

OPTIMIZATION OF TECHNOLOGICAL PROPERTY OF RICE HUSK ASH (RHA)

*1Mohammed Isah Kimpa, ²Sani Garba Durumin-Iya, ^{1,3}Yusuf Abubakar Sadiq, ¹Ahmad Alhaji Abubakar, ²Muhammad Uzair, ²Muhammad Nasiru Zakar and ¹Kasim Uthman Isah

¹Physics Department, School of Physical Science, Federal University of Technology Minna, Niger State. ²Physics Department, Faculty of Natural and Applied Sciences, Sule Lamido University, 048 Kafin Hausa. Jigawa State, Nigeria.

³Department of Physics and Astronomy, Auckland University of Technology, New Zealand

*Corresponding authors' email: kimpa@futminna.edu.ng

ABSTRACT

Recently, rice husk (RH) has attracted researchers attention for their possibilities to be more than any other crop remnant, this is due to its availability and promising nature. Averagely, 500 million tonnes of rice are produced worldwide each year, leaving behind huge amounts of waste that will be used in our cement and ceramic industries to produce 100 million tonnes of husk as a variety of byproducts.. When rice husk is incinerated, it produced a high quantity of ash known as Rice Husk Ash (RHA). On average, 200 kg complete combustion of rice husk ash is obtained from one tonnes of rice husk. Raw Paddy Rice was bought and blended with motar to extract rice husk. The grinded paddy was extracted locally by spreading the rice on tray and blew into air in an enclosed room. The RH was calcinated at 700°C for 1hour 30mins, grind and sieve to remove agglomeration. The sample was treated with NaOH and HCl acid to remove the unwanted material and enhance the silica production. X-ray fluorescence and X-ray Diffraction analysis results revealed RHA treated with NaOH is rich in silica with about 19.33 (4% wt) molecular structure, which indicated that chemical treatment play a vital role in improving the physico-chemical properties of RHA.

Keywords: Rice husk, Rice husk ash, Silica production

INTRODUCTION

Rice is the seed of the monocot plants Orvza glaberrima (African rice) or Oryza sativa (Asian rice). Although it can live as a perennial and yield crop for many years in tropical climates, it is often grown as an annual plant. Depending on the kind and quality of the soil, rice plants have a maximum height of 1.8 m (3.3-5.9 ft), and sometimes much higher. It has 50-100 cm (20-39 in) long and 2-2.5 cm (0.79-0.98 in) broad leaves that are long and slender. The tiny, windpollinated blooms are produced in a pendulous inflorescence that is 30-50 cm (12-20 in) long and branching. The grain, or caryopsis, that is edible is 3-5 mm (0.20-0.47 in) long and 2-3 mm (0.079-0.12 in) thick. More than half of the world's population, rice is a staple diet. 8 nations in Africa, 17 countries in Asia and the Pacific while 9 countries in North and South America use rice as the main source of dietary energy. 20% of the world's dietary energy is produced from rice, 19% from wheat, and 5% from maize (Shelke et al., 2010).

When burned, no other agricultural residue produces as much ash as from rice (Namiki et al., 2005). Furthermore, several developing nations are interested in using rice husk ash (RHA) as an additional material. According to Mehtra (1992), there is a possible 21 million tonnes of rice husk ash produced worldwide each year in which Nigeria alone produced 121 thousand tons of rice husk ash yearly (Sasu, 2022).

Roughly, it was estimated that the production of paddy in Nigeria stand at about 1.5 million metric tons, producing huge amount of rice husk from rice mills (Sasu, 2022). The husk is typically burned, producing a significant amount of ash in and around the mills, which poses a serious risk to public health and causes pollution. The production of thousands of metric tonnes of pure, high-grade silica, particularly for the ceramic and porcelain industries, is possible with rice husk as the raw material.

Figure 1: Sample of Rice Husk

More than 75 countries cultivate rice (Natarajan et al., 1998a), and developing nations produce more than 97% of the rice husk produced worldwide (Armesto et al., 2002). Depending on the type, rice husk made up 14 to 35 wt % of the harvested paddy, with an average of 20 wt % (Jenkins, 1989). Globally, the predicted output of husk is 80 million tonnes annually (Kapur, 1985).

