A UNIFORM ORDER CONTINUOUS HYBRID INTEGRATION FOR SOLVING THIRD ORDER ORDINARY DIFFRENTIAL EQUATIONS

Umaru Mohammad ${ }^{* 1}$ Aliyu Ishaku Ma'ali ${ }^{2}$ and Raphael Babatunde Adeniyi ${ }^{3}$
${ }^{1 *}$ Department of Mathematics, Federal University of Technology, Minna, Niger State, Nigeria.
${ }^{2}$ Department of Mathematics/ Computer Science, Ibrahim Badamasi University Lapai, Nigeria
${ }^{3}$ Mathematics Department, University of ILorin, ILorin, Nigeria.
${ }^{1}$ umaru.mohd@futminna.edu.ng
²aai_maali@yahoo.com
${ }^{3}$ raphade@unilorin.edu.ng

Abstract

A three -step Continuous Block Hybrid Method (CBHM) with two non-step points of order $(6,6,6,6,6)$ is proposed for direct solution of the special and general third order initial value problems (IVPs). The main method and additional methods are obtained from the same continuous schemes derived via interpolation and collocation procedures. The stability properties of the methods are discussed and the stability region shown. The methods are applied in block form as simultaneous numerical integrators over non-overlaping interval. The efficiency of the proposed method was tested and was found to compete favorable with the existing methods.

Keywords:Collocation, Interpolation, Power series approximant, Grid points, Off-grid points and Block methods

1. Introduction

This paper considers the solution of special and general third order initial value problem of the form:

$$
\begin{equation*}
y^{\prime \prime \prime}=f(x, y), y(a)=y_{0}, y^{\prime}(a)=\eta_{0}, y^{\prime \prime}(a)=\eta_{1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime \prime \prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}\right), y(a)=y_{0}, y^{\prime}(a)=\eta_{0}, y^{\prime \prime}(a)=\eta_{1} \tag{2}
\end{equation*}
$$

However, only a limited number of numerical methods are available for solving (1) and (2) directly without reducing to a first order system of initial value problems. Some authors have proposed solution to higher order initial value problems of ordinary differential equations using different approaches (Awoyemi (1991),Awoyemi (2000),Kayode (2005) and Adekunle et al. (2013)). These methods mentioned which were implemented in Predictor-Corrector mode, like linear multistep methods and other standard method are usually applied to initial value problem as a single formula but the setbacks of this method are: (1) They are not self-starting (2) they advance the numerical integration of ordinary differential equation in one step at a time which lead to overlapping of piecewise polynomial solution mode. See (Mohammed and Adeniyi (2014) and Mohammed and Adeniyi (2015)) for details. The advantages of continuous method are widely reported by Awoyemi (2003).

In order to correct the setback of the method of Predictor-Corrector method, Fatunla(1991), Olabode (2009), Olabode and Yusuph (2009) and Yahaya and Mohammed (2010) proposed block methods for the solution of higher order differential equations with limitation to special type of tODEs
In view of the above mention, we extended the work of Olabode and Yusuph (2009) into a modified linear multi-step method by considering one-three off step point at collocation to handle both special and general third ordinary differential equations. The three step block hybrid method proposed is zero stable, consistent and more accurate than the existing one. Experimental results confirm the superiority of the new schemes over the existing method.

2. Derivation of the method

In this section the objective is to derive Hybrid Linear Multi-step Method (HLMM) of the form

$$
\begin{equation*}
\sum_{j=0}^{r-1} \alpha_{j} y_{n+j}=h^{3} \sum_{j=0}^{s-1} \beta_{j} f_{n+j}+h^{3} \beta_{\mu} f_{n+\mu}+h^{3} \beta_{v} f_{n+v} \tag{2}
\end{equation*}
$$

Where α_{j}, β_{j} and β_{v} are unknown constants and v_{j} is not an integer. We note that $\alpha_{k}=1, \beta_{j} \neq 0, \alpha_{0}$ and β_{0} do not both vanish. In order to obtain (2), we proceed by seeking to approximate the exact solution $\mathrm{Y}(\mathrm{x})$ of the form

$$
\begin{equation*}
Y(x)=\sum_{j=0}^{r+s-1} a_{j} x^{j} \tag{3}
\end{equation*}
$$

Where $x \in[a, b], a_{j}$ are unknown coefficients to be determined and $1 \leq r<k, S>0$ are the number of interpolation and collocation points respectively. We construct the continuous approximation by imposing the following conditions.

