and its prediction is crucial to planning feeding strategies 64 

to improve the productivity of livestock (Yearsley et al. 2001). Attempts (Sekine et al. 1991; Illius and Gordon 65 

1992; Nsahlai and Apaloo 2007) have been made to predict rumen fill achieving moderate precision and accuracy 66 

in predictions. Several factors that affect rumen fill are not accounted for in existing rumen fill prediction models. 67 

Existing models for predicting rumen fill in ruminants are a function of body weight (Illius and Gordon 1992) and 68 

feed intake (Sekine et al. 1991) alone, making them structurally inadequate to predict rumen fill for nutritionally 69 

diverse classes of ruminants.  70 

Few studies have considered predicting rumen fill in-cooperating both feed and animal characteristics to 71 

improve the predictive capacity of the model using Artificial Neural Networks. Artificial Neural Networks have 72 

been successfully used in simulation of milk production in goats (Fernandez et al. 2006), in vitro methane and 73 

carbon dioxide production in the rumen (Dong and Zhao 2014) and modelling of solid and liquid passage rate in 74 

ruminants (Moyo et al. 2017; Moyo et al. 2018a). Modelling of rumen fill will reduce the cost of cannulation of 75 

animals and use of invasive methods (fistulation) in ruminant nutrition , and find application in prediction of 76 

roughage intake and simulation of times spent ruminating. The objective of this study was to develop and compare 77 

Artificial Neural Network and Random Forest simulation models for predicting the weight of rumen fill. The 78 

study tested the hypothesis that Artificial Neural Networks would predict the weight of rumen fill better than 79 

Random Forest models. 80 

 81 

MATERIALS AND METHODS 82 

Creation of dataset 83 

Data were collected from studies that reported average values or ranges for bodyweights of 84 

animals, measured rumen fill and stated the feeds and/or proportion of feeds in the diet given to animals. A dataset 85 

was created containing observations from cattle and sheep (Table 1). Studies used in the dataset had the weight 86 

of rumen fill measured by complete manual evacuation of the rumen through the fistulas or measured after 87 

slaughter, and had the rumen digesta homogenised, sub-sampled and at least analysed for dry matter. Qualitative 88 

and quantitative animal, feed and animal management factors that affect the weight of rumen fill were identified 89 

from each study and were included in a dataset.  90 
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 91 

Animal factors: The quantitative animal factors that affect rumen fill included in the dataset were age of animal 92 

(in years), body weight (LBW in kg), mature body weight (MBW in kg), time delay in measuring rumen fill after 93 

meal termination (TD in hours). Body weights reported in pounds or scaled to metabolic body weight were 94 

converted to actual body weight in kilogra ms. Time delay for measurement of fill after feeding was computed in 95 

hours, however, TD was assumed to be zero where no specification of TD was given. Qualitative animal factors 96 

that affect rumen fill were the physiological status of the animal and type of ruminant species. These qualitative 97 

factors were coded and given numerical weights. These were (i) physiological state (PHY) which classified 98 

animals as either growing (0), at maintenance (1), non-pregnant (2), pregnant (3) and as lactating (4); and (ii) 99 

species type (SPT) which categorised animals either as lambs (0), calves (1); wethers (3); steers (3), rams (4), 100 

bulls (5), ewes (6) or cows (7). 101 

 102 

Feed factors: Diet properties that affect rumen fill were mainly the proximate chemical composition of feeds and 103 

diets fed to animals. These factors were dry matter (DM), crude protein (CP), neutral detergent fibre (NDF), acid 104 

detergent fibre (ADF), and non-fibre non-protein carbohydrate (CHO) of the feeds and diets all computed in g/kg 105 

DM. Where feed composition was not stated but feed name was given, chemical compositions of these feeds were 106 

obtained from Feedipedia (2015). The non-fibre non-protein carbohydrate (CHO) was calculated as CHO = 1000-107 

CP-NDF.  108 

 109 

Environmental factor: The only qualitative environmental management factor that affects rumen fill included in 110 

the dataset was animal management (MGT) which classified animals as either outdoor grazing (0) or indoor zero-111 

grazing (1). 112 

 113 

Thus, the 12 factors used as input variables for the prediction of rumen fill using Artificial Neural Networks and 114 