In 2022, the annual paddy output in Nigeria was around 5.4 million metric tonnes (Sasu, 2022), out of this amount, rice husk accounted for 22 %, which is approximately 1.2 million metric tonnes per annum. Rice husks are regarded as a type of waste from the milling of rice and are frequently burned outside or allowed to decompose slowly. The fact that rice husk is an inexpensive and plentiful source of silica is still mostly unknown, despite the fact that a little percentage of it is utilized to make animal bedding. In several underdeveloped nations, rice husk has been used to some extent as fuel for parboiling and cooking paddy rice, although this use is neither complete nor effective. Such underutilization clearly demonstrates the loss and waste of resources that could actuality generate revenue to extract silica through combustion processes.

Rice husk ash refers to all types of ash formed by burning rice husk. In actuality, the type of ash that is produced changes greatly depending on the temperature at which it burns. The silica in the ash undergoes structural transformations depending on the combustion conditions, such as time and temperature. Crystalline ash forms at temperatures above 800 °C, while amorphous ash forms at temperatures between 550 and 800 °C (Rajeshkumar et al., 2016). Due to its characteristics, rice husk ash (RHA) has a wide range of applications. It is an excellent insulator due to its poor thermal conductivity and has applications in steel foundries and refractory bricks. It is an active pozzolan with a variety of uses in the concrete and cement sectors. It can be used in its refined form as silicon chip (Celestine et al., 2013).

MATERIALS AND METHODS

Raw Paddy Rice was bought at Kure Market, Kpankugu road in Bosso local government area Minna, Niger State. It was grinded in a mortar with pestle to extract rice husk needed. The extraction of rice husk from the grinded paddy was done using local method, the rice was spread on tray and blew into air in an enclosed room. Then weighed and divided into three and placed in a local clay pot for calcination, each pot contains 279.54gram, 246.56gram, and 241.11gram respectively making a total of 767.21 gram. It was then placed in an electric muffle furnace at temperature of 700 °C for 1hour 30mins. The sample was then grind and sieve to remove agglomeration. 20grams of NaOH (Sodium hydroxide) pellets was put in 500ml of distilled water and stirred till the pellets dissolved in distilled water, 10grams of ash from the sample was mixed with NaOH solution thoroughly using glass rode and dried using hot air oven at temperature of 100 °C for 90mins and sieved using filter paper to obtain the precipitate silica, the residue was dried at 60 °C in the hot air oven for half an hour. Similarly, 10grams of RHA was dissolved in 500ml of hydrochloric acid (HCl) and mixed homogeneously with glass road and kept in an ice bath for 2 hours. The solution was filtered and dried in over for 1hour 30mins at 100°C. X-ray fluorescence analysis, X-ray Diffraction analysis were conducted to check chemical and physical structure of RHA.

Figure 2: Grinding and Sieving of Raw Rice

RESULTS AND DISCUSSIONS

X-ray fluorescence (XRF) as a spectroanalysical technique is compatible in determining the chemical compounds present in a sample. The XRF machine used for this analysis was operated at 60 KVP and 50 mA. It is pertinently clear that, there are several elements presents in Rice Husk such as S, Fe, Al, Mg, P, Ca, K, Mn, Cl, Si and Nb, this clearly revealed that, RH is promising candidate for varieties of application, such as silica production, as pozzolanic material and in ceramic industry as quartz replacement. Table 1 below shows the elements present in Rice Husk, their concentration percentage, peak and background.

 Table 1. Elemental composition of Rice Husk, Concentration Percentage, Peak and Background Count Per Second (cps)

Elements	Concentration (%)	Peak(cps/mA)	Background(cps/mA)
S	0.08739	2002	961
Fe	0.04356	729	-26
Cu	0.000699	39	15
Nl	0.00227	4	9
Zn	0.0068S34	290	-0
Al	0.01275	266	1569
Mg	0.05115	322	166
Na	0.0039	2	49
Р	0.8337	8279	-818
Ca	0.10650	594	325
Κ	0.7600	4202	-250
Mn	0.016705	931	95
Rb	0.00380	18	3
Sr	0.000963	7	2
Br	0.00027	1	2
Cl	0.08061	147	-1
Cr	0.000032	1	61
V	0.001145	11	21
Si	0.77	3	27
As	-0.00400	2	3
Nb	0.1174	11	5
Та	0.00519	7	33
Ag	0	0	1035

Similarly, after calcination, sodium hydroxide and hydrochloric acid treatment, Rice Husk Ash (RHA) was further subjected to x-ray fluorescence analysis to investigate the effect of the treatments. Evidently, for untreated RHA the compound with highest percentage is silica with about 75.5% and high in peak cps followed by K₂O. This implies that the calcinations of RH enhance its silica content compared to other elements present in the RH.

