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Abstract 

 

The importance of understanding the dynamics and forecasting of streamflow processes of a 

particular river finds relevance in the fact that the physical mechanisms governing flow 

dynamics act on a wide range. In view of this, this study presents a simple basis for and 

application of Artificial Neural Network (ANN) methodology as an alternative modelling tool 

for predicting flow. To this end, the main focus is the development of ANN model for short 

term streamflow forecasting of the Benue River using univariate time series; inter alia, 

evaluate its performance of extreme events. It is evident from the modelling framework that 

the application of the knowledge of evolution of a dynamical system in a multi-dimensional 

state space is a robust approach for determining the size of an ANN model input. The ANN 

model forecast performance showed that reliable short term forecasts, 5 day - ahead can be 

made for the daily streamflow series based on CE and R2 performance indexes. However, on 

the general question of the suitability of ANN model application for streamflow forecasting 

as applied in this study (i.e., daily streamflow), though the neural network could simulate the 

different attributes of the flow hydrograph, its relative forecast performance of high flows is 

robustly better than the case of low flows; it grossly under predicted and over predicted same 

depending on the particular network input data pre-processing schema. The forecast 

performance results also indicated that, for feed-forward MLP networks, with a tan-sigmoid 

transfer function, standardising the data by subtracting the mean and dividing by the 

standard deviation is better than rescaling the data to a small interval of particular range. 

Considering the findings, to appropriately capture the dynamics of the flow regime, it is 

necessary to include exogenous variables of the runoff generating process in the network 

input data base. 

 

Keywords: System-theoretic, nonlinear dynamics, phase-space reconstruction, neural 

networks, modelling 
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INTRODUCTION 

 

The most important process in the hydrologic cycle is the section where rainfall occurs and 

results in flow; this flow is critical to many activities such as assessing how much water may 

be extracted from a river for water supply or irrigation (Delleur et al., 1976). Because the 

accuracy of flow estimation is very important, models that deal with meteorological, 

hydrologic, and geological variables should be improved so that controlling water and 

operating water structures effectively will be possible (Ozgur, 2004). There are many 

mathematical models to predict future flow such as those given by Hurst (1951), Matalas 

(1967), Box and Jenkins (1976), and Delleur et al. (1976). The mathematical models applied 

for real-time hydrological forecasting, broadly, are of two types:  black-box or system 

theoretic and conceptual models (Singh, 1988). In a conceptual type model, the internal 

descriptions of the various sub-processes are modelled attempting to represent, in a 

simplified way, the known physical processes. Black-box or system-theoretic (data-driven) 

models are stochastically-based and empirical (Elena and Armando, 2002). They are based 

primarily on observations and seek to characterise system response from those data. 

 

The modelling technique that adheres most closely to the black-box principle is the use of 

artificial neural networks (ANN). Inspired by the biological nervous system, neural network 

technology is being used to solve a wide variety of complex scientific, engineering, and 

business problems. When using artificial neural networks for forecasting, the modelling 

principle employed is similar to that used in traditional statistical approaches. In the 

hydrological context, as in many other fields, artificial neural networks are increasingly used as 

black-box, simplified models (Bishop, 1994). The advantage of Neural networks and the 

reasons why they fall firmly into black-box category are that, like their biological counterparts, 

a neural network can learn, and therefore can be trained to find solutions, recognise patterns, 

classify data, and forecast future events. Unlike analytical approaches commonly used such as 

the unit hydrograph method or time series analysis, neural networks require no explicit model 

or limiting assumptions of normality or linearity. Artificial neural networks are now widely 

accepted as a potential useful way of modelling complex non-linear and dynamic systems for 

which there are large amounts of sometimes noisy data. They are particularly useful in 

situations where the underlying physical process relationships are not fully understood or where 

the nature of the event being modelled may display chaotic properties. 
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Unlike mathematical models that require precise knowledge of all the contributing variables, a 

trained artificial neural network can estimate process behaviour even with incomplete 

information. It is a proven fact that neural networks have a strong generalisation ability, which 

means that once they have been properly trained, they are able to provide accurate results even 

for cases they have never seen before (Hecht-Nielsen, 1991; Haykin, 1994; Ozgur Kisi, 2004). 