$$
\begin{align*}
& Y\left(x_{n+j}\right)=y_{n+j}, \quad j=0,1.2, \ldots \ldots, r-1 \tag{4}\\
& Y^{\prime \prime \prime}\left(x_{n+j}\right)=f_{n+j} \tag{5}
\end{align*}
$$

Equation (4) and (5) lead to a system of ($\mathrm{r}+\mathrm{s}$) equations which is solved by Cramer's rule to obtain a_{j}. The continuous approximation is constructed by substituting the values of a_{j} into equation (3). After simplification, the continuous method is expressed as

$$
\begin{equation*}
Y(x)=\sum_{j=0}^{r-1} \alpha_{j}(x) y_{n+j}+h^{3} \sum_{j=0}^{s-1} \beta_{j}(x) f_{n+j}+h^{3} \beta_{\mu}(x) f_{n+\mu}+h^{3} \beta_{v}(x) f_{n+v} \tag{6}
\end{equation*}
$$

where $\alpha_{j}(x), \beta_{j}(x), \beta_{\mu}(x)$ and $\beta_{v}(x)$ are continuous coefficients. We note that since equation (1) involves first and second derivatives, the first and second derivative formula

$$
\begin{align*}
& Y^{\prime}(x)=\frac{1}{h}\left(\sum_{j=0}^{r-1} \alpha_{j}^{\prime}(x) y_{n+j}+h^{3} \sum_{j=0}^{s-1} \beta_{j}^{\prime}(x) f_{n+j}+h^{3} \beta_{\mu}^{\prime}(x) f_{n+\mu}+h^{3} \beta_{v}^{\prime}(x) f_{n+v}\right) \\
& Y^{\prime \prime}(x)=\frac{1}{h^{2}}\left(\sum_{j=0}^{r-1} \alpha_{j}^{\prime \prime}(x) y_{n+j}+h^{3} \sum_{j=0}^{s-1} \beta_{j}^{\prime \prime}(x) f_{n+j}+h^{3} \beta_{\mu}^{\prime}(x) f_{n+\mu}+h^{3} \beta_{v}^{\prime \prime}(x) f_{n+v}\right) \tag{7}
\end{align*}
$$

Equation (7) is easily obtained from (6) and is used to provide the first and second derivatives for the methods by imposing the condition

$$
\begin{align*}
& Y^{\prime}(x)=\delta(x), Y^{\prime \prime}(x)=\gamma(x) \tag{8}\\
& Y^{\prime}(a)=\delta_{0}, Y^{\prime \prime}(a)=\gamma_{0} \tag{9}
\end{align*}
$$

3. Three Step Block Hybrid Method with two off Step Collocation Point

To derive this methods, we use Eq.(6) to obtained a continuous 3-step HLM method with the following specification : $\mathrm{r}=3, \mathrm{~s}=6, \mathrm{k}=3, v=\frac{8}{3}, \mu=\frac{5}{2}, \gamma_{i}(x)=x^{i}, i=0,1, \ldots, 8$.

We also express $\alpha_{j}(x), \beta_{j}(x)$ and $\beta_{v}(x)$ as a functions of t , where $t=\frac{x-x_{n}}{h}$ to obtain the continuous form as follows:

$$
\alpha_{0}=\left(1-\frac{3}{2} t+\frac{1}{2} t^{2}\right), \alpha_{1}=\left(2 t-t^{2}\right), \alpha_{2}=\left(-\frac{1}{2} t+\frac{1}{2} t^{2}\right)
$$

$$
\begin{align*}
& \beta_{0}(x)=\frac{1}{201600}\left(10078 t-28615 t^{2}+33600^{3}-2191 t^{4}+8638 t^{5}-2044 t^{6}+268 t^{7}-15 t^{8}\right) \\
& \beta_{1}(x)=\frac{1}{25200}\left(10016 t-14400 t^{2}+8400 t^{4}-5404 t^{5}+1617 t^{6}-244 t^{7}+15 t^{8}\right) \\
& \beta_{2}(x)=\frac{1}{3360}\left(-2082 t+3809 t^{2}-4200 t^{4}+3542 t^{5}-1274 t^{6}+220 t^{7}-15 t^{8}\right) \\
& \beta_{\frac{5}{2}}(x)=\frac{1}{1575}\left(3244 t-5910 t^{2}+6720 t^{4}-5936 t^{5}+2268 t^{6}-416 t^{7}+30 t^{8}\right) \\
& \beta_{\frac{8}{3}}(x)=\frac{1}{22400}\left(-40662 t+74115 t^{2}-8505 t^{4}+75978 t^{5}-29484 t^{6}+5508 t^{7}-40 t^{8}\right) \\
& \beta_{3}(x)=\frac{1}{5040}\left(1316 t-2402 t^{2}+2800 t^{4}-2548 t^{5}+1015 t^{6}-196 t^{7}+15 t^{8}\right) \tag{10}
\end{align*}
$$