Random Forest models were; species type, age of animal, animals physiological state, body weight, mature body 115 

weight, dry matter content, crude protein content, neutral detergent fibre content, acid detergent fibre content, 116 

non-fibre non-protein carbohydrate content, time delay in measuring rumen fill after meal termination, and animal 117 

housing system. Although studies that qualified for creating the dataset might not include all published literature, 118 

the studies used were readily available. The final dataset comprised of 140 observations from 20 published 119 

experiments. The sources used to create the dataset are listed in the appendix. 120 
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 121 

Development of Artificial Neural Network model 122 

One Artificial Neural Network model was programmed using the 32-bit Visual Basic version 6.0 to predict the 123 

rumen fill. Rumen fill was predicted using animal, feed and environmental factors as predictors as described 124 

above. Observations in the dataset were randomly separated into two sub-subsets: 75% of the dataset for model 125 

development and 25% for model validation. Since different variables span wide ranges, normalization (within the 126 

interval (−1, 1)) of input and output data were done. For modelling, a three -layer Levenberg–Marquardt BP Neural 127 

Network was adopted, which generally included one input layer, one hidden layer, and one output layer. Thus, 128 

network topologies of 12-7-1 were adopted, corresponding to the numbers of neurons of input, hidden and output 129 

layers for rumen fill (Figure 1). The training was carried out using a back-propagation algorithm. The models 130 

were trained for 2600 epochs at learning rate of 0.005, and momentum of 0.8 and the net error was reduced to 131 

0.00251 for validation data for rumen fill.  132 

 133 

Development of Random Forest model 134 

One Random Forest model was programmed using the 64-bit Python version 3.0 Scikit-Learn package to predict 135 

the rumen fill. A Random Forest model was trained to predict rumen fill using animal, feed and animal 136 

management factors as predictors described previously above. The Random Forest algorithm intrinsically divided 137 

the dataset into 2 subsets, one for prediction and another for internal validation. To ensure a fair and conservative 138 

comparisons between Artificial Neural Network and Random Forest models, 75% of the dataset was for model 139 

development and 25% for model validation in both models. The Random Forest was trained as a binary tree-based 140 

machine-learning method to predict the weight of rumen fill. 141 

 142 

Statistical analysis 143 

A comparison of the accuracy and precision of the Artificial Neural Network and the Random Forest model was 144 

done by comparing the coefficients of determination achieved by the 2 models. After training and model 145 

development the Artificial Neural Network and Random Forest models were used to predict the weight of rumen 146 

fill using the training, validation and entire datasets. Linear regressions of the observed against the predicted 147 

weight of rumen fill was done and the coefficient of determination used to compare the accuracy of Artificial 148 

Neural Network and Random Forest models in the prediction of the weight of rumen fill. An independent dataset 149 

was created containing observations from domesticated and wild ruminants (Table 3). The dataset was used to 150 
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test the performance of the Artificial Neural Network model’s prediction of the weight of rumen fill. The sources 151 

used to create the datasets are listed in the appendix. 152 

The linear regression analysis of observed against predicted rumen fill, and residuals against predicted and 153 

observed rumen fill were carried out. The coefficient of determination (R2 value) was used to assess the precision 154 

of the model in approximating real data points, while the Root Mean Square Error (RMSE) was used to determine 155 

the accuracy of the model’s prediction. The residuals (observed rumen fill minus predicted rumen fill) were 156 

regressed against predicted rumen fill to evaluate the linear and mean biases in the model prediction. The intercept 157 

and slope of the regression were tested to determine any linear or mean bias (St. Pierre 2003). To determine how 158 

close the predictions were from the datasets, the residuals were plotted against observed rumen fill. The Artificial 159 

Neural Network model has been deposited into the Repository of Intelligent Models (REDIM 2016) with  160 

accession number PRUV001134 as indicated at http://www.redim.org.za/?search=PRUV001134.  161 