The generalisation ability of the neural network really underscores the very basic need for its 

application to real world situation. Many of the available techniques for time series analysis 

assume linear relationships among variables; but in the real world, however, temporal 

variations in data do not exhibit simple regularities and are difficult to analyse and predict 

accurately. It seems necessary that nonlinear models such as artificial neural networks (ANNs), 

which are suited to complex nonlinear systems be used for the analysis of real-world temporal 

data; especially, the inherently nonlinear relationships between input and output variables 

complicates attempts to forecast streamflow events. 

 

It must be pointed out that the use of neural networks does not preclude the need for knowledge 

or prior information about the systems of interest. However, they merely reduce the model’s 

reliance on this prior information whilst totally removing the need for the model builder to be 

able to correctly specify the precise functional form of the relationship that the model seeks to 

represent.  Against the backdrop of the fact that there is no reported work on modelling and 

forecasting done on this river in available literature , the exclusive objective here is to present a 

simple basis for and application of artificial neural network (ANN) methodology as an 

alternative modelling tool for predicting flow data. To this end, the main focuses are the 

development of Artificial Neural Network (ANN) model for short term streamflow forecasting, 

in this case, a univariate time series (daily flow series), and to determine which characteristics 

of the model have the greatest impact on model performance. 

 

MATERIALS AND METHODS 

 

Hydrology of the Study River 

In this study, historical time series for gauging stations at the base of the Benue River (i.e., 

Lower Benue River Basin) at Makurdi (7°44′ N, 8°32′ E) was used. A total of 26 years 
(1974–2000) water stage and daily discharge data were collected. An existing rating curve 

was used to convert the respective stage data to their corresponding discharge values. The 

Benue River is the major tributary of the Niger River. It is approximately 1 400 km long and 

almost navigable during the rainy season (between July and October). Its headwaters rise in 
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the Adamawa Plateau of the Northern Cameroon, flows into Nigeria south of the Mandara 

Mountains through the east-central part of Nigeria. There is only one high-water season 

because of its southerly location; this normally occurs from May to October, while on the 

other hand, the low-water period is from December to June. Figure 1 explains the 

hydrological flow regime of the Benue River in line with the general climatic pattern. There 

are definite wet and dry seasons which give rise to changes in river flow and salinity regimes. 

The flood of the Benue River (upper, middle, and downstream) lasts from July to October, 

and sometimes up to early November. 

 

 

  Fig. 1: General hydrological year flow regime 

 

 

MODELLING FRAMEWORK 

 

Network Design and Topology 

When neural networks are used to build a function that estimates the process behaviour, the 

central issue is the determination of appropriate network structure. One of the ways to 

address this problem involve carrying out initial investigation of statistics like autocorrelation 

and cross-correlation which may explain the variance by multi-linear regression, and the 

Akaike criterion for ARMA model of corresponding order. However, cross-correlation 

approach can only be of useful application where there is a number of different input 

variables (i.e., multi-variate time series), and may not provide any meaningful relevance in 

the case of univariate time series. For a univariate time series, phase-space reconstruction 

using embedding dimension, which is based on dynamical systems theory is of better use. 
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This approach was adopted for the determination of the appropriate number of input neurons 

for this study. 

 

To describe the temporal evolution of a dynamical system in a multi-dimensional state space 

with a scalar time series, the time delay coordinate method (Takens, 1981; Packard et al., 

1980) can be used to reconstruct the state space.  The method requires that the state vector Xi   

in a new space, the embedding space be formed from time delayed values of the scalar 

measurements {Yi} as Xi = [Yi, Yi-τ,…., Yi-(m-1)τ], where Yi is the observed value of the time 

series at time i, m is the embedding dimension, and τ  is the delay time. To do this, It is 

expected that an optimum value of τ should give the best separation of neighbouring 

trajectories within the minimum embedding phase-space. Because of the strong annual 

seasonality, the autocorrelation function value of τ may become increasing large, and too, 

choosing τ value = 1 may result in the phase-space being redundant and consequently, lead to 

loss of valuable information (Wang, 2006). Besides, there could be intermittency problem in 

the data. Thus, to circumvent this problem, for the fear of the data being intermittent, τ was 

set to 78 based on the analysis of the autocorrelation function of the daily streamflow series 

(i.e., the point where the autocorrelation function plot first crosses the zero line) as shown in 

Fig. 2. 