The MFDMs are obtained by evaluating (10) at $x=\left\{x_{n+3}, x_{n+\frac{8}{3}}, x_{n+\frac{5}{2}}\right\}$ to obtain the following
$y_{n+3}=y_{n}-3 y_{n+1}+3 y_{n+2}+\frac{h^{3}}{1200}\left[11 f_{n}+536 f_{n+1}+900 f_{n+2}-896 f_{n+\frac{5}{2}}+729 f_{n+\frac{8}{3}}-80 f_{n+3}\right]$
(11)
$y_{n+\frac{8}{3}}=\frac{5}{9} y_{n}-\frac{16}{9} y_{n+1}+\frac{20}{9} y_{n+2}+\frac{h^{3}}{52488}\left[271 f_{n}+12928 f_{n+1}+19716 f_{n+2}-21760 f_{n+\frac{5}{2}}+16605 f_{n+\frac{8}{3}}-1840 f_{n+3}\right]$
$y_{n+\frac{5}{2}}=\frac{3}{8} y_{n}-\frac{5}{4} y_{n+1}+\frac{15}{8} y_{n+2}+\frac{h^{3}}{491520}\left[1729 f_{n}+81304 f_{n+1}+115740 f_{n+2}-135424 f_{n+\frac{5}{2}}+101331 f_{n+\frac{8}{3}}-11080 f_{n}\right.$

In particular, to start the initial value problem for $\mathrm{n}=0$, we obtain the following equations from (9):

$$
h \delta_{0}=-\frac{3}{2} y_{0}+2 y_{1}-\frac{1}{2} y_{2}+h^{3}\left[\frac{5039}{100800} f_{0}+\frac{626}{1575} f_{1}-\frac{347}{560} f_{2}+\frac{3244}{1575} f_{\frac{5}{2}}-\frac{20331}{11200} f_{\frac{8}{3}}+\frac{47}{180} f_{3}\right]
$$

$$
\begin{equation*}
h^{2} \gamma_{0}=y_{0}-2 y_{1}+y_{2}+h^{3}\left[-\frac{5723}{20160} f_{0}-\frac{8}{7} f_{1}+\frac{3809}{1680} f_{2}-\frac{788}{105} f_{\frac{5}{2}}+\frac{14823}{2240} f_{\frac{8}{3}}-\frac{1201}{1260} f_{3}\right] \tag{14}
\end{equation*}
$$

The derivatives are derived by

$$
\delta\left(x_{n+\tau}\right)=\delta_{n+\tau} \text { and } \gamma\left(x_{n+\tau}\right)=\gamma_{n+\tau}, \tau=1,2, \frac{5}{2}, \frac{8}{3} \text { and } 3 \text { as follows: }
$$

$$
h \delta_{n+1}=-\frac{1}{2} y_{n}+\frac{1}{2} y_{n+2}-\frac{h^{3}}{20160}\left[131 f_{n}+3272 f_{n+1}-1332 f_{n+2}+5632 f_{n+\frac{5}{2}}-5103 f_{n+\frac{8}{3}}+760 f_{n+3}\right]
$$

$h \delta_{n+2}=\frac{1}{2} y_{n}-2 y_{n+1}+\frac{3}{2} y_{n+2}+\frac{h^{3}}{100800}\left[49 f_{n}+21632 f_{n+1}+21130 f_{n+2}-27392 f_{n+\frac{5}{2}}+19683 f_{n+\frac{8}{3}}-200 f_{n+3}\right]$
$h \delta_{n+\frac{5}{2}}=y_{n}-3 y_{n+1}+2 y_{n+2}+\frac{h^{3}}{806400}\left[7387 f_{n}+360262 f_{n+1}+602370 f_{n+2}-628672 f_{n+\frac{5}{2}}+486243 f_{n+\frac{8}{3}}-54790 f_{n+3}\right]$