Treatment have been reported by scientists to improve the workability and mechanical properties of fabricated materials, Di-Bella et al. (2010) reported that, flax fabric-epoxy treated with NaOH revealed better performance. Similarly, Sawpan et al. (2011) studied the influence of NaOH treatment on the tensile and morphological properties of Hemp fibers, they reported that, Sodium Hydroxide treatment produced better results than other chemical treatments. It is therefore important to note that, RHA treated with NaOH shows a

tremendous changes on the compositions, it can be seen that, some chemical compounds such as Na₂O. MgO and Al₂O₃ have increased while others such as SiO₂, P₂O₅, K₂O and CaO have drastically reduced, this is a good trend that gives room for research and the flexibility is what researchers have been looking for. Acid treatment is the treatment that is used to remove the small quantities of materials before extracting compounds present in RHA. The best and suitable acid used for the treatment of RHA to obtain pure silica as reported in the literature is hydrochloric acid (HCl) (Durumin-iya et al). Table further revealed that, HCl acid treatment is the most suitable and efficient treatment for the enhancement and improvement of silica content in RHA, the percentage of SiO_3 has increased to 94% which is overall maximum for untreated and NaOH treated RHA. Table 2 below shows Chemical composition of Rice Husk Ash (RHA), NaOH Treated RHA and HCl Treated RHA.

Table 2: Chemical composition of Rice Husk Ash	(RHA), NaOH Treated RHA and HCl Treated RHA
--	---

Compounds	Untreated RHA (%)	NaOH Treated RHA (%)	HCl Treated RHA (%)
Fe ₂ O ₃	0.2263	0.5096	0.12353
Ni ₂ O	0.00048	0.00190	0.000632
CuO	0.00631	0.01187	0.00713
ZnO	0.04370	0.08678	0.01429
Ga_2O_3	0.000056	0.000124	0.00008
CeO ₂	-0.00500	-0.00400	-0.00400
Ta ₂ O ₅	0.00775	0.0201	0.0104
WO ₃	0.149	0.335	0.145
Na ₂ O	0.131	7.105	0.198
MgO	4.955	5.694	0.480
Al ₂ O ₃	2.419	2.614	1.131
SiO ₂	75.456	41.652	94.708
P2O5	8.545	1.3585	0.6654
SO ₃	0.4942	0.3621	0.3136
Cl	0.818	1.711	1.479
K ₂ O	6.4375	1.1136	0.2583
CaO	0.5994	1.4272	0.07377
TiO ₂	0.01241	0.02959	0.01317
V2O5	0	0.00013	0.00019
Cr ₂ O ₃	0.00037	0.00183	0.00051
MnO	0.13940	0.31832	0.02509
BaO	-0.05000	0.0300	-0.05000
As ₂ O ₃	0.00008	0.00019	0
Br	0.000216	0.000138	0.0007
Rb ₂ O	0.00774	0.00154	0.00104
SrO	0.0200	0.0478	-0.0600
ZrO_2	-0.04000	-0.04000	0.04000
Nb ₂ O ₅	0.001892	0.001883	0.001927
SnO_2	-0	-0	-0.00
PbO	0.00332	0.00176	0.00357

To determine structure of the RHA samples, it was subjected to X-Ray Diffraction (XRD) analysis using an X-Ray Diffractometer. The samples were analyzed by Cu Ka radiation with a scanning rate of 0.05° per second 40 kV/20A, speed of 0.05° /min and scanning at $3^{\circ} \ge 2\Theta \le 90^{\circ}$. The X-Ray Diffractometer (Model Bruker D8 Advance) was used for this research. Table 3 below shows the result for X-ray diffraction of rice husk RH. It is evident that Urea with formula C H4 N2 O has highest molecular structure with 75(19) % followed by graphite C with 25(7)% while cristobalite SiO₂ has lowest molecular structure.