 

 

Fig. 2: Correlogram of the raw daily flow series 

 

Because of the problems associated with the mutual information and autocorrelation 

methods, the method proposed by Kennel et al. (1992), called the ‘false nearest neighbour’ 

method to determine the minimal sufficient dimension m was used. 
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For this method, suppose the point 

Xi = [Yi-p+1,…,Yi]  has a neighbour Xj = [Yj-p+1,…,Yj] in a p-dimensional space, then the 

distance ‖Xi - Xj‖ is calculated in order to compute  

ji

1j1i

i
X - X

Y - Y
  R

++=                                                          (1)  

If Ri  exceeds a given threshold Rτ (a suitable value is 50  R  10 ≤≤ τ ), the point Xi  is marked 

as having a false nearest neighbour. As a consequence, the embedding dimension p is high 

enough if the fraction of points that have false nearest neighbours is actually zero, or 

sufficiently small, say, smaller than a criterion Rf. For this study, the false neighbour 

threshold Rτ   was set to 10. Based on this, the fraction of false nearest neighbours as a 

function of the embedding dimension, here, for daily streamflow series was calculated. 

Figure 3 shows the details of the computed fraction of false nearest neighbours. Thus, if the 

fraction criterion Rf  is set equal to 0.01, the minimal embedding dimension will be 8; this 

implies that the state of the streamflow process can be determined by eight lagged observed 

values. 

 

 

 

 

Fig. 3:  Fraction of false nearest neighbours as a function of embedding dimension 

 

Following from the analysis, eight lagged values of input variables can be used when fitting 

the ANN model to the series; specifically, this implies, based on the phase space 

reconstruction, the discharges are: Qt-7, Qt-6, …Qt  of day t-7, to  day  t. The eight lagged 

input values were used to forecast the discharge from time t+1, i.e., the next day, to t+5; that 

is, 5-ahead values, using a multiple-output approach rather than a single-output. Figure 4 

shows the complete network configuration based on the results of the phase-space 
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reconstruction and multiple-output strategy using feed forward multi-layer perceptron 

network (MLP); the number of hidden layer neurons was determined to be 7 based on the 

typical ‘trial and error’ approach. 

 

 

 

Fig. 4: Schematic of three-layer feed forward ANN architecture used for flow prediction 
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2.2.2 Network Training and Data base Management 

Training a neural network to predict the properties of the input-target relationship consists 

essentially of teaching the network the relationship between the input ingredients and its 

performance. This learning process can take place in a supervised or unsupervised manner. 

For the purposes of this study, supervised learning was used. The entire time series of length 

of 9490 daily values was thus partitioned into two-sets of 8670 and 730 data points 

corresponding to training and validation, respectively. The success of the training procedure 

depends largely on the power of the optimisation method used to search for the best 

parameter estimates; training was implemented using the ‘trainbr’ function in MATLAB 

Neural Network Toolbox. The Bayesian regularisation training algorithm (trainbr) was 

chosen because of its ability to overcome generalisation problems that do result from over- 

fitting. Also important in neural network training is the transfer function; generally, 

predictability of future behaviour is a direct consequence of the correct identification of the 

system transfer function. For the identified network structure in this study, the ‘tansigmoid’ 

and ‘purelin’ transfer functions were used in the hidden and output layers, respectively. The 

‘purelin’ transfer function was considered for the output layer because it allows the network 

outputs to take on any value, whereas the last layer of a multi-layer network with sigmoid 

neurons constrains the network outputs to a small range. Instead of making predictions based 

on an ensemble of neural networks trained for the same task, a single best ANN was used; 

this was determined after series of attempts using different network structures, based on the 

mean squared error (MSE) of the network performance during training. 

 

Training of the network was done with some specific parameter considerations. To this end, a 

decreasing learning rate (0.2 to 0.05) was used to accelerate convergence toward a global 

minimum; and since without momentum, a network may get stuck in a shallow minimum as 

it allows the network to ignore small features in the error surface, its value was set to 0.9. A 

very important issue to consider in the training of an ANN is how to decide when to stop the 

training because ANNs are prone to either under-fitting or over-fitting if the training is not 

appropriately stopped. In this regard, when using ‘trainbr’, it is important to let the algorithm 

run until the effective number of parameters has converged; constant values of the sum 

squared error (SSE) and sum squared weights (SSW) over several iterations are indicative of 

convergence. So, training was stopped the moment these signals were experienced. The 

maximum number of iteration in this case was set to 2500 to avoid over-fitting of the 

network. 
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Before applying the ANN, both input and output data were pre-processed and normalized. In 

order to compare the influence of different pre-processing procedures on model performance, 

three different pre-processing procedures were applied, namely:  