 162 

RESULTS 163 

 164 

Description of the dataset used for model development and validation using ANN and Random Forests 165 

models 166 

The database was characterized by large variations in dietary  attributes (Table 1). The dataset included 140 167 

observations from 20 studies (78 cattle and 62 sheep). There were thirty-five (35) lactating and seven (7) pregnant 168 

cows in the dataset. Fourteen (14) cattle were growing, while eight (8) cattle were at maintenance level. In sheep, 169 

one (1) was lactating, two (2) were non-pregnant, fifty-two (52) were at maintenance level and seven (7) were 170 

growing.  171 

 172 

Description of the dataset used to test the performance of the ANN rumen fill model  173 

The database was characterized by large variations in dietary attributes (Table 2). The dataset included 438 174 

observations. The observations comprised of 396 grazing ruminants (viz. 2 addax antelope, 1 African buffalo, 10 175 

black wildebeest, 9 swamp buffalo, 313 cattle, 2 muskoxen, 1 Oryx, 57 sheep and 1 waterbuck). There were only 176 

19 observations from intermediate feeders (viz. 1 eland, 2 red deer and 16 goats). Only 3 species of browsing 177 

ruminants that made up 17 observations were present (viz. 1 giraffe, 1 gerenuk, and 15 white-tailed deer).  178 

 179 

Comparison of the performance of ANN and Random Forest models  180 

http://www.redim.org.za/?search=PRUV001134
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The precision and accuracy of prediction of rumen fill was high using the Artificial Neural Network compared to 181 

the Random Forest model (Table 4 and Figure 2a – g). The accuracy of the Random Forest (R2 = 87%) model’s 182 

prediction was 9% lower compared to the ANN model (R2 = 96%) for prediction of rumen fill for both cattle and 183 

sheep combined. The precision of prediction of rumen fill in cattle was 60% lower for the Random Forest model 184 

compared to the ANN model.  185 

 186 

Artificial Neural Network model: A function of residual against predicted rumen fill to assess the mean 187 

(intercept) and linear (slope) biases of the model’s prediction of  rumen fill is given in the equation: Y = 0.0048 188 

(±0.1872) – 0.064 (±0.0192) X (n=105, RMSE= 1.2087; SEM=0.118) (Figure 2c).  189 

 190 

A function of residual rumen fill against observed rumen fill was Y = -0.3086 (±0.1934) – 0.0242 (±0.021) X 191 

(n=105, RMSE = 1.2644) (Figure 2e).  192 

 193 

Random Forest model: A function of residual rumen fill against predicted rumen fill to assess the mean 194 

(intercept) and linear (slope) biases of the model’s prediction of  rumen fill is given in the equation: Y = 195 

0.318(±0.5777) – 0.120 (±0.060) X (n=35, RMSE= 1.941) (Figure 2d).  196 

 197 

A function of residual rumen fill against observed rumen fill was Y = -0.744(±0.5999) + 0.016 (±0.0674) X (n=35, 198 

RMSE = 2.053) (Figure 2f). 199 

 200 

Artificial Neural Network model validation and testing  201 

The regression relationship between observed (Y) and predicted (X) rumen fill in model validation was Y = 0.1889 202 

(±0.3544) + 0.9818 (±0.0386) X (n=35, RMSE = 1.3306, SEM=0.225) accounting for 95% of the variation in the 203 

prediction (Figure 2g).  204 

 205 

The regression relationship between observed (Y) and predicted (X) rumen fill for the combined dataset in 206 

modelling was Y = 0.063 (±0.1681) + 0.9453 (±0.0.0175) X (n=140, RMSE = 1.2562, SEM=0.106) accounting 207 

for 96% of the variation in the prediction (Figure 3).   208 

 209 
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The regression relationship between observed (Y) and predicted (X) rumen fill in testing model performance was 210 

Y = 2.942 (±0.352) + 0.407 (±0.0446) X (n=433, RMSE = 3.731, SEM=0.1793) accounting for 15.98% of the 211 

variation (Figure 4). 212 

 213 

DISCUSSION 214 

ANN outperformed the Random Forest model by achieving 9% more accuracy, though both modelling strategies 215 

accounted for 96 and 87% of the overall variation, both of which are commendable for use. Because of this 216 

disparity, subsequent discussion focused on the ANN model. Rumen fill is a  function of digesta passage rates 217 

(Illius and Gordon 1991), ruminant species (Gordon and Illius 1996), feed and/or diet quality (Nsahlai and Apaloo 218 