$$
\begin{aligned}
& h \delta_{n+\frac{8}{3}}=\frac{7}{6} y_{n}-\frac{10}{3} y_{n+1}+\frac{13}{6} y_{n+2}+h^{3}\left[\frac{31111}{2939328} f_{n}+\frac{120314}{229635} f_{n+1}+\frac{1144879}{1224720} f_{n+2}-\frac{29084}{32805} f_{n+\frac{5}{2}}+\frac{43651}{60480} f_{n+\frac{8}{3}}-\frac{15115}{183708} f_{n+3}\right] \\
& h \delta_{n+3}=\frac{3}{2} y_{n}-4 y_{n+1}+\frac{5}{2} y_{n+2}+\frac{h^{3}}{20160}\left[271 f_{n}+13672 f_{n+1}+26460 f_{n+2}-22528 f_{n+\frac{5}{2}}+21141 f_{n+\frac{8}{3}}-2056 f_{n+3}\right] \\
& h^{2} \gamma_{n+1}=y_{n}-2 y_{n+1}+y_{n+2}+\frac{h^{3}}{100800}\left[1653 f_{n}+12088 f_{n+1}-52860 f_{n+2}+150272 f_{n+\frac{5}{2}}-129033 f_{n+\frac{8}{3}}+17880 f_{n+3}\right] \\
& h^{2} \gamma_{n+2}=y_{n}-2 y_{n+1}+y_{n+2}+\frac{h^{3}}{100800}\left[841 f_{n}+46976 f_{n+1}+94140 f_{n+2}-125696 f_{n+\frac{5}{2}}+95499 f_{n+\frac{8}{3}}-10960 f_{n+3}\right] \\
& h^{2} \gamma_{n+\frac{5}{2}}=y_{n}-2 y_{n+1}+y_{n+2}+\frac{h^{3}}{322560}\left[2757 f_{n}+149360 f_{n+1}+363828 f_{n+2}-225536 f_{n+\frac{5}{2}}+220887 f_{n+\frac{8}{3}}-27456 f_{n+3}\right] \\
& h^{2} \gamma_{n+\frac{8}{3}}=y_{n}-2 y_{n+1}+y_{n+2}+h^{3}\left[\frac{209179}{24494400} f_{n}+\frac{177256}{382725} f_{n+1}+\frac{459667}{408240} f_{n+2}-\frac{234436}{382725} f_{n+\frac{5}{2}}+\frac{77467}{100800} f_{n+\frac{8}{3}}-\frac{26627}{306108} f_{n+3}\right] \\
& h^{2} \gamma_{n+3}=y_{n}-2 y_{n+1}+y_{n+2}+\frac{h^{3}}{100800}\left[869 f_{n}+46584 f_{n+1}+115140 f_{n+2}-79104 f_{n+\frac{5}{2}}+115911 f_{n+\frac{8}{3}}+2200 f_{n+3}\right]
\end{aligned}
$$

This proposed method is consistent since its order is 6 , its also zero-stable; above all, it has moderate interval of absolute stability as can be seen in figure 1 . The proposed three step method (11)-(15) have order 6 and error constants given by the vector $C_{9}=\left(\frac{1}{201600},-\frac{5167}{1785641760},-\frac{571}{123863-40}, \frac{1141}{12}, \frac{283}{4}\right)^{T}$

4. Convergence

The convergence of the proposed block hybrid methods is determined using the approach of Fatunla (1991) for hybrid linear multistep method, where the block hybrid method are represented in a single block, r point multistep method of the form

$$
\begin{equation*}
A^{(0)} Y_{m}=\sum_{i=1}^{k} A^{i} Y_{m-i}+h \sum_{i=0}^{k} B^{(i)} F_{m-i}, \tag{16}
\end{equation*}
$$

Where h is a fixed mesh size within a block, $A^{i}, B^{i}, i=O(1) k$ are r by r matrix coefficients and
A^{0} is r by r identity matrix.
Y_{m}, Y_{m-1}, F_{m} and F_{m-1} are vectors of numerical estimates

Definition 1. The block method is zero stable provided the root $R_{i, j}=1(1) k$ of the first characteristic polynomial $p(R)$ specified as

$$
\begin{equation*}
\rho(R)=\operatorname{det}\left|\sum_{i=0}^{k} A^{(i)} R^{k-i}\right|=0 \tag{17}
\end{equation*}
$$

Satisfies $\left|R_{j}\right| \leq 1$ and for those roots with $\left|R_{j}\right| \leq 1$, the multiplicity must not exceed 2 .