 Rescaled logarithmically transformed raw daily flow series 

 Standardised raw daily flow series 

 Rescaled raw daily flow series 

 

Standardisation was accomplished by using the long term mean and standard deviation for 

both the training and validation data sets respectively. The ‘trainbr’ algorithm generally 

works best if the network inputs and targets are scaled so that they fall approximately in the 

range [-1 1]. Thus, rescaling was done to ensure that the data series fall within this bound. 

Scaling of the original data, say   to the network range was done by 

                                             (2) 

where are the original input data, and the input data scaled to the network range,  and are 

respectively the maximum and the minimum of the original input data, while  and are the 

upper and the lower network ranges for the network input respectively. Similarly, the original 

output, say  was scaled to the network range by 

                                      (3) 

where the systems’ output was scaled to the network range, and are respectively the 

maximum and minimum values of the original output data, whereas and are respectively the 

upper and the lower network ranges for the network output. After scaling the inputs and 

outputs, the resulting output, say is in the scaled domain. Hence, one needs to rescale the 

output back to its original domain; this was by inverting Equation (3) and using as 

 

                           (4) 
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In order to draw conclusions on the ANN model performance, parameters for statistical 

analyses (e.g. Root Mean Squared Error (RMSE), Mean Squared Relative Error (MSRE), 

Mean Absolute Error (MAE), Coefficient of Efficiency (CE), and Coefficient of 

Determination (R2) were used to evaluate the ANN model predictions. Here, special attention 

is on the ANN model performance in terms of extreme events, that is, maximum and 

minimum flows. In this regard, the coefficient of correlation R as in Equation (5) was used. 

 

                                   (5) 

where v = the number of output data points,  = the observed flow,  = predicted 

flow,   = mean of observed flow, and   = mean of predicted flows. In terms of the 

measures of forecast accuracy with respect to extreme values, the ratio of the forecasted 

maximum to the observed maximum (peak) was determined as 

                                                           (6a) 

where max{yt} = max{y1,…, yv} and  is the forecast corresponding to such maximum; and 

Rmax = 100%, means that the observed peak is perfectly reproduced by the model. Forecasts 

with values of  about 100% are considered to be very accurate, while 

 indicates that the model underestimates the peak value; and 

  indicates overestimation. Similarly, the ratio of the forecasted to the 

observed minimum,  

                                                            (6b) 

where  now represents the forecast corresponding to the minimum observed value, was 

also used to judge the forecast capability of the model. 
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MODEL FORECAST PERFORMANCE AND DISCUSSION 

 

Artificial neural networks (ANNs) are like conventional hydrological models in that different 

attributes of the hydrograph are simulated to varying degrees of success. Considering the 

issues involved in modelling within this context, as in any other forecasting procedure, 

forecasting based on ANNs has an associated uncertainty. The forecast uncertainty arises not 

only because of the model but could be due to limited sample size used for training. Within 

the premise of the focus of this study, the model uncertainty may be due to two factors; first, 

the streamflow generation which is directly intertwined with hydroclimatic forcing, and 

second, probably, the model order. Looking at this issue further, the type of forecast model 

selected herein has been pre-defined, i.e. a neural network type of model, is a mathematical 

artefact that has some practical appeal but no physical basis, and hence not without 

uncertainty. Based on the forecast results, the uncertainty associated with the model is 

minimal since its architecture was determined based on reconstruction of phase-space 

dynamics of the input data series. 

 

The ANN model forecast performances are as reported in Tables 1 and 2, for both the 

training and validation periods, respectively; Table 3 shows the forecast performance of the 

ANN model (see Fig. 4: 8-7-5 feed-forward architecture with bias) in terms of extreme 

events. Based on the statistical details of the forecast performance as presented in Tables 1 

and 2, the overall performance based on CE and R2 indexes, the feed-forward MLP ANN (8-

7-5) proposed here is robust enough and do indicate that probable short-term forecasts can be 

made if proper forecast function is developed accordingly. 
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Table 1: ANN forecast performance during Training period 