Phase Name	Formula	Figure of merit	Space Group	DB Card	Weight
		-		Number	Fraction wt%
Urea syn	C H4 N2 O	2.881	113 : P-421m	00-008-0822	73(7)%
Graphite	С	1.115	194:P63/mmc	00-008-0415	25(7)%
Chlorite	(Mg,Fe)5(Al,Si)5O10	3.374	15 :C12/c1	00-002-0028	1.2(17)%
Cristobalite	SiO ₂	3.051	227:Fd3m:2	00-0010424	0.6(19)%
Albite	Na Al Si ₃ O8	3.301	2 : P-1	00-003041	1(2)%

Table 3: X-ray diffraction of RH

T٤	ab	le	4:	Pea	k	list	for	X-rav	diffraction	of	rice	husk R/	A
	~~~									~			-

2θ°	d, Å	Height,cps	FWHM,°	Int.I.,cps	Int. W.,°	Asymmetry	Decay (Hl/Ml)	Decay (Hh/Mh)	Size, Å
21.670	4.0977	580	8.833	6344	10.9	1.649	0.000	0.940	9.564
(4)	(8)	(70)	(9)	(6)	(13)	(3)	(3)	(3)	(10)

The result of phase diagram (called a diffractogram) is presented in Figure 3 below. A large peak cantered at an angle of  $2\Theta$  indicates that RH is primarily composed of crystalline form. The peak height indicates the phase concentration with

higher peak denotes a higher concentration. On the diffractogram, a background hump at peak position of roughly 200 indicates the crystalline structure.



Figure 4: Pie chart indicating high wt% of Urea syn.

Similarly. After calcination of rice husk, the residue is rice husk ash (RHA), Table 5 below shows the XRD of RHA and its pertinent to note that Muscovite has highest molecular structure of 43.8(18) wt% than any other chemical compound

present in rice husk ash RHA, followed by Chlorite with 20.6(8) wt%. It is evident that RHA contains high phyllosilicate minerals which are also crystal in nature and of silicate group. Table 5 shows the X-ray diffraction of RHA.

Phase name	Formula	Figure	of	Space Group	DB	Card	Weight
		merit			Numl	ber	Fraction wt%
Cristobalite	SiO ₂	2.850		227 : Fd-3m:2	00-00	1-0424	7.9(3)
Graphite	С	1.103		194 : P63/mmc	00-00	8-0415	9.9(6)
Illite	K Al ₂ Si ₃ AlO10(OH) ₂	1.404		15 : C12/c1	00-00	2-0056	18(3)
Chlorite	( Mg , Fe )5( Al , Si)5O10	2.850		15 : C12/c1	00-00	2-0028	20.6(8)
Muscovite	KAl2(Si3Al) O10(OH,F)2	3.114		15 : C12/c1	00-00	2-0467	43.8(18)

Table 6: Peak list for X-ray diffraction of rice husk ash (RHA).

20 °	d, Å	Height,cps	FWHM,	Int. I.,	Int.	Asymmetry	Decay	Decay	Size,
			0	cps	W., °		(ηL/mL)	(ηH/mH)	Ă
28.(8)	3.090(7)	118(18)	1.5(2)	186(31)	1.6(5)	5(5)	0.0(10)	0.0(15)	58(9)

The phase diagram result (also known as a diffractogram) in Figure 5 indicates that RHA is primarily composed of crystalline form, as indicated by a broad peak cantered on  $2\Theta$  angle. The peak height indicates the phase concentration, with

higher peak denotes a higher concentration. On the diffractogram, a background hump at peak position of  $23^{\circ}$  indicates the crystalline structure.



Figure 5: Phase Diagram of RHA



Figure 4: Pie chart of chemical compounds in RHA

Table 7 shows the result of X-ray fluorescence of RHA treated with NaOH. It is clear that after treatment of RHA with sodium hydroxide Muscovite is the highest molecular wt% followed by quartz SiO₂. Therefore, it can be stated that,

treatment plays a significant role in improving the percentage of  $SiO_2$  present in RHA. Table 7 shows the X-ray diffraction of RHA treated with NaOH

Phase name	Formula	Figure of merit	Space Group	DB Card	Weight
				Number	Fraction wt%
Quartz	SiO ₂	2.953	154 : P3221	00-001-0649	19.33(4)
Muscovite	H2 K Al3 Si3	3.529	15 : C12/c1	00-002-0055	65.73(10)
	O12				
Graphite	С	1.157	194 : P63/mmc	00-008-0415	1.804(4)
Urea, syn	C H4 N2 O	2.830	113 : P 421m	00-008-0822	13.09(2)
