
CONTINUOUS FORM OF MULTISTEP METHODS 

FOR SOLVING FIRST ORDER ORDINARY DIFFERENTIAL EQUATION 
 

Semenov
1
 D.E., Mohammed

2
 U., Semenov

3
 M.E. 

1 Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia, dimomans@mail.ru 
2 Federal University of Technology, Minna, Nigeria, digitalumar@yahoo.com 

3 Tomsk Polytechnic University, sme@tpu.ru 

 

 

 

ABSTRACT 

 

The study aims to develop the theory of numerical methods used for the numerical solution of first order ordinary 

differential equations (ODEs). The linear multistep backward differentiation formulae (BDF) was reformulated 

for applications in the continuous form. The suggested approach eliminates requirement for a starting value and its 

speed proved to be up when computations with the block discrete schemes were used. The test problem was solved 

with the proposed numerical method and obtained numerical and analytical solutions were compared. 
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1. INTRODUCTION 

 

Many scientific and engineering problems are described using apparatus of ordinary differential equations 

(ODEs), where the analytic solution is unknown. Much research has been done by the scientific community on 

developing numerical methods which can provide an approximate solution of the original ODE. In recent years 

many review articles and books have appeared on numerical methods for integrating ODEs (Feldman et al., 2001; 

Butcher, 2008), in particular in stiff cases e.g. (Ibáñez et al., 2009). Stiff problems are very common problems in 

many fields of the applied sciences: control theory, biology, chemical engineering processes, electrical networks, 

fluid dynamics, plastic deformation etc.  

Most of numerical methods for solving initial value problems (IVPs) for ODEs will become unbearably slow 

when the ODEs are stiff. The most popular multistep methods families for stiff ODEs are formed by the backward 

differentiation formulae (BDF or Gear methods) methods, Rosenbrock methods, implicit or diagonally implicit 

Runge-Kutta methods (Jiaxiang et al., 1995; Ibáñez et al., 2009). 

In this paper we are suggested a construction of block multistep BDF method, it is self-starting and can be 

applied for the numerical solution of IVPs (Cauchy problem) for first-order ODEs. Development of linear 

multistep methods (LMMs) for solving ODEs can be generated using different methods. The collocation technique 

for a construction a set of implicit BDF formulas was used. 

Block methods for solving ODEs have initially been proposed by Milne (Milne, 1953). The Milne’s idea of 

proceeding in blocks was developed by Rosser (Rosser, 1967) for Runge-Kutta method. Also block methods are 

discussed and developed by many researchers (Feldman et al., 2001; Ibrahim et al., 2007; Majid et al., 2007; 

Akinfenwa et al., 2011; Muhammad et al., 2012). The method of collocation and interpolation of the power series 

approximate solution to generate continuous LMM has been adopted by many researchers among them are 

(Fatunla, 1991; Houwen et al., 1991; Awoyemi 1991; Jiaxiang et al., 1995). 

The paper is presented as follows: In section 2, we discuss the basic idea behind the algorithm and obtain a 

continuous representation Y(x) for the exact solution y(x) which is used to generate members of the block method 

for solving IVPs. In section 3, the stability analysis and convergence of proposed method were showed. Finally, 

we present some numerical result and concluding remarks. 

 

2. DERIVATION OF THE CONTINUOUS BLOCK BDF METHOD 
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Backward differentiation formula (BDF) is one of the most popular class of implicit methods for the solution of 

stiff ODEs. We are concerned with the numerical solution of IVPs for first-order ODEs of the form 

 

 y’=f(x, y) (1) 

 

and given initial condition y(a) = y0, a ≤ x ≤ b.  

The aim is to construct a set of implicit BDF formulas described as r-point block BDF methods using 

previously computed solution values and their derivatives, where r denotes the block size to produce solution 

values at a block of time steps xn+1, ..., xn+i ,…, xn+r. Each application of a r-point block method simultaneously 

produces r new values: yn+1, ..., yn+i,…, yn+r at the time discretization points xn+1, ... , xn+i,…, xn+r.  

If r denotes the block size and h is the step size, then block size in time is r∙h. Let m=0, 1, 2, … represent the 

block number and let N=m∙r, then the k-block, r-point method can be written in the following general form 

(Fatunla, 1991; Ibrahim et al., 2007; Majid et al., 2007): 
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where Ym=(yn+1, ..., yn+i,…, yn+r)
T, Fm=(fn+1, ..., fn+i,…, fn+r)

T, A(i) and B(i) are r by r coefficient matrices, i=0, 1, …,k. 

In the explicit r-point block method, the interval a ≤ x ≤ b is divided into series of blocks with each block 

containing r points. Each application of the formulae generates a block of r new equally spaced solution values 

simultaneously. The computational tasks at each point within a block are sufficiently independent and considered 

as separate task. See Figure 1 for details.  

 

 
 

Fig. 1. A partition of the integration interval into blocks 

 

Development of LMMs for solving ODEs can be generated using methods such as Taylor’s series, numerical 

integration, and collocation method, which are restricted by an assumed order of convergence. In study (Majid et 

al., 2007) the method of generating functions in the form of infinite series was used in order to obtain a useful 

recurrence relation for coefficient of interpolating polynomial which interpolates function f(x, y) from Equation 

(1) at r-points.  