2007), physiological state (Gunter et al. 1990), animal housing system (Kadzere et al. 2002), body weight and 219 

mature body weight (Illius and Gordon 1991), period of day and feed intake (Williams et al. 2014). The significant 220 

positive correlation of body weight and mature body weight with rumen fill observed in this study partly justifies 221 

Illius and Gordon’s (1991) basing their prediction of rumen fill on body weight alone. Most studies have 222 

developed rumen fill prediction equations with good coefficients of determination (R2 value) that accounted for a 223 

greater portion of the variation using intake as an input variable. Dry matter intake is one of the fundamental 224 

factors affecting rumen fill together with solid and liquid passage rates. Given that one application of rumen fill  225 

prediction models would be to predict dry matter intake, the inclusion of intake when developing rumen models 226 

may be questionable. To eliminate this bias, prediction model for rumen fill developed in this study did not 227 

incorporate feed intake as an input variable. Models developed in this study gave better predictions of rumen fill 228 

compared to the model of Nsahlai and Apaloo (2007), which achieved an accuracy of only 31%. Sekine et al. 229 

(1991) used feed intake alone to generate a regression equation that accounted for 65% of the variation in fresh 230 

rumen digesta weights, which is lower than the model developed in this study (for cattle); but higher than the 231 

amount of variation accounted for in sheep. Allometric regression of domestic and wild ruminants accoun ted for 232 

97% of the variation in daytime rumen fill (Illius and Gordon 1992) suggesting that body weight alone can be an 233 

accurate predictor of daytime rumen fill load.  234 

 235 

The rumen fill model developed in this study accounted for a large amount of variation for two (2) different 236 

ruminant species. However, there are a couple of limitations to the models developed in this study. Firstly, rumen 237 

fill observations used to develop models in this study were obtained for cattle and sheep, which are predominantly 238 

grazers. This limits the application of the models in predicting rumen fill for other ruminant species and feeding 239 
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types. When tested using wild ruminant species (grazers, browsers, and intermediate feeders), model performance 240 

was fair. The model developed in this study gave good predictions of rumen fill for swamp buffalo (R2 = 0.55), 241 

goats (R2 = 0.65) and for some browsers (white-tailed deer) of body weights similar to sheep. However, the model 242 

underpredicted rumen fill for large ruminants namely the African buffalo (grazers) and giraffe (browsers); while 243 

it over predicted rumen fill for addax antelope, and cattle fed on diets of low dry matter content (279.38±131.582). 244 

Perhaps faster rates of passage of solid and liquid digesta played a significant role in lo wering rumen fill levels in 245 

these cattle; rates of passage which were not accounted for in model development. Although competing activities 246 

in the rumen (degradation and passage), and their rates may apparently affect the rumen fill (Nsahlai 1991), the 247 

time delay (TD) before rumen fill measurement was not significant (P> 0.05). The lack of a significant correlation 248 

between time delay and rumen fill was unexpected. Evidence suggested that overnight starvation may have 249 

reduced rumen fill by approximately 45% (Moyo et al. 2018b) and 60% (Chilibroste et al. 1998) compared to 250 

rumen fill prior to starvation. Rumen fill included in this dataset correlates but are different from the actual rumen 251 

fill at slaughter (time zero hours), thus suggesting a need for this lapse to be determined from empirical trials and 252 

modelled. Finally, better predictions of rumen fill may be achieved by indexing for the effects o f ambient 253 

temperature (climatic conditions), period of under nourishment (Nsahlai et al. 1996) and rates of passage of digesta 254 

in the rumen.  255 

 256 

The models developed in this study achieved appreciable levels of precision and accuracy in prediction of rumen 257 

fill for cattle; while validation of predictions of rumen fill of sheep had low levels of precision. Low levels of 258 

precision in prediction and validation of rumen fill of sheep may be attributed to the relatively few observations 259 

available for modelling rumen fill in sheep and the narrow range of body weights of ruminant species used in 260 

modelling. Perhaps, the inclusion of observations from other ruminants (wild and domesticated) would allow 261 

model prediction to account for more variation in unused observations. Further investigation into input parameters, 262 

with the input of time delay and ambient temperature, and ANN models, especially what goes on in the hidden 263 

layers and specific built-in functions establishing the relationship, still need to be done to reduce noise in the 264 

datasets and achieve the best possible relationships between input variables and rumen fill.  265 