Albite	Na Al Si3 O8	3.439	2 : P-1	00-003-0451	0.05(15)

<b>1 1 1 1 1 1 1 1</b>	Table 7:	X-rav	diffraction	of RHA	treated	with	NaOH
------------------------	----------	-------	-------------	--------	---------	------	------

Table 8: Peak list for X-ray diffraction of RHA treated with NaOH

20, °	d, Å	Height,cps	FWHM,	Int. I.,	Int.	Asymmetry	Decay	Decay	Size, Å
			0	cps	<b>W.,</b> °		(ηL/mL)	(ηH/mH)	
23.629(5)	3.7622(9)	205(28)	9.474(11)	2105(2)	10.3(1)	0.8530(8)	0.000(5)	0.092(4)	8.947(10)

Figure 6 shows the result of phase diagram (known as diffractogram) indicate that RHA treated with NaOH consist mainly of crystalline form as indicated by a broad peak cantered on 2O angle. The phase concentration is indicated by

the peak height, with broad peak indicating higher concentration. The crystalline structure is indicated by a background hump at peak position 26° on the diffractogram.

![](_page_6_Figure_7.jpeg)

Figure 5. Phase Diagram of RHA treated with NaOH

![](_page_6_Figure_9.jpeg)

RHA TREATED WITH NaOH20230324_142252_G02_S02_M02

Figure 6: Pie chart of chemical compounds in RHA treated with NaOH

HCL acid, it can be noted that Muscovite is still the highest in w% followed by Cristobalite SiO2. The w % of Muscovite

Table 9 below shows X-ray diffraction of RHA treated with here is much greater compare with table 7 but reduce the w% of SiO₂.

Phase name	Formula	Figure of merit	Space Group	DB Card	Weight
				Number	Fraction,wt%
Cristobalite	SiO ₂	3.341	227 : Fd-3m:2	00-001-0424	11.20(12)
Muscovite	K Al2 ( Si3 Al ) O10 (OH , F )2	2 3.367	15 : C12/c1	00-002-0467	77.7(8)
Urea, syn	C H4 N2 O	2.880	113 : P-421m	00-008-0822	8.30(9)
Illite	2 K2 O ·3 Mg O ·Al2 O3 ·24	3.438		00-002-0050	0.06(19)
Graphite	С	1.160	194 : P63/mmc	00-008-0415	2.7(10)

Table 9: X-ray diffraction of RHA treated with HCL acid

Table 10: Peak list for X-ray	y diffraction of RHA t	treated with HCl acid
-------------------------------	------------------------	-----------------------

20 °	d, Å	Height,	FWHM,	Int.I.,cps	Int, °	Asymmetry	Decay	Decay	Size, Å
		cps	0				(ηL/mL)	(ηH/mH)	
20.781(9)	4.2710(18)	359(47)	8.947(18)	3433(7)	9.6(13)	0.573(2)	0.000(10)	0.014(7)	9.428(19)

The phase diagram result (also known as a diffractogram) for RHA treated with HCL is displayed in Fig. 7 below. A large peak cantered on a  $2\theta$  angle indicates that the majority of the RHA is crystalline form. The peak height indicates the phase

with higher peak representing higher concentration concentration. On the diffractogram, a background hump at peak position roughly  $2\theta$  ° indicates the crystalline structure.

![](_page_7_Figure_8.jpeg)

Figure 7: Phase Diagram of RHA treated with HCl acid

![](_page_7_Figure_10.jpeg)

RAH TREATED HCI20230324_142252_G04_S04_M04

Figure 8: Pie chart of chemical compounds in RHA treated with HCl acid

FJS

Rice husk is not just a waste material but a promising material of circular economy, thus instead of disposing it off, intensive research can add value by using it through effectively utilizing silica content present in the rice husk ash (RHA) and to produce precipitated silica thereafter. From the findings of this experimental research, it has been observed that RHA approximately contain more than 90% of SiO₂. An accurate cost estimation of this process was not done yet, although rough estimation pointed towards less expensive than the pure silica used by industries, the main advantage of this proposed process is that waste disposal problem of rice husk is eliminated and also valuable product is obtained. The crystalline silica obtained using this method has many applications, e.g. making jewelry items, manufacturing of watches and clocks and raw materials in many industries such porcelain industry as quartz replacement.