In continues to the research presented in publications (Yahaya et al., 2009; Mohammed et al., 2010) was 

suggested using the collocation method to construction of the block multistep BDF method. We proceed by 

assuming that the exact solution y(x) is locally represented in the range [x0, x0+r∙h] by the continuous solution Y(x) 

of the form 
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where bj are unknown coefficients to be determined and φj(x) are polynomial basis function of degree j=0, 1, ... , r. 

The block multistep BDF method with φj(x) = xj by imposing the following collocation relations was construct 

 

 Y(xn+j) = yn+j, j = 0,1, ..., r, and Y’(xn+r) = fn+r, (4) 

 

where yn+j is the approximation for the exact solution y(xn+j), fn+r=f(xn+r, yn+r) and n=0, r, ... , N−r is the grid index, 

N=(b – a)/h. It should be noted that Equation (4) leads to a system of equations  

 



 

 

 

 

 

 IICST Instructions for Authors and a Sample Paper 

 

 

3 

Innovations in Information and Communication Science and Technology 

Second Postgraduate Consortium International Workshop 

R. Walker, G.A. Kobzev, A.F. Uvarov, and V.V. Kryssanov (Eds.) 

IICST 2012: pp. 1-8. 

 



































































































rn

rn

n

n

n

r

r

r
rnrn

r
rnrnrnrn

r
nnnn

r
nnnn

r
nnnn

f

y

y

y

y

b

b

b

b

b

rxx

xxxx

xxxx

xxxx

xxxx

1

2

1

1

2

1

0

1
2

11
0

1

2
2

22
0

2

1
2

11
0

1

20

210















, (5) 

In the matrix (5) the superscript j = 0, 1, 2, ..., r denotes the degree. The system (5) must be solved to obtain the 

coefficients bj, j=0, 1, ... , r, which are substituted into (3) and after some algebraic computation, our continuous 

representation yields the form 
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where αj(x) and βr(x) are continuous coefficients. The method (6) is then used to generate the multistep BDF. 

Coefficients of multistep BDF (r=6) was defined in the study (Akinfenwa, 2013). A normal block form 

(Akinfenwa, 2013) can be obtain with left multiplying the matrices A(1), A(0), B(0) with the matrix inverse [A(0)]-1. In 

the case of r=6 the block method based on the Equation (2) can be written in the normalized form: 
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3. STABILITY ANALYSIS 

 

The block method (2) is zero-stable (Fatunla, 1991) provided the root Rj, j=1, 2, … r of the first characteristic 

polynomial ρ(R) specified as 

 

     0detρ
0
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satisfies |Rj|≤1 and for those roots with |Rj|=1, the multiplicity must not exceed 1.  

Thus, as step h→0, the method (2) tends to the difference system A(0)Ym+1–A
(1)Ym=0 whose first characteristic 

polynomial ρ(R) is given by  

 

 ρ(R) = det(RA
(0) – A(1)) =Rr-1(1 – R)=0. (9) 
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From the definition (8) it follows at once that the block method (7) is zero-stable, since from equation (9) satisfies 

|Rj|≤1, j=1, 2, … r, and the multiplicity is equal to 1 for root with |Rj|=1. And as the block method is zero-stable by 

Henrici (Henrici, 1962) the block method is convergent. 
Continuous form is evaluated at various (or several distinct) points to obtained scheme (6) above. Let r=6, 

after some manipulations we obtain a continuous form of solution (1) 
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4. NUMERICAL EXPERIMENT 

 

In this section, proposed method (7) above was tested with IVP our written Maple code.  

Consider the linear problem 

 

 y’ = 100(sin (x) – y), y(0)=1, 10  x . (11) 

 

which have analytical solution 
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 . (12) 

 

The example task (11) was solved with our method (7) on the interval 10  x  with step h=0.01. The 

numerical and analytical solutions and difference between them (absolute errors) are presented in Table 1. 

 

Table 1. Numerical and analytical solutions and absolute error. 

x Numerical solution Analytical solution Absolute Error 

0.1 0.0899207167 0.0899202414 4.75E-07 

0.2 0.1888478298 0.1888497821 1.95E-06 

0.3 0.2859328150 0.2859382479 5.43E-06 

0.4 0.3801693118 0.3801697154 4.04E-07 

0.5 0.4706002066 0.4706026527 2.45E-06 

0.6 0.5563280111 0.5563334839 5.47E-06 

0.7 0.6365064915 0.6365056148 8.77E-07 

0.8 0.7103177127 0.7103179920 2.79E-07 

0.9 0.7770303486 0.7770331066 2.76E-06 

1.0 0.8359823521 0.8359843633 2.01E-06 

 

5. CONCLUSION 

 

The block method has been proposed and implemented as a self-starting method for the solution of first-order 

ordinary differential equations (1). The proposed method is accurate. It is a necessary to define the order and error 

constants of the method. The convergence and zero-stability properties of method make it suitable for numerical 

solution of stiff problems. The process produces some schemes which are combined in order to form an accurate 

and efficient block method for parallel or sequential solution of ordinary differential equations (ODEs). 
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