We can put the five integrator represented by equations (11) - (15) into the matrix-equation form and for easy analysis the result was normalized to obtain;

$$
\begin{aligned}
& \left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
f_{n+1} \\
f_{n+2} \\
f_{n+\frac{5}{2}}^{2} \\
f_{n+\frac{8}{3}}^{3} \\
f_{n+3}
\end{array}\right)=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
y_{n-4} \\
y_{n-3} \\
y_{n-2} \\
y_{n-1} \\
y_{n}
\end{array}\right) \\
& +h^{3}\left(\begin{array}{ccccc}
\frac{274}{1575} & -\frac{1727}{3360} & -\frac{2666}{1575} & -\frac{4779}{3200} & \frac{181}{840} \\
\frac{2348}{1575} & -\frac{346}{105} & \frac{17152}{1575} & -\frac{6723}{700} & \frac{436}{315} \\
\frac{101125}{36864} & -\frac{911875}{172032} & \frac{145375}{8064} & -\frac{3655125}{229376} & \frac{198125}{86016} \\
\frac{3731456}{1148175} & -\frac{461824}{76545} & \frac{3407872}{164025} & -\frac{260416}{14175} & \frac{610304}{229635} \\
\frac{1539}{350} & -\frac{243}{32} & \frac{4698}{175} & -\frac{531441}{22400} & \frac{963}{280}
\end{array}\right)\left(\begin{array}{l}
f_{n+1} \\
f_{n+2} \\
f_{n+\frac{5}{2}} \\
f_{n+\frac{8}{3}}^{f_{n+3}}
\end{array}\right)+h\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \frac{6179}{67200} \\
0 & 0 & 0 & 0 & \frac{421}{900} \\
0 & 0 & 0 & 0 & \frac{175625}{229376} \\
0 & 0 & 0 & 0 & \frac{1011776}{1148175} \\
0 & 0 & 0 & 0 & \frac{25461}{22400}
\end{array}\right)\left(\begin{array}{l}
f_{n-4} \\
f_{n-3} \\
f_{n-2} \\
f_{n-1} \\
f_{n}
\end{array}\right)
\end{aligned}
$$

The first characteristic polynomial of the block hybrid method (18) is given by

$$
\rho(R)=\operatorname{det}\left(R A^{0}-A^{1}\right)
$$

Substituting the value of A^{0} and A^{1} into the function above gives

$$
\begin{align*}
& \rho(R)=\operatorname{det}\left[\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)-\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\right] \\
& =\operatorname{det}\left(\begin{array}{lllll}
R & 0 & 0 & 0 & -1 \\
0 & R & 0 & 0 & -1 \\
0 & 0 & R & 0 & -1 \\
0 & 0 & 0 & R & -1 \\
0 & 0 & 0 & 0 & R-1
\end{array}\right) \\
& =\left[R^{4}(R-1)\right] \tag{19}
\end{align*}
$$

Therefore, $R=0, R=1$. The block method is zero stable and consistent since the order of the method $p=6>1$, and by Henrici (1962), the block method is convergent.

5. Region of Absolute Stability

The absolute stability region of the newly constructed hybrid linear multi-step methods (11)-(15) is plotted using Chollom (2004) by reformulating the methods as general linear methods and is shown in Figure 1 below.

Fig. 1: Region of Absolute Stability Region of Hybrid Linear Multi-Step Method (HLMM)

6. Numerical Examples

We report here seven numerical examples taken from literature for the bases of comparison (see Tables 17).

Problem 1
$y^{\prime \prime \prime}+e^{-y}-3 e^{-2 y}+2 e^{-3 y}$
$y(0)=\ln 2, \quad y^{\prime}(0)=\frac{1}{2}, \quad y^{\prime \prime}(0)=\frac{1}{4}$
Exact Solution is $y(x)=\ln \left(e^{x}+1\right)$

Table 1: Showing Exact solutions and the computed results from the proposed methods for Problem 1

X	Exact Solution	Numerical Solution	Error	Error in R-K Method
0.1	0.7443966600	0.7443966601	1E-10	$5.755 \mathrm{E}-09$
0.2	0.7981388693	0.7981388694	1E-10	$1.150 \mathrm{E}-07$
0.3	0.8543552446	0.8543552445	1E-10	$1.205 \mathrm{E}-07$
0.4	0.9130152525	0.9130152524	1E-10	$4.059 \mathrm{E}-08$
0.5	0.9740769843	0.9740769842	1E-10	$1.127 \mathrm{E}-07$
0.6	1.037487950	1.037487951	1E-09	$1.092 \mathrm{E}-07$
0.7	1.103186049	1.103186049	0	7.339E-08
0.8	1.171100666	1.171100666	0	$1.230 \mathrm{E}-07$
0.9	1.241153875	1.241153875	0	$9.167 \mathrm{E}-08$
1.0	1.313261687	1.313261687	0	$1.149 \mathrm{E}-07$

Problem $2 y^{\prime \prime \prime}=3 \sin x$ (Olabode and Yusuph (2009))
$y(0)=1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=-2, h=0.1$
Exact Solution is $y(x)=3 \cos x+\frac{x^{2}}{2}-2$