From X-ray diffraction analysis it can be concluded that RHA contains mainly crystalline form. The  $SiO_2$  wt% increase, as the RHA undergoes chemical synthesis. Furthermore, it is evident that RHA treated with NaOH has greater  $SiO_2$  wt% compare with the one treated with HCL, thus, this shows that NaOH treatment is a good treatment for the optimum production of  $SiO_2$ .

#### REFERENCES

Shelke, V. R., Bhagade, S. S., & Mandavgane, S. A. (2010). Mesoporous silica from rice husk ash. *Bulletin of Chemical Reaction Engineering & Catalysis*, 5(2), 63.

Memon, S. A., Shaikh, M. A., & Akbar, H. (2011). Utilization of rice huskash as viscosity modifying agent in self compactingconcrete. *Construction and building materials*, 25(2), 1044-1048.

Namiki M, Ma JF, Iwashita T (2005) Identification of the silicon form in xylem sap of rice (*Oryza sativa* L.). Plant Cell Physiol 46(2):279–283.

Mehtra, P. K., & Folliard, K. J. (1995). Rice Husk Ash--a Unique Supplementary Cementing Material: Durability Aspects. *Special Publication*, *154*, 531-542.

Sasu, D. K. (2010) Production of milled rice in Nigeria from 2010 to 2021. Retrieve

from.https://nigerianinfopedia.com.ng/rice-producing-statein-nigeria/https://www.statista.com/aboutus/our-researchcommitment/2683/doris-dokwa sasu

Natarajan, E., Nordin, A., & Rao, A. N. (1998). Overview of combustion and gasification of rice husk in fluidized bed reactors. *Biomass and bioenergy*, *14*(5-6), 533-546.

Armesto, L., Bahillo, A., Veijonen, K., Cabanillas, A., & Otero, J. (2002). Combustion behaviour of rice husk in a bubbling fluidised bed. *Biomass and Bioenergy*, 23(3), 171-179.

Jenkins, B. M. (1989). Physical Properties of Biomass. In Biomass Handbook, ed. O.

Kapur, P. C. (1985). Production of reactive bio-silica from the combustion of rice husk in a tube-in-basket (TiB) burner. *Powder Technology*, *44*(1), 63-67.

Celestine, M., Audu, O., Msughter, G., & Dooshima, T. (2013). Variation of some physical properties of rice husk ash refractory with temperature. *pores*, 3(2), 1-2.

G. Rajeshkumar, V. Hariharan & T. Scalici (2016) Effect of NaOH Treatment on Properties of Phoenix Sp. Fiber, Journal of Natural Fibers, 13:6, 702-713.

Di Bella, G., V. Fiore, and A.Valenza. 2010. Effect of areal weight and chemical treatment on the mechanical properties of bidirectional flax fabrics reinforced composites. Materials & Design 31: 4098–4103. doi:10.1016/j.matdes.2010.04.050.

Sawpan, M. A., K. L. Pickering, and A. Fernyhough. 2011. Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Composites Part A: Applied Science and Manufacturing 42: 888–895. doi:10.1016/j.compositesa.2011.03.008.

Sani Garba Durumin-Iya, Mohamad Zaky Noh, Siti Raledah Binti Mohd Hanafiah, Siti Fairuz Binti Mat Radzi and Maryam Sunusi Adamu (2022). Effect of Quartz Replacement with Palm Oil Fuel Ash (POFA) for Triaxial Porcelain Composition of 50%: 40% 10%. International Journal of Nanoelectronics and Material, 15(1).

![](_page_8_Picture_21.jpeg)

©2024 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International license viewed via <u>https://creativecommons.org/licenses/by/4.0/</u> which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited appropriately.