Transform Lead MAE MAPE RMSE MSRE CE 2R  

Resc-log       

 60.5122 0.0423 65.2061 0.0127 0.9948 0.9949 

 78.1075 0.0667 72.4789 0.0230 0.9900 0.9901 

 97.9276 0.0894 118.4867 0.0337 0.9845 0.9845 

 120.7359 0.1105 129.2995 0.0478 0.9781 0.9782 

 128.1495 0.1309 140.4846 0.0633 0.9713 0.9714 

Standardised       

 35.6221 0.0528 60.9822 0.0192 0.9952 0.9952 

 48.1363 0.0820 69.9252 0.0335 0.9905 0.9905 

 90.5212 0.1096 105.9536 0.0483 0.9852 0.9850 

 103.1272 0.1370 118.1302 0.0687 0.9793 0.9792 

 109.8650 0.1656 123.3604 0.0923 0.9730 0.9731 

Resc-raw data       

 68.9218 0.0494 73.8954 0.0186 0.9951 0.9950 

 80.8409 0.0752 85.5560 0.0337 0.9905 0.9910 

 98.1809 0.1017 120.6724 0.0499 0.9853 0.9852 

 134.0759 0.1296 152.581 0.0745 0.9794 0.9794 

 137.7988 0.1569 159.4555 0.1006 0.9731 0.9732 

Resc-log: Rescaled-logarithmic transformed flow series; raw data: Original flow data; Standardised: the demeaned original flow series divided by 

standard deviation; Resc: rescaled. 

 

 

Table 2: ANN forecast performance during Validation  

Transform Lead MAE MAPE RMSE MSRE CE 2R  

Resc-log       

 70.2001 0.1509 72.7876 0.0703 0.9561 0.9566 

 79.3483 0.1642 80.4672 0.0872 0.9472 0.9476 

 105.0832 0.1799 129.1394 0.1027 0.9395 0.9398 

 122.5459 0.1935 131.8075 0.1134 0.9319 0.9324 

 130.8713 0.2075 145.3140 0.1264 0.8187 0.9270 

Standardised       

 45.4193 0.1666 68.5223 0.1063 0.9572 0.9573 

 53.3808 0.1737 80.0700 0.1131 0.9493 0.9495 

 98.2346 0.1830 117.8108 0.1182 0.8408 0.9410 

 109.9609 0.1921 120.2051 0.1199 0.8405 0.9324 

 115.2344 0.2015 125.5316 0.1186 0.8401 0.9239 

Resc-raw data       

 75.0910 0.1665 80.8146 0.1044 0.9552 0.9557 

 83.1199 0.1747 86.8868 0.1147 0.9481 0.9483 

 107.5458 0.1878 130.0229 0.1236 0.8138 0.9383 

 136.5948 0.1997 157.8905 0.1287 0.8115 0.9284 

 140.0822 0.2117 168.1761 0.1357 0.8037 0.9199 

Resc-log: Rescaled-logarithmic transformed flow series; raw data: Original flow data; Standardised: the demeaned original flow series 

divided by standard deviation; Resc: rescaled. 
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Table 3: ANN model performance in terms of extreme events (Max. and Min. flow) 
 

Transform          Lead 

Training                                 Validation 

( )max %R
 

 ( )min %R
 

( )max %R
 

 ( )min %R
 

Resc-log     

 98.03 137.47 99.40 114.67 

 98.78 148.64 98.87 118.47 

 99.46 149.28 98.56 118.55 

 100.02 145.45 98.29 119.96 

 100.48 136.23 97.80 124.18 

Standardised     

 98.27 94.87 100.95 105.91 

 97.63 94.30 101.47 91.75 

 97.80 67.16 101.61 82.02 

 98.22 56.04 101.43 62.84 

 98.10 32.59 101.25 45.05 

Resc-raw data     

 98.45 87.68 98.22 82.05 

 97.92 49.92 98.18 68.43 

 98.23 22.93 98.00 45.92 

 98.65 22.58 97.59 12.62 

 98.96 20.60 97.18 95.83 

 

Though the overall accuracy of the model in terms of the statistical parameters CE, R2, and 

RMSE (Tables 1 and 2) are seemingly good, they do not really reveal the distribution of the 

forecast errors since there are global statistics. The values of MSRE and MAE in the validation 

period increase appreciably with the lead time (in days) indicating the distortion in the 

distribution of the forecast errors. This aspect in the forecast behaviour during the validation 

period is paramount since from a practical stand point they serve to assess and quantify the 

forecast errors of the ANN forecast model. Table 3 succinctly illustrates this distortion with 

regards to forecast of extreme events. It does provide an intuitive outlook on ANN model 

prediction when a univariate time series is used. In general, Table 3 also showed that in terms 

of Rmin and Rmax, it is obvious that ANN model forecasts high flows much better that low flows. 