Table 2: Showing Exact solutions and the computed results from the proposed methods for Problem 2

X	Exact Solution	Numerical Solution	Error	Olabode and Yusuph (2009)
0.1	0.990012496	0.990012496	0	$1.65922 \mathrm{E}-10$
0.2	0.960199733	0.9601997335	5E-10	4.76275E-10
0.3	0.911009467	0.9110094673	3E-10	6.23182E-10
0.4	0.843182982	0.8431829819	1E-10	$2.91345 \mathrm{E}-10$
0.5	0.757747686	0.7577476855	5E-10	$8.71118 \mathrm{E}-10$
0.6	0.656006845	0.6560068445	5E-10	$3.92904 \mathrm{E}-09$
0.7	0.539526562	0.5395265615	5E-10	9.55347E-09
0.8	0.410120128	0.4101201276	4E-10	$1.80415 \mathrm{E}-08$
0.9	0.269829905	0.2698299042	8E-10	$3.03120 \mathrm{E}-08$
1.0	0.120906918	0.1209069177	3E-10	$4.73044 \mathrm{E}-08$

Problem 3 (Awoyemi et al (2014))
$y^{\prime \prime \prime}+4 y^{\prime}=x$
$y(0)=0, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=1, h=0.1$

Exact Solution is $y(x)=-\frac{3}{16} \cos 2 x+\frac{5}{16}$

Table 3: Showing Exact solutions and the computed results from the proposed methods for Problem 3

X	Exact Solution	Numerical Solution	Error	Error in Awoyemi et al (2014)
0.1	0.004987516700	0.004987516680	$2 \mathrm{E}-11$	$1.1899 \mathrm{E}-11$
0.2	0.01980106360	0.01980106378	$1.8 \mathrm{E}-10$	$3.0422 \mathrm{E}-09$
0.3	0.04399957220	0.04399957259	$3.9 \mathrm{E}-10$	$7.7796 \mathrm{E}-08$
0.4	0.07686749200	0.07686749244	$4.4 \mathrm{E}-10$	$1.5559 \mathrm{E}-07$
0.5	0.1174433176	0.1174433185	$9 \mathrm{E}-10$	$3.0541 \mathrm{E}-07$
0.6	0.1645579210	0.1645579226	$1.6 \mathrm{E}-09$	$4.6102 \mathrm{E}-07$
0.9	0.2168811607	0.2168811622		$1.5 \mathrm{E}-09$

Problem 4 (Sagir (2014))

$$
\begin{aligned}
& y^{\prime \prime \prime}+5 y^{\prime \prime}+7 y^{\prime}+3 y=0 \\
& y(0)=1, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=-1, h=0.1
\end{aligned}
$$

Exact Solution is $y(x)=e^{-x}+x e^{-x}$

Table 4: Showing Exact solutions and the computed results from the proposed methods for Problem 4

X	Exact Solution	Numerical Solution	Error	Error in Sagir (2014)
0.1	0.9953211598	0.9953211602	4E-10	$6.4300 \mathrm{E}-08$
0.2	0.9824769037	0.9824769045	8E-10	$2.7200 \mathrm{E}-08$
0.3	0.9630636869	0.9630636870	1E-10	$3.0500 \mathrm{E}-08$
0.4	0.9384480644	0.9384480648	4E-10	8.9800E-08
0.5	0.9097959895	0.9097959906	1.1E-09	$4.4260 \mathrm{E}-07$
0.6	0.8780986178	0.8780986179	1E-10	$7.7260 \mathrm{E}-07$
0.7	0.8441950165	0.8441950160	5E-10	$1.9523 \mathrm{E}-06$
0.8	0.8087921354	0.8087921343	1.1E-09	$1.0274 \mathrm{E}-06$
0.9	0.7724823534	0.7724823510	2.4E-09	$1.3509 \mathrm{E}-06$
1.0	0.7357588824	0.7357588850	$2.6 \mathrm{E}-09$	$1.3470 \mathrm{E}-05$

Problem 5 Consider the linear singular IVP

$y^{\prime \prime \prime}+\frac{\cos x}{\sin x} y^{\prime \prime}=\sin x \cos x$
$y(0)=1, \quad y^{\prime}(0)=-2, \quad y^{\prime \prime}(0)=0, h=0.1$
Exact Solution is $y(x)=1-2 x+\frac{x^{2}}{12}-\frac{\sin ^{2} x}{12}$
Table 5: Showing Exact solutions and the computed results from the proposed methods for
Problem 5