 266 

CONCLUSION 267 

The ANN model accounted for 9% more variation in prediction of the weight of rumen fill compared to the 268 

Random Forest model. The ANN model developed in this study accounted for 56% and 80% of the variation in 269 
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prediction for sheep and cattle, respectively. The Random Forest model accounted for 16% (cattle) and 57% 270 

(sheep). During ANN model performance testing using an independent dataset, model accounted for only 14% of 271 

the variation in prediction of rumen fill for both domestic and wild ruminants.  272 
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Table 1 Summary statistics of diet quality and animal attributes used in the creation of database for rumen fill model development 329 

 Diet quality attributes  Animal attributes 

Cattle DM (g/kg) CP (g/kg) NDF (g/kg) ADF (g/kg) CHO (g/kg)  AGE LBW (kg) MBW (kg) RF (kg DM) 

N 78 78 78 78 78  78 78 78 78 

Min 121 27 325 203 168  1 316 750 6.1 

Max 911 259 778 480 489  6 749 900 21.9 

Mean 581.0 129.7 565.2 331.1 305.1  4.0 556.7 788.5 11.8 

S. D 317.4 67.3 128.9 101.0 77.3  1.8 122.2 65.9 3.4 

Sheep           

N 62 62 62 62 62  62 62 62 62 

Min 80 45 145 219 153.7  1 22.5 70 0.4 

Max 921 345.6 768 530 710  5 71 90 2.3 

Mean 692.7 130.5 556.3 341.0 313.2  2.9 54.0 78.7 1.2 

S. D 315.5 63.2 148.6 72.6 113.8  1.1 12.2 10.0 0.5 

Combined            

N 140 140 140 140 140  140 140 140 140 

Min 80 27 145 203 153.7  1 22.5 70 0.4 

Max 911 345.6 778 530 710  6 749 900 21.9 

Mean 630.5 130.1 561.2 335.5 308.7  3.5 334.1 474.1 7.1 

S. D 320.3 65.3 137.6 89.4 94.9  1.6 266.7 357.3 5.9 

DM, dry matter; CP, crude protein; NDF, neutral detergent fibre; ADF, acid detergent fibre; CHO, non -fibre non-protein carbohydrate; SPT, species/type; PHY, physiological 330 

state; MGT, housing system; LBW, body weight; MBW, mature body weight; RF, rumen fill; N, number of observations; SD, standard deviation 331 

 332 

 333 
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Table 2 Summary statistics of diet quality and animal attributes used to test the predictive capacity of the rumen fill model (independent dataset not used in model development) 334 

 Diet quality attributes  Animal attributes 

Grazers DM (g/kg) CP (g/kg) NDF (g/kg) ADF (g/kg) CHO (g/kg)  AGE (yrs.) LBW (kg) MBW (kg) RF (kg DM) TD (h) 