This underscores the need for the inclusion of exogenous input (precipitation) in the network 

input variables. Peaks corresponding to larger values of discharge are always generated by 

rainfall that are heavy and of long duration and intermediate peaks, on the other hand, are 

caused by heavy rainfall of short duration; thus the non-inclusion of precipitation in the input 

data set which might mitigate this phenomenon probably explains the distortion. 

Comprehensively though, comparative hydrographs (Fig. 5) of the observed and forecasted 

streamflow for one-day-ahead depicts the goodness-of-fit for the network trained using the 

ANN structure as determined in this case. 
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Fig. 5: ANN model 1-day-ahead forecasts: (a) Rescaled logarithmic-transformed flow series, 

(b) Rescaled raw flow series, (c) Standardised raw flow data 

 

It is paramount not to only evaluate model forecast performance on the basis of statistical 

parameters, but to also consider the impact data pre-processing might have on ANN model 

forecasts (Wang, 2006). It is recognised that data pre-processing can have a significant effect 

on model performance (e.g. Maier and Dandy, 2000). It is commonly considered that, 

because the outputs of some transfer functions are bounded, the outputs of an MLP ANN will 

be in the interval [0, 1] or [-1, 1] depending on the transfer function used in the neurons. 

Reports in literature suggest using smaller intervals for streamflow modelling as [0.1, 0.85] 

(Shamseldin, 1997), and [0.1, 0.9] (Abrahart and See, 2000), so that extreme (low and high) 

flow events occurring outside the range of the calibration data may be accommodated. 

However, the advantage of rescaling the data into a small interval is not supported as 

illustrated in Table 3. In this case, the general performance of the MLP-ANN with 

standardisation pre-processing is much better in the overall; especially for low and high flows 

(i.e., extreme events in terms of minimum and maximum flows) during validation stage; this 

result is in agreement with similar findings by Wang (2006). This could be explained against 

the backdrop of the behaviour of the transfer function. For instance, to rescale the input data 

to [-1, 1] would limit the output range of the  function approximately to [-
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0.7616, 0.7616] (Wang, 2006). Similarly, to rescale the input range to [-0.9, 0.9] would 

further shrink the output range approximately to [-0.7163, 0.7163] (Wang, 2006). Both 

0.7616 and 0.7163 are still far away from the extreme limits of the  function; 

such a small output data range will make the output less sensitive to the change of the 

weights between the hidden layer and output layer, and will therefore possibly make the 

training process more difficult. In addition, in line with Wang (2006), since the neurons in an 

ANN structure are combined linearly with a lot of weights, any rescaling of the input vector 

can be offset the more, as corresponding weights and biases are changed. 

CONCLUSIONS 

 

It is evident from the ANN model forecast performance that the application of the knowledge 

of evolution of a dynamical system in a multi-dimensional state space is a veritable way in 

determining the size of input in a neural network model, especially with a univariate time series 

as it does not involve the analysis of extensive model sensitivity to the input data.  The ANN 

model forecast performance showed that reliable short term forecasts, 5 day - ahead can be 

made for the daily streamflow series, using multiple-output regime. However, on the general 

question of the suitability of ANN model application for streamflow forecasting as applied in 

this study (i.e., daily streamflow), though the neural network could simulate the different 

attributes of the flow hydrograph, its relative forecast performance of high flows is robustly 

better than the case of low flows; it grossly under predicts and over predicts low flows 

depending on the particular network input data pre-processing schema. 

 

Analysis of the influence of different data pre-processing schema namely, rescaling, and 

standardisation on the ANN model forecast performance brought to the fore the associated 

encumbrances that the modeller might face; especially, in drawing up an objective conclusion 

if proper data processing was not done. Concisely, it is evident that, for MLP networks with a 

tan-sigmoid transfer function, standardising the data by subtracting the mean and dividing by 

the standard deviation is better than rescaling the data to a small interval of particular range.  
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