X	Exact Solution	Numerical Solution	Error
0.1	0.8000027740	0.8000027741	1E-10
0.2	0.6000442080	0.6000442081	1E-10
0.3	0.4002223173	0.4002223172	1E-10
0.4	0.2006961129	0.2006961128	1E-10
0.5	0.00167926274	0.001679262669	7.1E-11
0.6	-0.1965684269	-0.1965684270	1E-10
0.7	-0.3937513691	-0.3937513692	1E-10
0.8	-0.5895499801		3E-10

		-0.5895499804	
0.9			
	-0.7836334206	-0.7836334211	$5 \mathrm{E}-10$
1.0			
	-0.9756727849	-0.9756727850	$1 \mathrm{E}-10$

Problem 6 Non-linear Blasius equations

$2 y^{\prime \prime \prime}+y y^{\prime \prime}=0$
$y(0)=0, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=1, h=0.1$

The exact solution does not exist.

We compare our method with fourth order Runge-Kutta Method which shows an agreement with each other.

Table 6:Numerical methods for problem 6

x	Numerical Solution	R-K METHOD
0.1	0.0049999583	0.0049999552
0.2	0.0199986668	0.0199986591
0.3	0.0449898795	0.0449898741
0.4	0.0799573780	0.0799573773
0.4	0.1248700575	0.1248700476
0.6	0.1796771413	0.1796771264
0.7	0.2443036171	0.2443036129
0.8	0.3186460094	0.3186459795
0.9	0.4025686206	0.4025686062
1.0	0.4959003415	0.4959003376

Problem 7

Consider linear system

$$
\begin{aligned}
& y^{\prime \prime \prime}=\frac{1}{68}(817 y+1393 z+448 w) \\
& z^{\prime \prime \prime}=-\frac{1}{68}(1141 y+2837 z+896 w) \\
& w^{\prime \prime \prime}=\frac{1}{68}(3059 y+4319 z+1592 w)
\end{aligned}
$$

With initial conditions

$$
\left\{\begin{array}{l}
y(0)=-2, z(0)=-2, w(0)=-12 \\
y^{\prime}(0)=-12, z^{\prime}(0)=28, w^{\prime}(0)=-33 \\
y^{\prime \prime}(0)=20, z^{\prime \prime}(0)=-52, w^{\prime \prime}(0)=5
\end{array}\right.
$$

The analytical solution of the problem is given by

$$
\left\{\begin{array}{l}
y=e^{x}-2 e^{2 x}+3 e^{-3 x} \\
z=3 e^{x}+2 e^{2 x}-7 e^{-3 x} \\
w=-11 e^{x}-5 e^{2 x}+4 e^{-3 x}
\end{array}\right.
$$

Table 13: Example 7 for $\mathrm{k}=3$ with Two off-grid point at Collocation

X		Exact Solution			Numerical Solution			Error		
	$y(x)$		Z (x)	W(x)	$Y(x)$	Z(x)	W(x)	$Y(x)$	Z(x)	W(x)
0.1	0.884820	20064	0.572590725	-15.30062101	0.8848200328	0.5725907975	-15.30062105	$3.12 \mathrm{E}-08$	$7.25 \mathrm{E}-08$	4E-08
0.2	-0.11581	11730	2.806176217	-18.69930729	-0.115811924	2.806176663	18.69930753	$1.93 \mathrm{E}-07$	$4.46 \mathrm{E}-07$	$2.4 \mathrm{E}-07$
0.3	-1.07466	69813	4.847826406	-22.33276225	-1.074670301	4.847827514	-22.33276288	$4.88 \mathrm{E}-07$	$1.11 \mathrm{E}-06$	$6.3 \mathrm{E}-07$
0.4	-2.05567	74522	6.818196467	-26.33299947	-2.055675432	6.818198548	26.33300066	9.09E-07	$2.08 \mathrm{E}-06$	$\begin{gathered} 1.19 \mathrm{E}- \\ 06 \end{gathered}$
0.5	-3.11845	51905	8.820816349	-30.83482248	-3.118453394	8.820819761	-30.83482447	$1.48 \mathrm{E}-06$	$3.41 \mathrm{E}-06$	$\begin{gathered} 1.99 \mathrm{E}- \\ 06 \end{gathered}$
0.6	-4.32221	18381	10.94949803	-35.98269587	-4.322220576	10.94950306	-35.98269878	2.19E-06	5.03E-06	$\begin{gathered} 2.91 \mathrm{E}- \\ 06 \end{gathered}$
0.7	-5.72927	77942	13.29446306	-41.93745391	-5.729280922	13.29446992	-41.93745794	$2.98 \mathrm{E}-06$	6.86E-06	$\begin{gathered} 4.03 \mathrm{E}- \\ 06 \end{gathered}$
0.8	-7.40837	70060	15.94766196	-48.88324052	-7.408373873	15.94767075	-48.88324578	$3.81 \mathrm{E}-06$	8.79E-06	$\begin{gathered} 5.26 \mathrm{E}- \\ 06 \end{gathered}$