N 396 396 396 396 396  396 396 396 396 396 

Min 159.7 16.5 129 38 44  1 30 45.3 0.264 0 

Max 940 340 873 654 739.8  9 835 1200 47.5 24 

Mean 597.5 146.1 521.5 324.5 332  4.89 416.5 608.1 6.23 1.61 

S. D 311.2 64.18 163.8 106.3 134.4  1.61 205.03 292.9 4.72 4.50 

Browsers            

N 17 17 17 17 17  17 17 17 17 17 

Min 304 162 442 268.1 275  3 33.6 52 0.56 0 

Max 600 209.4 515.2 337.2 396  8 702 1200 38.1 0 

Mean 555.6 202 504.2 325.5 293.5  3.25 109 266.6 6.38 0 

S. D 108.4 17.36 26.82 22.83 44.17  1.118 171.5 297.87 9.76 0 

Intermediate feeder            

N 19 19 19 19 19  19 19 19 19 19 

Min 540 20 355 231.5 194  0.5 15.3 36 0.394 0 

Max 932 209.4 740.5 632 441  5 458.8 900 10.24 2.5 

Mean 837.7 141.9 522.3 364.7 335.8  2.32 55.22 126.1 1.317 0.789 

S. D 127.1 72.85 161.1 139.2 95.87  1.35 100.6 192.5 2.181 1.194 

Combined              

N 433 433 433 433 433  433 433 433 433 433 

Min 160 16.5 129 38 44  0.5 15.3 36 0.26 0 

Max 940 340 873 654 739.8  9 835 1200 18.88 24 

Mean 606 148.5 520.7 326.3 330.4  4.71 386.8 571.6 5.71 1.5 

S. D 303.1 64.21 159.9 105.7 130.3  1.69 221.5 312.5 4.07 4.31 

 335 

DM, dry matter; CP, crude protein; NDF, neutral detergent fibre; ADF, acid detergent fibre; CHO, non -fibre non-protein carbohydrate; SPT, species/type; PHY, physiological 336 

state; MGT, housing system; LBW, body weight; MBW, mature body weight; RF, rumen fill; N, number of observations; SD, standard deviation; TD, time delay337 
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 338 

Table 3 Observed and predicted rumen fill (kg) of cattle and sheep in rumen fill model development 339 
 340 

 Cattle Rumen Fill (kg DM) Sheep Rumen Fill (kg DM) 

 Observed Predicted Observed Predicted 

Minimum 6.1 8.045 0.4 0.312 

Maximum 21.9 21.916 2.3 2.881 

Mean 11.737 12.547 1.172 1.231 

S. D 3.589 3.382 0.459 0.531 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 
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 365 

Table 4 Comparison of the equations for linear regression between observed (Y) and predicted (X) rumen fill in 366 

Artificial Neural Network and Random Forest model development 367 

 368 

Model type Parameter estimates  

 Intercept Pintercept Slope Pslope RMSE R2 value 

 Combined data   

Artificial Neural Network 0.005 ± 0.1872 NS 0.936 ± 0.0192 < 0.0001 1.209 0.96 

Random Forest 0.318 ± 0.5777 NS 0.880 ± 0.0603 < 0.0001 1.842 0.87 

 Cattle  

Artificial Neural Network -0.216 ± 0.847 NS 0.953 ± 0.0622 NS 1.596 0.80 

Random Forest 5.330 ± 2.964 NS 0.472 ± 0.2458 NS 2.319 0.16 

 Sheep  

Artificial Neural Network 0.369 ± 0.1147 0.0002 0.652 ± 0.0857 0.0024 0.305 0.56 

Random Forest 0.160 ± 0.2412 NS 0.789 ± 0.2078 0.0030 0.220 0.57 

 369 

NS: not significant; RMSE: root mean square error 370 

 371 

 372 

 373 

 374 

 375 

 376 
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 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 
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 387 

 388 

 389 

Figure 1 The basic structure of Levenberg–Marquardt back propagation (LM-BP) Neural Network for modelling.  390 
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 391 

 392 
Figure 2a Relationship between the observed and predicted rumen fill for model 393 
development using Artificial Neural Networks. 394 
 395 

 396 
Figure 2c Residual (observed–predicted) plot against predicted rumen fill using 397 
Artificial Neural Networks. 398 
 399 
 400 

 401 
 402 

 403 
Figure 2b Relationship between the observed and predicted rumen fill for model 404 
development using the Random Forest model. 405 
 406 

 407 
Figure 2d Residual (observed–predicted) plot against predicted rumen fill using the 408 
Random Forest model. 409 
 410 
 411 
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 412 

 413 
Figure 2e Residual (observed–predicted) plot against observed rumen fill using 414 
Artificial Neural Networks. 415 
 416 
 417 

 418 
Figure 2g Relationship between the observed and predicted rumen fill for model 419 
validation using Artificial Neural Networks. 420 
 421 

 422 

 423 
 424 
Figure 2f Residual (observed–predicted) plot against observed rumen fill using the 425 
Random Forest model. 426 
 427 
 428 
 429 
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 430 

Figure 3 Relationship between the observed and predicted rumen fill for the entire dataset used for both model 431 

development and validation.  432 

 433 

 434 

 435 

Figure 4 Relationship between the observed and predicted rumen fill for model performance test using 436 

observations from wild and domesticated ruminants.  437 

 438 
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