0.9	-9.438075281	19.00766567	-57.03504949	-9.438079890	19.00767630	-57.03505590				
1.0	-11.91046916	22.58444820	-66.64723234	-11.9104655489	22.58446732	-66.647239321				

5. Conclusion

We have derived a three-step continuous Hybrid Linear Multi-step Method (HLMM) from which Multiple Finite Difference Methods (MFDMs) are obtained and applied to solve third order ordinary differential equations (ODE) without first adapting the ODE to an equivalent first order system. The MFDMs are applied as simultaneous numerical integrators over sub-intervals which do not overlap and hence they are more accurate than Single Finite Difference Methods (SFDMs) which are generally applied as single formulas over overlapping intervals. We have shown that the methods are convergent and have large intervals of absolute stability, which make them suitable candidates for computing solutions on wider intervals. In addition to providing additional methods and derivatives, the continuous HLMM can be used to obtain global error estimates. Our future research will be focused on adapting the MFDMs to solve third order partial differential equations.

References

Adekule, M. R., Egwurube, M. O. and Adesanya, A. O. and Udo, M. O. (2014). Five steps block predictorblock corrector method for the solution of ODEs, Applied mathematics, Vol. 5, 1252-1266.\}

Awoyemi, D.O (1991). A class of continuous linear multi step method for general second order initial value problems in ordinary differential equation. International Journal of Computer Mathematics, 72, pp. 29 37.

Awoyemi, D.O (2003). A P-stable linear multistep method for solving third order ordinary mdifferential equation. International Journal of Computer Mathematics, 80(8), 85-991.

Awoyemi, D.O. (2000). A new six order algorithm for the general second order ordinary differential equation. International Journal of Computer Mathematics, 77, pp. 177-124\}

Awoyemi,D.O,Kayode,S.J and Adoghe, L.O (2014). A four ?point fully implicit method for numerical integration of third-order ordinary differential equations, Int. J. Physical Sciences, 9(1) , 7-12.

Fatunla, S.O (1991). Block method for second order initial value problem (IVP), \textit\{International Journal of Computer Mathematics, 41, 55-63.\}

Chollom J.P (2004): A Study of Block Hybrid Adam`s Methods With Link to Two Step Runge- Kutta Methods for First Order Ordinary Differential Equations Ph.D Dissertation (unpublished) University of jos, Nigeria.

Henrici,P (1962). Discrete Variable Methods for ODE`s, New York USA, John Wiley and Sons.

Kayode, S, J., Awoyemi, D. O (2005). A 5 steps maximal order method for direct solution of second order ordinary differential equation, Journal of the Nigerian Mathematical Physics, 9, 2005, 279-284.

Lambert, J. D, Computational method in ordinary differential equation, John Wiley and Sons, London, U. K, 1973.\}

Mohammed, U. and Adeniyi, R.B (2014). A Three Step Implicit Hybrid Linear Multistep Method for the Solution of Third Order Ordinary Differential Equations. Gen. Math. Notes (GMN), Vol. 25, No. 1, November 2014, pp. xx-xx.

Mohammed, U. and Adeniyi,R.B (2015). A Class of Implicit Six Step Hybrid Backward Differentiation Formulas for the Solution of Second Order Differential Equations. British Journal of Mathematics/Computer Science (BJMC), Vol. 6,NO 1, pp. 41-52.

Olabode, B.T (2009).An accurate scheme by block method for the third order ordinary differential equation. Pacific journal of science and technology 10(1).

Olabode, B.T, Yusuf, Y (2009). A new block method for special third order ordinary differential equation. Journal of Mathematics and Statistics, 5(3), 2009,167-170.

Sagir, A.M (20014) On the approximate solution of continuous coefficients for solving third order ordinary differential equations, International Journal of Mathematical, Computational Science and Engineering, 8(3) (2014), 39-43.

Taiwo O. A. and Falade, K. J. (2015). Numerical solution of third order non-homogeneous singular initial value problem by exponentially fitted collocation approximation method. International Mathematics Conference, University of Ibadan (27-30, January 2015).

Yahaya,Y.A and Mohammed,U (2010). A 5-step Block Method for Special Second Order Ordinary Differential Equations. Journal of Nigerian Mathematical Society (JNMS). vol.29, pp113-126.

